Name, Surname:	Student ID Number:
Exam Room:	Signature:

KOÇ UNIVERSITY

College of Sciences PHYS 102 General Physics 2 Spring Semester 2019 Midterm 1 Exam March 6, 2019 Wednesday, 19:00-20:40

Please read.

- Count to make sure that there are 5 pages in this question booklet
- Check your name, number, on front page, and student ID on each page.
- This examination is conducted with closed books and notes.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backs of the question pages and put down the appropriate pointer marks.
- Make sure that you include units in your results.
- Make sure that you label the axis and have units in your plots.
- You are not allowed to use calculators during this exam.
- Turn off your mobile phones, and put away.
- You are not allowed to leave the class during the first 15 minutes, and last 15 minutes.
- Write your final answers into the boxes. No points will be given to unjustified answers. Incomplete calculations will not be graded.

P102_Index:

1	2	3	4	Total

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q1-(25 pts) A thin non-conducting rod is bent into a semicircle of radius *R*. A charge -*Q* is uniformly distributed along its top half and a charge +*Q* is uniformly distributed along its bottom half, as shown in the figure.

(a-15pts) Find the magnitude of the electric field at the origin 0.

(b-5pts) What is the direction of the electric field at the origin O?

(c-5pts) Determine the acceleration of an electron (charge –*e*, mass *m*) placed at the origin 0.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q2-(25 pts) A non-conducting sphere of radius R has total charge Q that is distributed uniformly through its volume. The sphere is inside a concentric, isolated, conducting spherical shell of inner radius 2R and outer radius 3R. Given that the electric field at the surface of the non-conducting sphere and at the outer surface of the conductor shell are equal.

(a) Determine the charge density at the inner surface of the conductor.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q3-(25 pts) A hollow cylinder of radius *R* and height *H* carries a total charge *Q* uniformly distributed over its surface (see the figure).

(i) Find the electric potential at the origin *O*. (Hint: $\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln(\sqrt{a^2 + x^2} + x) + \text{const.})$

(ii) Verify that your result reduces to that of a ring of charge if $H \ll R$. (Hint: $\ln(1 + x) \cong x$, $\sqrt{1 + x} \cong 1 + x/2$, for $x \ll 1$.)

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q4-(25 pts) Two <u>different</u> capacitors C_1 and C_2 (where $C_1 > C_2$) are charged to the same initial potential difference V_0 . The charged capacitors are connected with <u>opposite polarity</u> and the switches (S) are closed. Equilibrium has been reached.

(a-15pts) Determine the new electric potential on C_1 and the ratio of the initial and final total electrostatic energy stored in the capacitors ($U_{final}/U_{initial}$) in terms of C_1 , C_2 and V_0 .

(b-10pts) With the switches in closed position, a slab of dielectric constant K > 1 is inserted to fill the <u>upper half space</u> in the second capacitor as shown in the figure and equilibrium has been reached. Determine the new electric potential on C_1 in terms of C_1 , C_2 , V_0 and K.

