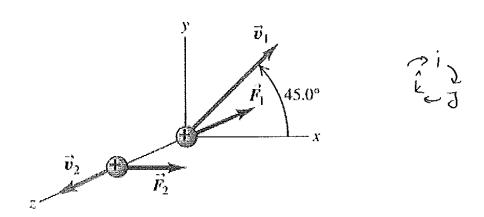
PHYS 102:General PhysicsII KOÇ UNIVERSITY Spring Semester 2017

College of Sciences


Section 1 Quiz 8 17 April 2017

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

When a particle of charge q>0 moves with a velocity of \vec{v}_1 at 45^0 from the x axis in the xy-plane, a uniform magnetic field exerts a force \vec{F}_1 along the -z-axis as shown in the figure. When the same particle moves with a velocity \vec{v}_2 with the same magnitude as \vec{v}_1 but along the +z-axis, a force \vec{F}_2 of magnitude F_2 is exerted along the +x-axis.

- a) What are the magnitude (in terms of q, v, and F_2) and direction of the magnetic field?
- b) What is the magnitude of \vec{F}_1 in terms of F_2 ?

PHYS 102:General PhysicsII KOÇ UNIVERSITY Spring Semester 2017
College of Sciences

Section 2 Quiz 6 27 March 2017

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

A particle with charge q is moving with speed v in the -y-direction. It is moving in a uniform magnetic field $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$.

- a) What are the components of the force \vec{F} exerted on the particle by the magnetic field?
- b) If q>0, what must the signs of the components of \vec{B} if the components of \vec{F} are all nonnegative?
- c) If q < 0, and $B_x = B_y = B_z > 0$, find the direction of \vec{F} and find the magnitude of \vec{F} in terms of |q|, v, B_x

PHYS 102:General PhysicsII

KOÇ UNIVERSITY

Spring Semester 2017

College of Sciences

Section 3

Quiz 6

27 March 2017

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A particle with charge q and initial velocity $\vec{v}_0 = v_{x0}\hat{\imath} + v_{y0}\hat{\jmath}$ enters a region of uniform electric and magnetic fields. The magnetic field in the region is $\vec{B} = B_x\hat{\imath} + B_z\hat{k}$. Calculate the magnitude and direction of the electric field in the region if the particle is to pass through undeflected.

PHYS 102:General PhysicsII	KOÇ UNIVERSITY	Spring Semester 2017
	College of Sciences	
Section 4	Quiz 6	27 March 2017

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

An open plastic soda bottle with an opening diameter of 3 cm is placed on a table. A uniform 2.25 T magnetic field directed upward and oriented 37^o from vertical encompasses the bottle. What is the total magnetic flux through the plastic of the soda bottle?

 $(\cos 37^{\circ} 0.8 = , \sin 37^{\circ} = 0.6. \text{ Take } \pi = 3)$