Problem 1 (10 Pts). Find the area of the surface that satisfies $x^{2}+y^{2}+z^{2}=10^{2}$ and $x \geqslant 5$.

Area $=100 \pi$
i. By symmetry we can work on $x^{2}+y^{2}+z^{2}=10^{2}$ and $z \geqslant 5$. Thus we want to find the surface area of $z=\sqrt{100-\left(x^{2}+y^{2}\right)}$ that lies above the disk $D=\{(x$, $\left.y) \mid x^{2}+y^{2} \leqslant 75\right\}$. (the intersection of the plane and inside the sphere)
ii. From surface area formula we get

$$
\int_{D} \sqrt{\frac{x^{2}}{100-\left(x^{2}+y^{2}\right)}+\frac{y^{2}}{100-\left(x^{2}+y^{2}\right)}+1} \mathrm{~d} A=\int_{D} \frac{10}{\sqrt{100-\left(x^{2}+y^{2}\right)}} \mathrm{d} A
$$

iii. Convert into polar coordinates

$$
\int_{D} \frac{10}{\sqrt{100-\left(x^{2}+y^{2}\right)}} \mathrm{d} A=\int_{0}^{2 \pi} \int_{0}^{\sqrt{75}} \frac{10 r}{\sqrt{100-r^{2}}} \mathrm{~d} r \mathrm{~d} \theta
$$

iv. Calculate the integral

$$
\int_{0}^{2 \pi} \int_{0}^{\sqrt{75}} \frac{10 r}{\sqrt{100-r^{2}}} \mathrm{~d} r \mathrm{~d} \theta=-\left.2 \pi 2 \cdot 5\left(100-r^{2}\right)^{1 / 2}\right|_{0} ^{\sqrt{75}}=100 \pi
$$

Problem $2(10 \mathrm{Pts})$. Our aim is to calculate the following integral in 3 steps.

$$
\int_{0}^{1} \int_{x}^{1} \sqrt{y^{2}+2} \mathrm{~d} y \mathrm{~d} x
$$

(a) Find the domain D of integration.

$$
D=\{(x, y) \quad \mid 0 \leqslant x<1, \quad x \leqslant y \leqslant 1\}
$$

(b) Change the order of integration.

$$
\int_{0}^{1} \int_{0}^{y} \sqrt{y^{2}+2} \mathrm{~d} x \mathrm{~d} y
$$

(c) Evaluate the integral you find in previous part.

Answer $=\frac{1}{3}\left(3^{3 / 2}-2^{3 / 2}\right)=\sqrt{3}-\frac{2 \sqrt{2}}{3}$

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{y} \sqrt{y^{2}+2} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{1} y \sqrt{y^{2}+2} \mathrm{~d} y \\
& =\left.\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}\right|_{0} ^{1}=\frac{1}{3}\left(3^{3 / 2}-2^{3 / 2}\right)
\end{aligned}
$$

Bonus Question. (5 Pts) Set up an integral that calculates the shaded area as a function of radius R, angle a, and $\ell=|\mathrm{AO}|$. For simplicity assume that $0<\ell<R$ and $0<a<\pi / 4$.

Area $=\int_{0}^{a} \int_{0}^{\frac{2 \ell \cos (\theta) \pm \sqrt{4 \ell^{2} \cos ^{2}(\theta)-4\left(\ell^{2}-R^{2}\right)}}{2}} r \mathrm{dr} \mathrm{d} \theta$
i. Impose a polar coordinate system and set A as the origin, so that area can be calculated by

$$
\int_{0}^{a} \int_{0}^{g(\theta)} r \mathrm{~d} r \mathrm{~d} \theta
$$

where $g(\theta)$ corresponds to the curve which is intersection of shaded region and the circle.
ii. Next we need to find $g(\theta)$ in our new coordinate system. In cartesian coordinates (where A is the origin) the circle is given by : $(x-\ell)^{2}+y^{2}=R^{2}$, thus

$$
(r \cos (\theta)-\ell)^{2}+(r \sin (\theta))^{2}=R^{2}
$$

After simplification

$$
r^{2}-2 r \ell \cos (\theta)+\ell^{2}-R^{2}=0
$$

Solving this for r gives two values

$$
r_{1,2}=\frac{2 \ell \cos (\theta) \pm \sqrt{4 \ell^{2} \cos ^{2}(\theta)-4\left(\ell^{2}-R^{2}\right)}}{2}
$$

iii. Finally we need to choose the greater solution, since $\theta<\pi / 4$.

