Name, Surname:	Student ID Number:
Exam Room:	Signature:

KOÇ UNIVERSITY

College of Sciences

PHYS 102 General Physics 2
Spring Semester 2022
Midterm 1 Exam
March 24, 2022 Thursday, 20:20-22:00
Please read.

- Please turn off mobile phones and stow away your belongings. Have your student ID ready for attendance check. Only exam booklet, pencil and eraser are allowed throughout the exam.
- Check that there are 4 question sheets in this question booklet.
- Use only black pencil for writing.
- Write your name, number, on front page, and student ID on each page.
- Write neatly and clearly; unreadable answers will not be given any credit.
- Final answers must be written into the respective answer box. It may not get credit otherwise.
- A final answer that is not based on a reasonable, consistent solution attempt on the exam paper may not get credit even if it coincides with the correct answer.
- Use the back pages in case you need more blank space. Label the continuing solution clearly.

IMPORTANT: Do not continue the solution of a question on a different question sheet!

- Mathematical expressions in the result must be simplified as possible. Mathematical and physical constants may be left in symbolic form, unless their numerical value for a calculation is explicitly requested in the problem.
- If applicable, make sure to include units in your final answer.
- In graphing questions, use proper scaling, label the axes and indicate units.
- Using calculators is not allowed.
- Students must respect the time restrictions on leaving/entering the exam room as stated by the exam proctors.

Integrals:

$$
\begin{array}{lll}
\int x^{n} d x=\frac{x^{n+1}}{n+1}(n \neq-1) & \int \frac{d x}{x}=\ln x & \int e^{a x} d x=\frac{1}{a} e^{a x} \\
\int \sin a x d x=-\frac{1}{a} \cos a x & \int \cos a x d x=\frac{1}{a} \sin a x & \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a} \\
\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) & \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a} & \int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{1}{a^{2}} \frac{x}{\sqrt{x^{2}+a^{2}}} \\
\int \frac{x d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=-\frac{1}{\sqrt{x^{2}+a^{2}}} &
\end{array}
$$

P102_Index:

1	2	3	4	Total

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q1-(25 pts) A ring-shaped conductor with radius a has a total positive charge Q uniformly distributed around it. The center of the ring is at the origin of coordinates O (see the figure).

a) Derive the electric field (magnitude and direction) at point P , which is on the positive x -axis at a distance d from the origin.
b) A negative point charge q is placed at P. What are the magnitude and direction of the force exerted by the charge q on the ring?

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q2-(25 pts) Two small objects, each carrying a charge q, are attached by insulating strings of length L to a very long, thin, insulating rod. The rod and objects lie in the same plane. The rod has a positive, uniform line charge density λ and generates an electric field with a magnitude $E(r)=\lambda / 2 \pi \epsilon_{0} r$ at a distance r from it. The system is in equilibrium when the strings stretch with a right angle between them, as shown. There is no gravitational field acting on the system.
a) What is the sign of q ?

b) Calculate the net electric force vector on charge q_{1} in the given coordinate system.
c) Calculate q in terms of λ and L.

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q3-(25 pts) A solid conducting sphere of radius R is inside a concentric conducting spherical shell of inner radius $3 R$ and outer radius $4 R$. The spheres are electrically isolated. The solid sphere has a net charge $-2 Q$, the spherical shell has a net charge $+5 Q$. Each part below start with this initial condition described here and the parts are unrelated. Electrostatic equilibrium applies in each case.

a) (6 pts) Calculate the electric field \vec{E} at $r=2 R$ and at $r=5 R$.
b) (6 pts) Suppose that the solid sphere and the spherical shell are connected by a conducting wire. Calculate the electric field \vec{E} at $r=2 R$ and at $r=5 R$.

c) (6 pts) Suppose that the spherical shell is connected to the ground. (so that it obtains the same electrical properties as the ground). Calculate the electric field \vec{E} at $r=2 R$ and at $r=5 R$.

d) (7 pts.) How much charge must be added to the outer sphere so that the electric field \vec{E} is the same at $r=2 R$ and $r=5 R$?

P102_Index:	Student ID Number:
Exam Room:	Signature:

Q4-(25 pts) Positive electric charge Q is distributed uniformly along a plastic rod of length L. Find the electric potential (V) at three different points A, B, C.
D is the verticle and horizontal distances from the right end of the rod.

D

$$
V_{C}=
$$

