KOÇ UNIVERSITY

Spring Semester 2015

College of Sciences

Section 1

Quiz 10

14 May 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A long, straight solenoid has N turns, uniform cross-sectional area A, and length l. Show that the inductance of this solenoid is given by $L=\mu_0AN^2/l$. Assume that the magnetic field is uniform inside the solenoid and zero outside.

Inductance is defined as:

And flux is defined as: PB = BA. Using Ampure Law we can calulate the magnetic field of the solenoid:

Using this magnetic field in the definition of the inductance we have:

KOC UNIVERSITY

Spring Semester 2015

College of Sciences

Section 2

Quiz 10

14 May 2015

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A long, straight solenoid has N turns, uniform cross-sectional area A, length l, and carries a current $\boldsymbol{I}_{\mathrm{0}}.$ Find the total energy contained in the coil's magnetic field assuming the field is uniform.

Energy stored in the coil is given as: U= 1/2 LI2

Inductunce is defined as: $L = \frac{N\Phi_B}{I_o}$. Where flux is given with $\Phi_B = BA$. Using these: U= 1/2 L I2 = NA. I2 = NBAIO

Using Ampere's law we can calculate the magnetic field:

SB. Je = Molenc. => BX = 10 NX Io

If we sustitude B to the expression of U we get:

KOÇ UNIVERSITY

Spring Semester 2015

College of Sciences

Section 3

Quiz 10

14 May 2015

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

An LC circuit containing an inductor $L_{\rm 0}$ and a capacitor $C_{\rm 0}$ oscillates with a maximum current of $I_{\rm 0}$. Calculate the maximum charge on the capacitor.

Total charge in the capacitor can be written as:

where Q is maximum charge, and $w = \sqrt{\frac{1}{LC}}$ for LC circuit. Then current is given as:

From this equation we see that maximum current is given as:

$$I_o = Qw => Q = \frac{I_o}{w} =>$$

KOÇ UNIVERSITY

Spring Semester 2015

College of Sciences

Section 4

Quiz 10

14 May 2015

Closed book. No calculators are to be used for this quiz.

Quiz duration: 10 minutes

Name:

Student ID:

Signature:

An LC circuit containing an inductor L_0 and a capacitor C_0 oscillates with a maximum current of I_0 . Assuming the capacitor has its maximum charge at time t=0, calculate the energy stored in the inductor after t seconds.

For inductor energy stored is given as: $U = \frac{1}{2} Li^2$

The current for any LC circuit in general

can be written as:

$$i(t) = I_0 cos(\omega t + \phi)$$
; $\omega = \frac{1}{\sqrt{L_0 c_0}}$

Since i(0) = Io we have:

Thus:

There fore:

$$U = \frac{1}{2} L_0(i(t))^2 = \left[\frac{1}{2} L_0 J_0^2 \cos^2\left(\frac{t}{\sqrt{L_0 c_0}}\right) \right]$$

KOÇ UNIVERSITY

Spring Semester 2015

College of Sciences

Section 5

Quiz 10

14 May 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

An ideal battery with voltage V_0 , a resistor with resistance R_0 , and an ideal inductor with inductance L_0 are all connected in series with an open switch. The switch is suddenly closed. How long after closing the switch will the current through the inductor reach one-half of its maximum value?

Current of R-L circuit with emf is given as: $i = \frac{V_0}{R_0} \left(1 - e^{-(R_0/L_0)t} \right)$

At t=0, $i=\frac{V_0}{R_0}$. Assume at time to, the current drop one-half of its maximum value:

=>
$$\frac{1}{2} = (1 - e^{-(R_0/L_0)t_1}) => 1 = 2 - 2e^{-(R_0/L_0)t_1}$$

=>
$$e^{-(k_0/L_0)t_1} = \frac{1}{2} = 9 - \frac{k_0}{L_0}t_1 = ln(\frac{1}{2}) = 9$$

=>
$$t_1 = -\frac{L_0}{R_0} en(\frac{1}{2}) = >$$

$$t_1 = \frac{L_0}{R_0} \ln(2)$$