Name, Surname:	Student ID Number:
Exam Room: SNA A21	Signature:

KOÇ UNIVERSITY

College of Sciences
PHYS 102 General Physics 2
Spring Semester 2019
Midterm 2 Exam

April 22, 2019 Monday, 19:00-20:40

Please read.

- Count to make sure that there are 5 pages in this question booklet
- Check your name, number, on front page, and student ID on each page.
- This examination is conducted with closed books and notes.
- Use of calculators are not allowed during this exam.
- Put all your personal belongings underneath your seat and make sure that pages of books or notebooks are not open.
- Turn off your cell phones and put away.
- Absolutely no talking or exchanging anything (like rulers, erasers) during the exam.
- You must show all your work to get credit; you will not be given any points unless you show the details of your work (this applies even if your final answer is correct).
- Write neatly and clearly; unreadable answers will not be given any credit.
- If you need more writing space, use the backside of the respective question's page and put down the appropriate pointer marks.
- Results must include proper units.
- Plots must have proper axis labels and units.
- You are not allowed to leave the room in the first and last 15 minutes of the exam.
- Write your final answers into the boxes. No points will be given to unjustified answers. Incomplete calculations will not be graded.

P102_Index:	
-------------	--

1	2	3	4	Total

P102_Index:	Student ID Number:	
Exam Room:	Signature:	
Q1-(25 pts) The circuit below is runnitime and reached the steady state. The negligible internal resistance. Given $\varepsilon \approx 20 \ \Omega$, $C = 60 \ \mu F$.	e battery has	
a) [15 pts.] Calculate the value of R_1 for our calculation steps explicitly).	which the power dissipated on R_1 is maximum (show	

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q2-(25 pts) A conducting ring of radius R lies in the xy plane with its center at the coordinate origin. The ring carries a clockwise current I. If the external magnetic field in the xy plane is given by $\vec{B} = a\vec{r} + b\hat{\jmath}$, where $\vec{r} = r\hat{r}$ is the position from the origin, $\hat{\jmath}$ is a unit vector along the +y axis, and a and b are positive constants:

(a-15pts) Calculate the magnitude and direction of the net force on the ring.

(b-10pts) Calculate the magnitude and direction of the net torque on the ring.

	0		

P102_Index:	Student ID Number:
Exam Room:	Signature:

Exam Room:	Signature:
Q3-(25 pts) A circular loop of radius R and a square the origin and they both lie on the $x-y$ plane directions. They are electrically isolated from each zero, determine the radius of the loop in terms opposite? (Hint: The magnetic field strength of a given by $B = \frac{\mu_0 I}{4\pi} \frac{2a}{x\sqrt{x^2 + a^2}}$, where $2a$ is the length of	e. They both carry current I but in opposite h other. If the net magnetic field at the origin is of a . Does the loop fit into the square or the straight wire at a distance x from its center is

P102_Index:	Student ID Number:
Exam Room:	Signature:
Q4-(25 pts) Consider an infinitely long streets consisting of two coaxial metals as shown regions in the figure. The currents flowing metallic regions are given to be as I ₁ and (a) Find the current density in each metal	n light and dark colored g the inner and the outer I_2 , respectively.
(b) Using the Ampere's law, determine th outside the wire.	e magnetic field in each metallic region and