KOC UNIVERSITY

Spring Semester 2015

College of Sciences

Section 1

Quiz 9

07 May 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

The magnetic field B, at all points within a circular region of radius R, is uniform in space and directed into the plane of the page as shown in the figure. If the magnetic field is decreasing at a rate of dB/dt, find both the direction and the magnitude of the induced electric field at position (x = R/2, y=R/2), defined from the center of the circular region.

Induced
$$\vec{E}$$
 is always perpendicular to \vec{B} =7 \vec{E} $\vec{L}\vec{B}$ = on the paper plane $\vec{\Phi}$ $\vec{E} \cdot d\vec{e} = -\frac{d\vec{\Phi}_B}{dt}$ $\vec{\Phi}_B = \pi r^2$. B

$$|\vec{E}| \cdot 2\pi r = \left| \frac{d\Phi_B}{dt} \right| = \pi r^2 \cdot \left| \frac{dB}{dt} \right|$$

$$|\vec{E}| = \frac{\Gamma}{2} \frac{dB}{dt} = \frac{R}{2T_2} \frac{dB}{dt}$$
 Induced current must increase B, so I is clockwise and has some direction with \vec{E} .

 $E = \frac{R}{2\sqrt{2}} \left| \frac{dB}{dt} \right| \cdot \frac{1}{\sqrt{2}} \left(i - j \right) = \frac{R}{4} \left| \frac{dB}{dt} \right| \left(\hat{c} - \hat{j} \right)$

KOÇ UNIVERSITY

Spring Semester 2015

College of Sciences

Section 2

Quiz 9

07 May 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

The magnetic field B, at all points within a circular region of radius R, is uniform in space and directed into the plane of the page as shown in the figure. If the magnetic field is decreasing at a rate of dB/dt, find both the direction and the magnitude of the induced electric field at position (x = 2R, y=2R), defined from the center of the circular region.

Induced E is on the plane since ELB

$$= |\vec{E}| \cdot 2\pi r = |-\frac{d}{dt} (\pi R \cdot B)| = |-\pi R \cdot \frac{dB}{dt}| = \pi R \cdot |\frac{dB}{dt}|$$

$$|\vec{E}| = \frac{R^2}{2r} \cdot \left| \frac{dB}{dt} \right| = \frac{R}{4\sqrt{2}} \left| \frac{dB}{dt} \right|$$

Induced current is in clockwise direction to increase B. E is targential to path C, and parallel to I at any point.

$$\exists \vec{E} = \frac{R}{4\sqrt{2}} \cdot \left| \frac{dB}{dt} \right| \cdot \frac{1}{\sqrt{2}} (i - j) = \frac{R}{8} \left| \frac{dB}{dt} \right| (i - j)$$

KOÇ UNIVERSITY

Spring Semester 2015

College of Sciences

Section 3

Quiz 9

07 May 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

The magnetic field B, at all points within a circular region of radius R, is uniform in space and directed into the plane of the page as shown in the figure. If the magnetic field is increasing with time t as B = Ct, where C is a constant, find both the direction and the magnitude of the induced electric field at position (x = R, y = 0), defined from the center of the circular region.

Induced E is on the paper plane since ELB

$$\oint_{C} \vec{E} \cdot d\vec{e} = -\frac{d\vec{f}_{B}}{dt} = -\frac{1}{dt} \left(\vec{R} \cdot \vec{R} \cdot \vec{B} \right) = -\vec{R} \cdot \frac{d\vec{B}}{dt} = -\vec{R} \cdot \vec{C}$$

To decrease B, induced current I is counter clockwise direction and parallel to E at any point.

KOÇ UNIVERSITY

Spring Semester 2015

College of Sciences

Section 4

Quiz 9

07 May 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

The magnetic field B, at all points within a circular region of radius R, is uniform in space and directed into the plane of the page as shown in the figure. If the magnetic field is decreasing with time t as $B = A \exp(-C t)$, where C and A are constants, find the direction and the magnitude of the force on a stationary negative charge q located at position (x = 3R, y=4R), defined from the center of the circular region.

Induced = 18 on the paper plane since ELB.

$$\oint \vec{E} \cdot d\vec{e} = \frac{d\vec{I}_B}{dt} \Rightarrow |\vec{E}| \cdot 2\pi r = \pi \hat{R} \cdot A \cdot C \cdot e^{-Ct}$$

To increase B, I is in clockwise direction and antiparallel to F at any point (parallel to El

KOÇ UNIVERSITY

Spring Semester 2015

College of Sciences

Section 5

Quiz 9

07 May 2015

tandy & A.C.e

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

The magnetic field B, at all points within a circular region of radius R, is uniform in space and directed into the plane of the page as shown in the figure. If the magnetic field is increasing with time t as $B = A \exp(C t)$, plot the magnitude of the induced electric field as a function of the radial distance r, defined from the center of the circular region.

For a fixed t: