Name: \qquad Student No : \qquad
Signature: \qquad Section : \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
Total	$\mathbf{5 0}$	

- Complete all questions for full credit.
- You may use a scientific calculator and one hand-written 8.5 by 11 inch page of notes (two sided). Write your name on your notesheet and turn it in with your exam.
- You may use a scientific calculator. Graphic calculators (and any other electronic devices) are not allowed.
- If you don't show your work clearly then you will not receive full credit. Correct answer without a work (such as guessing or trial and error) may not get any point.
- You have 50 minutes to complete the exam.
- Any student found in academic misconduct will receive 0 on this exam (and will be reported).

1. Let $F=(P, Q, R)$ where $P=x+2 y-z, Q=x y^{2} z, R=P^{4}+P^{2} Q$.
(a) Let $u=\left(\frac{3}{5}, 0, \frac{4}{5}\right)$ Calculate $D_{u}\left[D_{u} Q\right]$

$$
\begin{aligned}
g & =D_{u} Q \\
& =u \cdot \nabla Q \\
& =u \cdot\left(y^{2} z, Q_{y}, x y^{2}\right) \\
& =\frac{3}{5} y^{2} z+\frac{4}{5} x y^{2} \\
D_{u} g & =u \cdot \nabla g \\
& =u \cdot\left(\frac{4}{5} y^{2}, g_{y}, \frac{3}{5} y^{2}\right) \\
& =\frac{12}{25} y^{2}+\frac{12}{25} y^{2} \\
& =\frac{24}{25} y^{2}
\end{aligned}
$$

Note: no need to calculate Q_{y} and g_{y}.

Answer =
(b) Calculate div F at $(1,1,1)$. (Hint : Chain rule)

$$
\begin{aligned}
& P=x+2 y-z, Q=x y^{2} z, R=P^{4}+P^{2} Q \\
& \operatorname{div} F(1,1,1)=\frac{\partial P}{\partial x}(1,1,1)+\frac{\partial Q}{\partial y}(1,1,1)+\frac{\partial R}{\partial z}(1,1,1) \\
& \frac{\partial P}{\partial x}(1,1,1)=1 \quad \frac{\partial Q}{\partial y}(1,1,1)=2 \\
& \frac{\partial R}{\partial z}(x, y, z)= \frac{\partial R}{\partial P} \frac{\partial P}{\partial z}+\frac{\partial R}{\partial Q} \frac{\partial Q}{\partial z}=\left(-4 P^{3}-2 P Q\right)+\left(P^{2} x y^{2}\right) \\
& \frac{\partial R}{\partial z}(1,1,1)=-42^{3}-2 \cdot 2+2^{2}=-32 \\
& \text { since } P(1,1,1)=2 \text { and } Q(1,1,1)=1
\end{aligned}
$$

Thus div $F(1,1,1)=1+2-32=-29$
2. Let C consists of 2 line segments from $(0,0)$ to $(10,1)$ then from $(10,1)$ to $(\pi, 0)$.
(a) Evaluate the line integral

$$
\int_{C}(x+y) \mathrm{d} x+x^{2} \mathrm{~d} y
$$

$C_{1}: r(t)=(10 t, t), \quad 0 \leqslant t \leqslant 1, \quad C_{2}: r(t)=(10-6.86 t, 1-t), \quad 0 \leqslant t \leqslant 1$

$$
\begin{aligned}
\int_{C_{1}}(x+y) \mathrm{d} x+x^{2} \mathrm{~d} y & =\int_{0}^{1} 110 t+100 t^{2} \mathrm{~d} t=\left.\left(55 t^{2}+\frac{100}{3} t^{3}\right)\right|_{0} ^{1}=55+\frac{100}{3} \\
\int_{C_{2}}(x+y) \mathrm{d} x+x^{2} \mathrm{~d} y & =\int_{0}^{1}-6.86(11-7.86 t)-(10-6.86 t)^{2} \mathrm{~d} t \\
& =\int_{0}^{1}-47.04 t^{2}+191.12 t-175.46 \mathrm{~d} t \\
& =-\frac{1}{3} 47.04+\frac{1}{2} 191.12-175.46 \\
& =-95.59
\end{aligned}
$$

Answer $=\quad 55+\frac{100}{3}-95.59 \approx-7.25$
(b) If $f(x, y)=\sin (x / 6) \cos (y)$ then evaluate the line integral

$$
\int_{C} \nabla f \cdot \mathrm{~d} r
$$

From fundamental theorem of line integrals

$$
\begin{aligned}
\int_{C} \nabla f \cdot \mathrm{~d} r & =f(\pi, 0)-f(0,0) \\
& =\sin (\pi / 6) \cos (0)-\sin (0) \cos (0) \\
& =1 / 2
\end{aligned}
$$

Answer $=$
3. Let $F=(P, Q)$ where

$$
P=\ln y+14 x y^{3}, \quad Q=21 x^{2} y^{2}+\frac{x}{y}
$$

Is it possible to find a function f such that $F=\nabla f$? Explain.
If your answer is YES then calculate f,
If your answer is NO then calculate $\frac{\partial^{2} P}{\partial x y}-\frac{\partial^{2} Q}{\partial x^{2}}$

The domain of F is $\{(x, y) \mid y>0\}$ which is open and simply connected. Moreover

$$
\frac{\partial P}{\partial y}=\frac{1}{y}+42 x y^{2}=\frac{\partial Q}{\partial x},
$$

thus F is conservative so YES there exists a function f such that $F=\nabla f$.

$$
\begin{aligned}
& f_{x}=\ln y+14 x y^{3} \quad \Longrightarrow f(x, y)=x \ln y+7 x^{2} y^{3}+g(y) \\
& f_{y}=21 x^{2} y^{2}+\frac{x}{y} \quad \Longrightarrow \quad f(x, y)=x \ln y+7 x^{2} y^{3}+h(x)
\end{aligned}
$$

Thus

$$
f(x, y)=x \ln y+7 x^{2} y^{3}+C
$$

```
Answer =
```

4. Use Green's Theorem to evaluate the following line integral along the given positively oriented curve.

$$
\int_{C} 3 y^{3} \mathrm{~d} x-3 x^{3} \mathrm{~d} y
$$

where C is the circle $x^{2}+y^{2}=4$.

$$
\begin{aligned}
\int_{C} 3 y^{3} \mathrm{~d} x-3 x^{3} \mathrm{~d} y= & \iint_{D}-9 x^{2}-9 y^{2} \mathrm{~d} A \\
= & -9 \int_{0}^{2 \pi} \int_{0}^{2} r^{2} r \mathrm{~d} r \mathrm{~d} \theta \\
& -18 \pi \int_{0}^{2} r^{3} \mathrm{~d} r \\
= & -\left.18 \pi \frac{1}{4} r^{4}\right|_{0} ^{2} \\
= & -72 \pi
\end{aligned}
$$

5. Solve each one separately
(a) Surface S is given by $r(u, \theta)=(u, u \theta, u \sin \theta), 0 \leqslant u \leqslant 1,0 \leqslant \theta \leqslant \pi$. Setup (Donot Evaluate) and integral that calculates the area of S. (The integral should be in terms of u and θ not r)

$$
\begin{aligned}
r_{u} & =(1, \theta, \sin \theta) \\
r_{\theta} & =(0, u, u \cos \theta) \\
\left|r_{u} \times r_{\theta}\right| & =|(u \theta \cos \theta-u \sin \theta,-u \cos \theta, u)| \\
& =\sqrt{(u \theta \cos \theta-u \sin \theta)^{2}+u^{2} \cos ^{2} \theta+u^{2}} \\
\operatorname{Area}(S)=\int_{S} \mathrm{dS} & =\int_{0}^{1} \int_{0}^{\pi} \sqrt{(u \theta \cos \theta-u \sin \theta)^{2}+u^{2} \cos ^{2} \theta+u^{2}} \mathrm{~d} \theta \mathrm{~d} u
\end{aligned}
$$

Answer $=$
(b) For each of the below choose one : T for true, F for false

- $\nabla \cdot \nabla \times \nabla \times F=0$
- If F is conservative then $\nabla \cdot F=\nabla \times F$
- $\nabla \times \nabla(\nabla \cdot F)=0$
- If $\nabla \times F \neq 0$ then F is not conservative
- Every constant vector field F is conservativeT
- There is a vector field G such that $\nabla \times G=(x, y, z) \quad \mathrm{F}$

