

1. A scientist researches the survival rate of Caretta Caretta turtles and he thinks that the survival rate of a Caretta Caretta is a linear-to-linear function of its age. He knows that their survival rate never exceeds $\% 90$ and will approach arbitrarily close to $\% 90$ percent if a Caretta Caretta lives long enough. He also observed that at birth the survival rate is $\% 20$ and at the age of 1 it increases to $\% 30$.
(a) 7 pts Find the survival rate of a Caretta Caretta as a function of its age.

$$
L\left(\begin{array}{l}
\text { her agma }=90 \\
f(x)=\frac{90 x+b}{x+d}
\end{array}\right.
$$

2

$$
f(1)=30
$$

$$
90+b=30+30 d
$$

Solving 2 equations give

(b) 3pts At what age a Caretta Caretta has the survival rate of \%75 ?

$$
2(x=22
$$

2.

$$
f(x)=\frac{1}{x-2}
$$

(a) 2 pts Sketch the graph of $f(x)$ (Hint: consider it as a linear-to-linear function).

$$
\text { Her os }=2
$$

$$
\text { her sym }=0
$$

(b) 6 pts find the inverse function $f^{-1}(x)$, sketch the graph of $f^{-1}(x)$ find the domain and the range of $f^{-1}(x)$.

$$
\begin{gathered}
x=\frac{1}{x-2} \\
x y-2 x=1 \\
f^{-1}(x)=y=\frac{1+2 x}{x}
\end{gathered}
$$

1 domain of $f^{-1}(x)$: All red numbers except 0
1 renege of $f^{-1}(x)$ all red numbers except 2
(c) 2 pts Finally, calculate the composition $f\left(\int^{-1}(\mathrm{x})\right)=$?

$$
\left(1^{\text {st }} \text { wog: }: ~ f\left(f^{-1}(x)\right)=x\right.
$$ Mere functor

3. The population of the city of Hattusa has a doubling time of 150 years. In the Bronze Age at 3000 BC , Hattusa's population was 10,000 , while the city of Babylon's population was 5,000 . After 500 years, Hattusa's population was 30 percent more than the population of Babylon.
Assuming the population in both cities are growing exponentially, when will the cities have equal populations? Express your answer in years after 3000 BC.

$$
\begin{aligned}
& \text { Soke for } x \\
& \\
& H(x)=
\end{aligned}
$$

$$
\begin{aligned}
& H(x)=B(x) \\
& 10000(1.004632)^{x}=500010054976 \\
& \left(\frac{1.0054976}{1.004632}\right)^{x}=2 \\
& x \approx \ln \left(\frac{10054976}{1.004632}\right)=\ln 2 \\
& \cdots \approx 804 \text { yeas. }
\end{aligned}
$$

(This question is cancelled)
4. Jack has a pizza which shaped like a disc (circular with radius r). He takes one slice of it, the slice is shaped like a circular wedge. The slice has a perimeter of 2 feet, and has an area of $\left(\frac{\pi}{4}\right)$ square feet.
What is the value of the radius, r ?

(Solution with corrected morea $1 / 4$)

$$
2 r+\theta r=2 \Rightarrow \theta=\frac{2-25}{r}
$$

$$
\begin{aligned}
& 2 r+0 \\
& \frac{\theta}{2} r^{2}=1 / 4
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{2} r^{2}=\frac{1}{2}\left(\frac{2-2 r}{r}\right) r^{2}=\frac{1}{4} \\
& =\frac{1}{1}
\end{aligned}
$$

$$
(1-r) r=\frac{1}{4}
$$

$$
r^{2}-r+1 / 4=0
$$

$$
r=\frac{-1+\sqrt{1-1}}{-2}=\frac{1}{2}
$$

Also note they when area is equal to $\frac{\pi}{4}$ os given then above solution gives a quadratic equation which hos no solutions in red number.
5. (a) 5pts Describe how the graph of the function $y=2(3 x-12)^{2}-5$ differs from the graph of $y=x^{2}$.

$$
\begin{gathered}
f(x)=x^{2} \\
y=2 \cdot f(3 x-12)-5 \\
y=2 \cdot f(3(x-4))-5
\end{gathered}
$$

1
$11^{\text {st }}$ - hor dibtion by $3 \frac{\text { compression }}{\text { (that is to direction. }}$ $12^{\text {nd }}$ - ho shift by a unit right by 4)
$13^{\text {rd }}$-ier dilation by 2 experstion
$14^{\text {th }}$ over shift by 5 to dounmeds
(b) 5 pts Solve the following for x

$$
\begin{aligned}
& 10^{\log _{2}\left(x^{2}\right)}=3 \\
& \left\{\begin{array}{l}
\log _{10} 10^{\log _{2}\left(x^{2}\right)}=\log _{10} 3 \\
\log _{2}\left(x^{2}\right)=\log _{10} 3
\end{array}\right. \\
& \begin{array}{l}
x^{2}=2^{\log _{10} 3} \\
x=\mp \sqrt{2^{\log _{10}}}
\end{array} \\
& x=\mp 1.179815
\end{aligned}
$$

