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Clarification of Issues on the Closed-Form Green’s
Functions in Stratified Media

M. I. Aksun, Senior Member, IEEE, and Gülbin Dural, Member, IEEE

Abstract—The closed-form Green’s functions (CFGF), derived
for the vector and scalar potentials in planar multilayer media,
have been revisited to clarify some issues and misunderstandings
on the derivation of these Green’s functions. In addition, the
range of validity of these Green’s functions is assessed with and
without explicit evaluation of the surface wave contributions. As
it is well-known, the derivation of the CFGF begins with the ap-
proximation of the spectral-domain Green’s functions by complex
exponentials, and continues with applying the Sommerfeld iden-
tity to cast these approximated spectral-domain Green’s functions
into the space domain in closed forms. Questions and misun-
derstandings of this derivation, which have mainly originated
from the approximation process of the spectral-domain Green’s
functions in terms of complex exponentials, can be categorized
and discussed under the topics of: 1) branch-point contributions;
2) surface wave pole contributions; and 3) the accuracy of the
obtained CFGF. When these issues are clarified, the region of
validity of the CFGF so obtained may be defined better. Therefore,
in this paper, these issues will be addressed first, and then their
origins and possible remedies will be provided with solid analysis
and numerical demonstrations.

Index Terms—Closed-form Green’s function, discrete complex
images method (DCIM), Green’s function, multilayer media.

I. INTRODUCTION

I T IS WIDELY accepted that the method-of-moments
(MoM) based algorithms are the most suitable numerical

algorithms for the rigorous analysis of layered printed struc-
tures of small to medium sizes (in terms of wavelength), when
compared to other rigorous techniques like finite elements
and finite-difference time domain methods [1]–[4]. For an
application of MoM, one needs to write a governing equation
in the form of an operator equation, which could be in the
form of differential, integral or integro-differential operators
[5]. Because the integral operators are more suitable for open
geometries (not shielded), and because it is computationally
more efficient for planar stratified media, the governing equa-
tion for the analysis and simulation of printed geometries in
such media is formulated as a mixed-potential integral equation
(MPIE) [6]. The application of the MoM for the solution of
integral equations, either in spectral or spatial domain, requires
the knowledge of the Green’s functions in the corresponding
domain. The Green’s functions for multilayer media are tradi-
tionally represented by the Sommerfeld integrals in the spatial
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domain, and are obtained as closed-form expressions in the
spectral domain. Although these representations of the Green’s
functions are well-known, they are not computationally efficient
to use in conjunction with the MoM. This is mainly due to the
oscillatory nature of the Sommerfeld integrals in the spatial do-
main, and due to slow-decaying nature of the spectral-domain
Green’s functions [7]. With this background in mind, following
the introduction of the closed-form Green’s functions (CFGF)
in [8] and [9] for a printed geometry on a thick substrate, there
have been several studies toward improving the approach and
extending it to more general geometries [10]–[23]. All these
studies on the efficient evaluation of the Green’s functions in
layered media have been motivated by the fact that printed
geometries in multilayer environment have found increas-
ingly more use in the designs of low-profile, light-weight and
multifunction antennas, and microwave integrated circuits.
Consequently, there has been a flurry of interest in developing
computationally efficient computer-aided design tools for such
geometries. In this context, the use of the CFGF in conjunction
with the MoM has been a good candidate in developing an EM
simulator to help analyze and design printed geometries [19].

Since printed geometries in multilayer media are, in gen-
eral, formulated as MPIE, due to its less singular behavior as
compared to other integral equation forms, the efficient calcula-
tions of Green’s functions of vector and scalar potentials be-
come necessary to be able to make the whole approach effi-
cient and accurate. To achieve this goal—efficient calculation
of the Green’s functions—a new approach that transforms the
integral representation of the spatial-domain Green’s functions
into closed-form expressions has been developed and improved
recently [8]–[23]. This approach, which is named as the method
of CFGF or discrete complex image method (DCIM), basically
approximates the spectral-domain Green’s functions in terms of
complex exponentials and cast the integral representation into
closed-form expressions via an integral identity, namely Som-
merfeld identity [24]. Perhaps the crucial point of this approx-
imation is that the approximating functions represent spherical
waves with complex distances, referred to as complex images,
and that dominant wave constituents of the fields of a dipole are
spherical in nature. However, there are other wave constituents
due to a dipole in a layered medium, like cylindrical and lat-
eral waves, which may not be approximated in terms of com-
plex images unless their contributions are explicitly accounted
for. Hence, the CFGF may have some limitations in the form
of a limited range of validity, where the range is defined as the
distance of observation point from the source. Nevertheless, it
provides a very accurate and efficient approximation for most
practical problems that are within the range of validity of the
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approach, which is usually on the order of a few wavelengths.
Beyond this range, the accuracy of the closed-form represen-
tations of the Green’s functions becomes very poor unless all
other wave types except the spherical ones have been extracted
and explicitly treated. In the literature, this behavior was at-
tributed to introducing nonphysical branch points into the ap-
proximated spectral-domain Green’s functions in the process of
approximation as performed in [8], [10] with the source em-
bedded in an unbounded dielectric layer [12], [20], [22]. In ad-
dition, it is claimed that not extracting the quasidynamic terms
in two-level approach causes some of the inaccuracies in the re-
sults [22]. However, the misinterpretation of the former claim
was briefly discussed in [18] and the inaccuracy was attributed
to the increased complexity due to the introduction of the extra
branch cut. To eliminate any possible confusion on the inaccu-
racies and on the range of the use of CFGF, the following points
are critically discussed with a view of their effects on the ap-
proximation of the Green’s functions: 1) extraction of the qua-
sistatic terms; 2) contributions of the branch points to Green’s
functions; and 3) contributions of the surface wave poles (SWP),
and their extraction. Note that discussing these steps both from
a mathematical and physical points of views provides definite
answers to the questions on the steps of the DCIM and on its
limitations, which can be considered as the main contribution
of this paper. In addition, the study on the validity range of the
DCIM with and without extracting the SWP is also the contribu-
tion of the paper. Note that this paper does not provide a new al-
gorithm or method for the application of the DCIM as its contri-
butions; rather it provides a thorough understanding of the tech-
nique, eliminates some lingering questions on the method, and
provides qualitative and quantitative discussions on the range of
application of the method, with and without a priory extraction
of surface waves.

A brief overview of the development of the CFGF is given in
Section II, in an itemized format that would help to clearly point
out the difficulties, possible sources of errors and their remedies
in the following sections. Then, the surface wave and branch
point contributions are provided for a simple layered geometry
in Section III, to demonstrate their region of influence as well as
their approximations in term of complex exponentials. In Sec-
tion IV, possible sources of errors, detailed discussions on the
advantages, disadvantages, restrictions and range of validity, as
well as some misunderstandings either caused by missing infor-
mation in the previous papers, or caused by misinterpretations
of certain numerical results are discussed. Finally, Section IV
provides conclusion.

II. BRIEF OVERVIEW OF DCIM

For the sake of illustration, consider a general planar-layered
medium as shown in Fig. 1, where the source is above the inter-
face between layer- and layer- by a distance . More-
over, to demonstrate the steps of getting CFGF and to point out
the potential sources of problems, the scalar Green’s function
due to a horizontally oriented electric source, namely , is
chosen as the representative member of the Green’s functions.
As the spectral-domain representations of dyadic Green’s func-
tions have been derived and well-documented for layered media

Fig. 1. Typical layered medium with an HED in layer-i.

[13], [16], [25], the one for the scalar potential is directly copied
from [13] as

(1)

where , and , , and are the

functions of the generalized reflection coefficients
and the source location . Note that, for the geometry depicted
in Fig. 1 where layer-0 and layer- are semi-infinite
dielectric media, there are two branch-point singularities in
the spectral-domain expressions of the Green’s functions,
specifically at ( is reserved for free-space while

is for layer-0) and , that is, at the wavenumbers
of the outmost layers where one needs to consider the radi-
ation condition for the choices of the branches of and

[24]. In addition to the branch point singularities,
there are some SWP between the minimum and maximum
wavenumbers involved in the geometry, that is, in the range of

. The number
of SWP is dependent on the electrical thicknesses and dielectric
constants of the layers involved.

The spatial-domain Green’s functions are obtained either by
using a two-dimensional transformation (inverse Fourier trans-
form) or by employing a one-dimensional Hankel transforma-
tion of the corresponding spectral-domain Green’s functions as

(2)

where SIP stands for Sommerfeld integration path and is
the zeroth order Hankel function of second kind. Since both ap-
proaches involve in taking the integral of oscillatory and slow-
convergent integrands, the method of obtaining CFGF in the
spatial domain is nothing but approximating these integrals in
closed-forms, efficiently and accurately. So, here are the steps
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Fig. 2. Integration paths for the inversion of the spectral-domain Green’s
functions over k -plane, and some of the singularities.

of the method with some remarks, considering the spectral-do-
main Green’s function given in (1) and following the two-level
approach given in [15] the following.

1. Sample the spectral-domain Green’s function. There
are two approaches for this step: i) extract the spec-
tral-domain representations of the quasistatic terms

and the surface-wave contri-

butions analytically from the spectral-domain
Green’s function, and then sample the resulting function,

; or ii) directly sample the terms
in the square bracket for a constant value in (1). The
sampling for both approaches is performed over a path
defined by the following mappings:

(3a)

(3b)

which is based on the two-level approach [15], but it could
be extended to multilevel approach very easily [17]. The
corresponding paths on -plane and some of the features
of the Green’s functions, such as branch points, branch
cuts and SWP, are shown in Fig. 2 for the sake of complete-
ness and coherence of the discussions. It is well known
that, in a layered medium, the branch points only exist
at the wavenumbers of the outmost layers, i.e., at

according to the geometry in Fig. 1, and the
SWP exist between the minimum and maximum of the
wavenumbers in the geometry.

Since the sampling path, denoted by and in
Fig. 2, is a legitimately deformed path of SIP, the spec-
tral-domain Green’s function becomes a single-valued
function of and over this path. Therefore,
any function approximating the spectral-domain Green’s
function over this path can be considered as approximate
and single-valued over the path. If the approximating
function is not evaluated over the sampling path, neither
approximation nor single-valuedness can be guaranteed.
Note that the path is drawn for two different dielec-
tric media in Fig. 2, just to show the change in the path for
different dielectric constants.

2. Approximate the sampled spectral-domain Green’s
function by complex exponentials, either using the
Prony method (PM) or the generalized pencil-of-function
method (GPOF), as

(4a)

after having extracted the quasistatic terms and the
surface-wave contributions in spectral domain ana-
lytically, as noted in item 1. i), or as

(4b)

by directly sampling the spectral-domain Green’s function
as noted in item 1. ii). The coefficients , , and the
exponents , in (4a) and (4b) are complex con-
stants resulting from the application of the PM or GPOF
method via the two-level sampling algorithm. Because
both methods require uniform sampling over a real vari-
able, and because the integration path for the inversion of
the spectral-domain Green’s functions, shown in Fig. 2,
is over complex -plane, it is necessary to introduce a
mapping between the real variable “ ” and the complex
variable , as defined in (3a) and (3b). Note that the mul-
tilevel sampling approach is employed to eliminate the
restriction of uniform sampling. This is especially useful
when the function to be approximated is smooth over a
domain while it is fast changing over some other domain.
It should also be noted that, since the GPOF method is
more robust and less noise sensitive as compared to the
PM [26], [27], the GPOF method is employed in this
work.

3. Get the closed-form spatial-domain Green’s function
from its approximated spectral-domain representa-
tion, by using the Sommerfeld identity

(5)

in the Hankel transformation defined in (2). Then, the fol-
lowing spatial-domain version of the Green’s function is
obtained:

(6a)

(6b)
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where are complex in general,

and hence this representation is also called DCIM. Note
that (6a) and (6b) are the spatial-domain versions of (4a)
and (4b), respectively, and that the quasistatic contribu-
tions for some simple geometry and the surface-wave
contributions can be found in closed-form in the spa-
tial domain [8]–[10]. It should be stressed here that
and are obtained analytically from their spectral-do-
main representations, which are to be found analytically
before the application of the DCIM.

III. POSSIBLE PROBLEMS AND THEIR SOURCES

After the first introduction of the method that yields CFGF
[8], [9], there have been plenty of discussions and improve-
ments on the method, and applications of such representations
of the Green’s functions. The discussions have concentrated
mainly on the approximation procedure, because the approxi-
mating CFGF are, in general, accurate enough for distances as
far as , and beyond which they may
deteriorate significantly. In this section, the attributed problems
for the deterioration of the accuracy of the CFGF in the literature
are discussed, and the sources of this inaccuracy together with
the remedies, whenever possible, are demonstrated. There are
basically three attributable sources of problems in the literature;
one is about the part of the original method itself, and the others
about the implementation of the two-level approach. These are,
namely: i) introducing a wrong branch point in the process of
approximation; ii) not extracting the quasistatic terms; and iii)
not extracting the SWP in the implementation of two-level ap-
proach, respectively. These points are addressed in this section
with a detailed discussion to clarify some misunderstandings.

A. Quasistatic Terms

This section is included to clarify the issue on whether the
quasistatic terms need to be extracted explicitly in the imple-
mentation of the two-level approach, as suggested in [22], [23].
It should be remembered that the quasistatic terms are extracted
from the spectral-domain Green’s functions to make them con-
vergent or fast convergent to zero for large values, to elimi-
nate the need of sampling the spectral-domain Green’s functions
over an extended range. Note that the quasistatic terms of a spec-
tral-domain Green’s function are obtained by finding the lim-
iting terms as (or ) in the form of exponentials
(real images). Therefore, in the application of the two-level ap-
proach, the approximation of the spectral-domain Green’s func-
tions on the path via complex exponentials can be consid-
ered as the extraction of quasistatic terms in addition to some
dynamic terms as well. In other words, once the approxima-
tion over the path is subtracted from the spectral-domain
Green’s function, it can not only make the Green’s function to
smoothly converge to zero as but it also makes it
zero beyond a predefined value of . In addition, derivation
or finding the quasistatic terms analytically for a Green’s func-
tion of an arbitrary geometry is quite difficult, if not impossible;
therefore, the approximation performed over the path in

Fig. 3. Four-layer structure with an embedded HED.

the two-level approach is designed specifically for this purpose,
as well as for enabling two different frequencies of sampling.

To demonstrate the effectiveness of the two-level approach,
a four-layer geometry is considered, as shown in Fig. 3:

; layer-0: PEC; layer-1: , ;
layer-2: , ; layer-3: free-space; HED is
in Layer-2; . Note that this geometry is the same as
the one studied in [12] at the frequency of 30 GHz, where it is
claimed that the original approach of the closed-form Green’s
function suffers from introducing an artificial branch point when
the source is in a bounded layer. This issue will be thoroughly
discussed in Section III-B.

Extracting the exponentials that approximate a spectral-do-
main Green’s function over large makes the Green’s func-
tion converge to zero, faster with the increased number of ex-
ponentials used, as demonstrated in Fig. 4(a) and (b). There-
fore, approximation over the path is much better than ex-
tracting the quasistatic terms, because it is robust, applicable for
any number of layers, and automatic.

B. Discussion on Branch Point Singularities and Their
Contributions

As it was mentioned above, for the geometry depicted in
Fig. 1 where the source is in the bounded layer “ ”, the spec-
tral-domain Green’s functions have only two branch-point sin-
gularities at , corresponding to the wavenum-
bers of uppermost and lowermost layers. Since mathematical
and physical reasoning of this statement has been clearly given
in [24], it is not discussed here any further. However, starting
with [12], there have been a few discussions on the introduction
of artificial branch points in the process of deriving the CFGF,
and in turn, on the mathematical validity of the proposed ap-
proach in [8], [10] when used in a multilayer environment with
the source buried into a bounded layer [20], [22].

The issue of incorrect complex-plane topology (due to artifi-
cial introduction of a branch point) was raised with an observa-
tion that the approximated scalar Green’s function, as obtained
using the approach in [8], [10], is violently off as compared
to the exact Green’s function for the geometry given in Fig. 3
where HED is positioned in Layer-2 [12], even for small dis-
tances from the source. According to the plot, Fig. 10 in [12],
the deviation between the approximation and the quadrature be-
gins around . However, with the applications of the
two-level approach without the modification proposed in [12],
for HED in Layer-2 and in Layer-1, the deviation stars beyond
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Fig. 4. (a) Real and (b) imaginary parts of the effect of subtracting the
exponentials of 1st level approximation over C (quasistatic terms) from the
spectral-domain Green’s function ~G sampled over C .

Fig. 5. Magnitude of the scalar Green’s function (approximate and exact), and
the surface wave contribution for the geometry in Fig. 3.

and , respectively, as demonstrated in Fig. 5,
which are significant improvements over the data provided in
[12]. Note that the source HED at the interface can be consid-
ered either in layer-1 or in layer-2 as the interface can be mod-
eled as the part of layer-1 or layer-2, respectively. The differ-
ence in accuracy observed may be attributed to the use of the

Fig. 6. Deformed integration paths over k =k - plane corresponding to the
sampling over k = k [�jt+(1� t=T )] for T = 5, and k = k [�jt+
(1� t=T )] for T = 15. Note that k = k for the geometry given in Fig. 3.

Prony method in [12], and not using enough samples for small
values when the original approach was used.

For the original Prony method, it has already been demon-
strated that it is very noise sensitive [26], [27], and alternative
methods, like the least-square Prony and the GPOF methods,
have been proposed. So, this issue is not detailed here any fur-
ther. However, for the sampling issue, which seems to be the key
factor for the early deterioration of the approximated Green’s
functions in [12], it would be instructive to give a few sentences
more. Note that the Green’s functions compared in Fig. 10 in
[12] were obtained by implementing the method with the sam-
pling performed over the path of using and mappings,
as given in (3a) and (3b) for mapping. Remember that sam-
pling over the path of using mapping, even though the
source is in layer-2, has been made possible with the modifi-
cation of the original approach by multiplying the numerator
and denominator of the spectral-domain Green’s function by

, i.e., of the outmost medium [12]. The actual integration
paths over -plane for the choices of the following mappings
are shown in Fig. 6:

(7a)

(7b)

where the same number of samples, 41 in this case, over the
corresponding ranges is used.

Note that, since is times larger than , the
sampling range for the mapping function of is reduced to 5
from 15 to bring the maximum of to the same neighbor-
hood. Although this adjustment of the sampling range pro-
vides similar ranges on -plane for both mappings, it cannot
provide a similar set of sampling points, especially for small
values, as evidenced from Fig. 6. To put this into numbers, the
first samples for both cases are at zero, and the second ones are at

and
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for the mapping functions of and , respectively. There-
fore, with the sampling using , the fine features of the func-
tion to be approximated, for small values, are not properly
accounted for, which results in a poor approximation in the spa-
tial domain for moderate to large values of . This example
demonstrates that the choice of for the definition of the path
in -plane is very important to have enough samples of the
Green’s function over the chosen path to get a good exponential
approximation. Therefore, one may use the modification pro-
posed in [12] to change the path. The modification is nothing
but multiplying and dividing the spectral-domain Green’s func-
tion by of the layer with lowest dielectric material ( of the
free-space that coincides with the branch point in most practical
problems) and choosing this to define the path and the expo-
nential expansion.

Let us look at this issue from the mathematical point of view.
The spectral-domain Green’s function, in this work, has
branch points at ( , free-space wave number) and as-
sociated branch-cuts, not counting the branch point of Hankel
function at . Once these branch-cuts are specified, the
integration path of the Sommerfeld integral can be deformed to
avoid these branch-cuts, and therefore, the integrand becomes a

single valued function of over the deformed
integration path. The path used for the exponential approxima-
tion, defined by (7a) or (7b), is one of such paths, and hence the
functions to be approximated by complex exponentials along
any one of these paths, as well as the approximating functions,
are single valued. Subsequently, the Sommerfeld identity can be
used, with no problem, for these approximating functions.

Another point is that the branch-point contribution at the in-
terfaces behaves like , while the surface wave contribution
behaves as . In other words, the branch point contribution
decays much faster than the contributions of the SWP. With a
little examination of Fig. 5, it is seen that the deviations for both
cases can occur where the surface wave contribution stars dom-
inating the Green’s function, which should be way out of the
influence range of the branch-point contribution.

C. Effects of the SWP Contributions on the DCIM

As the conclusion of the previous section, the surface wave
pole contributions seem to be responsible for the violent de-
terioration of the approximation for moderate distances from
the source. To verify this conclusion, a three-layer geometry, as
shown in Fig. 7, is studied at the frequency of 1 GHz, for which
there is only one TM surface wave pole at .

The two-level approach is used to get the closed-form Green’s
function for the scalar potential, for the case that HED is at in-
terface between layer-1 and layer-2. Since the scalar potential
is continuous across the interface, HED could be considered at
the interface in layer-1 or in layer-2, resulting in two different
spectral-domain representations of the same Green’s function.
Considering the differences in sampling paths for these cases,
as demonstrated in Fig. 6 for another geometry, the quality of
approximation of these spectral-domain Green’s functions may
be significantly different. It is observed that the approximations
for both cases fail to approximate the true nature of the Green’s
function for large distances from the source, as given in Fig. 8.

Fig. 7. Three-layer geometry.

Fig. 8. Magnitude of the scalar Green’s function and the SWP contribution for
the geometry given in Fig. 7. f = 1:0 GHz; HED is at interface in Layer-1 and
in Layer-2, h = 0:5 and 0.0 cm, respectively.

It is obvious that the deviation of the approximation is much
more pronounced when HED is in layer-1 than that when it is
in layer-2. However, it is clear that neither approximation pre-
dicts the dominant behavior of the SWP, as shown in Fig. 8
where the SWP contribution and the approximation (HED in
layer-2) are line-fitted. While the fitted line for the surface wave
contribution has approached to its theoretical limit ( of a
slope of -0.5 on a log-log scale), the one for the approxima-
tion has approached to the limit of the spherical wave ( of
a slope of -1.0 on a log-log scale), as given by the equations
in Fig. 8. Since the approximating functions, complex images,
are spherical waves coming from complex distances, the be-
havior of the approximating functions is expected, except for the
drastic increase of the magnitude of the Green’s function in al-
most far-field zone. This anomalous behavior will be further in-
vestigated in this section right after the discussion of SWP con-
tribution and its spherical wave approximations. Remembering
that the failure of DCIM in rather near-field region has been at-
tributed to poor sampling in the case of HED in layer-1 in Sec-
tion III-B, it is of paramount importance to distinguish the prob-
lems in the application of the DCIM from the inherent problems
of the approximation method. Since the functional behavior of
the approximating and approximated functions are different for
large values at the interface, and , respectively, the
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failure of the DCIM at large distances could be due to this in-
herent problem of the method. Therefore, the approximation of
SWP contributions in terms of complex images needs to be in-
vestigated by trying to approximate the SWP contributions via
spherical waves.

Note that the first step to find the SWP contribution for the
Green’s function is to find the SWP(s), then, the contribution is
obtained by taking the following integral analytically:

(8)

where and are the th SWP and corresponding
residue. Since the term in the square bracket can be recognized
as the spectral-domain representation of the SWPs, by com-
paring it to (2), it is a straightforward application of the two-level
approach to approximate this term by complex exponentials.
Once this is approximated by complex exponentials, using the
Sommerfeld identity would provide a set of spherical waves ap-
proximating the SWP contributions, which are actually cylin-
drical waves. To perform the GPOF for the term in the square
bracket, it should be noted that the terms in the numerator are
constants, and that one needs term for the application
of the Sommerfeld identity. Therefore, the term in the square
bracket in (8) is multiplied and divided by , resulting in

(9)

Now the function is approximated in terms
of exponentials of as follows:

(10)

where and are the coefficients and exponents for the
th SWP, respectively. Hence, the SWP contribution can be ob-

tained in terms of spherical waves as

(11)

where and . The spherical wave
approximation of the SWP contribution and the SWP contribu-
tion itself are given in Figs. 9 and 10, for HED in layer 2 and in
layer-1, respectively. Note that and are used in (10) for
the cases of HED in layer-2 and HED in layer-1, respectively.
The DCIM approximation of the scalar Green’s function is
also given for both cases to see and to compare the deviations in

Fig. 9. Magnitudes of the SWP contribution and its spherical wave expansion,
for the geometry shown in Fig. 7. Source and observation are in medium 2,
z = h = 0, f = 1:0 GHz.

Fig. 10. Magnitudes of the SWP contribution and its spherical wave
expansion, for the geometry shown in Fig. 7. Source and observation are in
medium 1, z = 0, h = 0:5, f = 1:0 GHz.

the approximation of the SWP contribution and the approxima-
tion of the Green’s function. It is obvious from Figs. 9 and 10
that the deviations of the approximations of the Green’s function
start at the distances where the spherical wave approximations
of the SWP contribution deviate from the exact SWP contribu-
tion.

There is one more question left to be answered: why are the
approximations of SWP contribution and the Green’s function
for the case of HED in layer-2 behave much milder as compared
to those for HED in layer-1? Is it because the Sommerfeld iden-
tity is not applicable for the exponentials that GPOF provides,
at least for some of them, and in turn the resulting exponentials
cannot represent spherical waves that decay for large distances
from the source?

To answer these questions, one needs to remember that the
sampled values of the spectral-domain Green’s functions for
both cases are very different, especially near origin, which is due
to sampling over different paths, as shown in Fig. 6, and a slight
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Fig. 11. (a) Real and (b) imaginary parts of (10), the spectral-domain
representation of the SWP Contribution, for the geometry in Fig. 7
k = 0:21 rad=cm, f = 1:0 GHz.

difference in the functions to be approximated, just different
’s. It may be easier to imagine and to accept the fact that the

spectral-domain Green’s functions can be significantly different
for different choices of the sampling path, as they are quite
complex functions. However, the spectral-domain representa-
tion of the surface-wave contribution, (10), is rather simple, but
its spatial-domain approximations in terms of spherical waves
still show significant difference when the path of sampling is
changed, Figs. 9 and 10. So, to understand the source of rather
significant difference in the spatial-domain behavior of the SWP
contributions due to such simple changes, the spectral-domain
values, (10), along the paths defined by and are given in
Fig. 11(a) and (b). Note that, for Fig. 11(a) and (b), (10) is sam-
pled only on the path with the choice of and the
number of samples of 201, as these parameters define the path
of sampling in addition to the choice of . It is obvious from
these curves that the sampled data for the path associated with

( of layer-1) are more difficult to approximate, especially
to capture the fast varying part near the origin, than those for the
path associated with .

To answer the question whether the Sommerfeld identity is
applicable for the exponentials obtained from the approxima-
tion when HED is in layer-1, these exponentials, as well as the
exponentials for the case of HED being in layer-2, are given
in Table I. Note that these exponentials are only for the second
level of the two-level algorithms, since the approximations in

the first level, over , always provide smoothly decaying ex-
ponentials. It is obvious from Table I that the first 2–3 exponen-
tials for the case of HED in layer-1 have very large coefficients
and exponents, as compared to the rest of the exponentials for
both cases. Although it was clear from the derivation of the Som-
merfeld identity that the only requirement to use this identity is
to have a with negative imaginary part [24], [28], to elimi-
nate any lingering question, the Sommerfeld identity has been
verified numerically for such exponentials. As a result, it was
observed that these contributions in the spatial domain behave
exactly the same way as predicted by the Sommerfeld identity,
that is, as spherical waves. The only difference for these images
with large coefficients and exponents is that they have their max-
imum somewhere in the middle range (around ) rather
than the origin . If the algorithm is to employ more
exponential terms to improve accuracy along the path , as
it is the case for HED in layer-1 due to fast changes near the
origin of -plane, it may improve the spatial-domain Green’s
function for moderate values of at the cost of violent deteri-
oration beyond. As it was mentioned already, this deterioration
is mainly due to the incompatibility of the natures of approx-
imating and approximated functions, spherical and cylindrical
waves, respectively.

Up to this point, it has been discussed that approximations
fail to approximate the true nature of the Green’s functions for
large distances from the source mainly because of two reasons:
1) poor sampling and the sampling frequency and 2) trying
to approximate SWP contributions by using spherical waves.
The former can be improved by changing the parameters of
the approximation algorithm, but the latter is inherent to the
approach unless the SWP contributions are totally extracted
from the functions to be approximated. To eliminate this rather
inherent problem of poor approximation of SWP contributions
via spherical waves, it may be suggested to subtract the SWP
from the spectral-domain Green’s functions before the approx-
imation, and to add their contribution analytically after the
approximation. This approach, when used in conjunction with
the two-level or multilevel DCIM, eliminates all the problems
involved in casting the Green’s functions in closed forms for
any distance from the source, as demonstrated in Fig. 12. How-
ever, although finding the SWPs and the associated residues
for the frequencies of interest are quite easy and robust [21],
keeping all complex images (about 30 exponentials for each
Green’s function involved in the MPIE formulation) in the
implementation of the MoM for large problems may become
computationally very expensive. As it is observed from Fig. 12
and stated in [15], the Green’s functions behave exactly like
SWP contributions beyond a certain distance, so using the
CFGF up to a certain distance, without extracting the SWP
contributions, and using only the SWP contributions beyond a
certain distance would be sufficient. Since the common goal
of getting the CFGF is to use them in the application of MoM,
this approach eliminates any special treatment of the Hankel
function in the SWP contribution in near-field regions [29], and
eliminates the total number of complex images in the calcula-
tion of the MoM matrix entries beyond the switching distance.
This switching distance can easily be defined adaptively during
the process of calculating the MoM matrix entries.
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TABLE I
COEFFICIENTS AND EXPONENTS OF COMPLEX EXPONENTIALS FOR THE APPROXIMATION OF ~G OVER C ONLY, FOR THE GEOMETRY IN FIG. 7

Fig. 12. Magnitudes of the scalar Green’s function and the SWP contribution
for the geometry given in Fig. 7. Green’s functions are obtained by first
extracting the SWPs in the spectral-domain and adding their contributions in
the spatial-domain analytically. z = h = 0 (HED is at interface).

IV. CONCLUSION

In this paper, the CFGF, derived for the vector and scalar
potentials using DCIM, for planarly layered media have been
revisited to clarify some issues and misunderstandings on the
use of the DCIM. In the literature, there have been mainly three
attributable problems in the implementations of the original
method and its modified version, the multilevel DCIM: 1)
not extracting quasistatic terms in the two-level DCIM; 2)
introducing a wrong branch point in the process of approxi-
mation; and 3) not extracting the SWP in the implementation

of two-level approach. These issues have been addressed from
both theoretical and practical points of views, and the following
conclusions have been drawn: i) no need to extract quasistatic
terms in the use of two-level or multilevel DCIM, because the
first level actually extracts the quasistatic terms and more; ii) no
introduction of wrong branch points, as the path of integration
is the legitimately deformed path from SIP and over which
the integrands are single-valued functions; iii) extraction of
SWPs is not necessary if the Green’s functions are to be used
in the application of MoM, nevertheless the contributions of
SWPs need to be calculated in order to be used in the places of
Green’s functions wherever the SWP contributions dominate.
Of course, the last conclusion is for the efficient use of the
CFGF in the MoM procedure.
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