Optimization Problem

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ and $D \subset \mathbb{R}^n$. A constrained optimization problem is

$$\max f(x) \quad \text{subject to } x \in D$$

- f is the objective function
- D is the constraint set
- A solution to this problem is $x \in D$ such that
 $$f(x) \geq f(y) \quad \text{for all } y \in D$$

Such an x is called a maximizer
- The set of maximizers is denoted
 $$\text{argmax}\{f(x) | x \in D\}$$

Similarly for minimization problems

Example

$$\max x^3 - 3x^2 + 2x + 1 \quad \text{subject to } 0.1 \leq x \leq 2.5$$
Existence of Solutions

Theorem (Weierstrass Theorem)

Let $D \subset \mathbb{R}^n$ be compact and $f : D \rightarrow \mathbb{R}$ be a continuous function on D. Then f attains a maximum and a minimum on D.

Theorem

A set $D \subset \mathbb{R}^n$ is **compact** if and only if it is closed and bounded.

Definition

A set $D \subset \mathbb{R}^n$ is **bounded** if there exists $k > 0$ such that $\|x\| < k$ for each $x \in D$.

Here $\|x\| = (\sum_{i=1}^{n} x_i^2)^{1/2}$ is the Euclidean norm. If x is a real number, then $\|x\|$ is simply its absolute value $|x|$.

Definition

A set $D \subset \mathbb{R}^n$ is **closed** if and only if for all sequences (x_k) such that $x_k \in D$ for each k and $x_k \rightarrow x$, we have $x \in D$.

The **Euclidean distance** between $x, y \in \mathbb{R}^n$ is given by

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$

Definition

A sequence (x_k) in \mathbb{R}^n is said to converge to a limit x (written $x_k \rightarrow x$) if for all $\epsilon > 0$, there exists an integer $K(\epsilon)$ such that for all $k \geq K(\epsilon)$, we have $d(x_k, x) < \epsilon$.

Example

Max $-(x - 1)^2 + 2$ s.t. $x \in [0, 2]$.

Example

$D = [0, 2]$. For any $x \in [0, 2]$, $\|x\| = (x^2)^{1/2} = x$. Therefore, we can take $k = 3$, in which case $\|x\| < k$, and hence this set is bounded.

Example

$D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\}$. Take any $x, y \in D$ and note that $y^2 \leq 1 - x^2$ implies that $y^2 \leq 1$ and hence $|y| \leq 1$. Similarly, $|x| \leq 1$. Therefore, $x^2 + y^2 = (|x|)^2 + (|y|)^2 \leq 2$. Therefore, $(x^2 + y^2)^{1/2} \leq \sqrt{2}$. Therefore, this set is bounded.
Example

Consider the sequence \((x_k)\), where \(x_k = \frac{1}{k}, k = 1, 2, \ldots\). This sequence converges to 0. Take any \(\varepsilon > 0\) and let \(K(\varepsilon)\) be the smallest integer larger than \(1/\varepsilon\). Then, \(k \geq K(\varepsilon)\) implies that \(d(x_k, 0) = 1/k \leq 1/K(\varepsilon) < \varepsilon\).

Example

\(D = [0, 1]\) is closed. Indeed, take any sequence \((x_k) \to x\), such that \(x_k \in [0, 1]\) for all \(k\). This implies that for any \(\varepsilon > 0\), there exists an integer \(K(\varepsilon)\) such that for all \(k \geq K(\varepsilon)\), we have \(d(x_k, x) = |x - x_k| < \varepsilon\), or \(x_k - \varepsilon < x < x_k + \varepsilon\). Since \(x_k \geq 0\) and \(x_k \leq 1\), this implies that for any \(\varepsilon > 0\), \(-\varepsilon < x < 1 + \varepsilon\). Since, \(\varepsilon\) is arbitrary this implies that \(0 \leq x \leq 1\).

Example

\(D = [0, 1]\) is not closed. Take the sequence \((x_k)\), where \(x_k = 1 - 1/k, k = 1, 2, \ldots\), and note that \(x_k \in [0, 1]\) for all \(k\). Also, \((x_k) \to 1\), but \(1 \notin [0, 1]\).

Definition

A function \(f : S \to T\) where \(S \subset \mathbb{R}^n\) and \(T \subset \mathbb{R}^l\) is continuous at \(x \in S\) if for all \(\varepsilon > 0\), there is a \(\delta > 0\) such that \(y \in S\) and \(d(x, y) < \delta\) implies \(d(f(x), f(y)) < \varepsilon\). Equivalently, \(f\) is continuous at \(x \in S\) if for all \((x_k)\) such that \(x_k \in S\) for each \(k\) and \(x_k \to x\), we have \(f(x_k) \to f(x)\). \(f\) is continuous on \(S\) if it is continuous at each \(x \in S\).

Definition

\(f : S \to \mathbb{R}\), where \(S\) is an open subset of \(\mathbb{R}\), is differentiable at \(x \in S\) if

\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

exists, in which case this limit is the derivative of \(f\) at \(x\), denoted \(f'(x)\) or \(Df(x)\).
If Df is differentiable, i.e., each $f_i: S \rightarrow \mathbb{R}$ is differentiable, at x we denote partial derivatives of f_i with respect to i and $j \neq i$ as

$$\frac{\partial^2 f(x)}{\partial x_i^2} \quad \text{and} \quad \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

We say that f is twice differentiable at x, with second derivative $D^2 f(x)$ given by

$$D^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

If a function is (twice) continuously differentiable we say that it is C^1 (C^2). For a C^2 function

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

Example

Let $f(x) = -(x-1)^2 + 2$. Then, $Df(x) = f'(x) = -2(x-1)$ and $D^2 f(x) = f''(x) = -2$.

Example

Let $f(x) = x^2 - y + xy$. Then, $Df(x) = [2x+y, -1+x]$ and

$$D^2 f(x) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$

A Simple Case

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and consider the problem $\max_{x \in [a,b]} f(x)$.

We call a point x^* such that $f'(x^*) = 0$ a critical point.

Interior Optima

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and suppose $a < x^* < b$ is a local maximum (minimum) of f on $[a,b]$. Then, $f'(x^*) = 0$.

- Known as first order conditions
- Only necessary for interior local optima
 - Not necessary for global optima
 - Not sufficient for local optima.
- To distinguish between interior local maximum and minimum you can use second order conditions

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and suppose $a < x^* < b$ is a local maximum (minimum) of f on $[a,b]$. Then, $f''(x^*) \leq 0$ ($f''(x^*) \geq 0$).
Recipe for solving the simple case

Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function and consider the problem \(\max_{x \in [a,b]} f(x) \). If the problem has a solution, then it can be found by the following method:

1. Find all critical points: i.e., \(x^* \in [a,b] \) s.t. \(f'(x^*) = 0 \)
2. Evaluate \(f \) at all critical points and at boundaries \(a \) and \(b \)
3. The one that gives the highest \(f \) is the solution

We can use Weierstrass theorem to determine if there is a solution

Note that if \(f'(a) > 0 \) (or \(f'(b) < 0 \)), then the solution cannot be at \(a \) (or \(b \))

Example

\[
\max_{x \in [-1, 2]} - (x - 1)^2 + 2 \text{ s.t. } x \in [0, 2].
\]

Solution

\(f \) is continuous and \([-1, 2]\) is closed and bounded, and hence compact. Therefore, by Weierstrass theorem the problem has a solution. \(f'(x) = -2(x - 1) = 0 \) is solved at \(x = 1 \), which is the only critical point. We have \(f(0) = 2, f(-1) = 1, f(2) = 1 \). Therefore, \(1 \) is the global maximum.

Recipe for general problems

Generalizes to \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) and the problem is

\[
\max f(x) \quad \text{subject to } x \in D
\]

- Find critical points \(x^* \in D \) such that \(Df(x^*) = 0 \)
- Evaluate \(f \) at the critical points and the boundaries of \(D \)
- Choose the one that give the highest \(f \)

Important to remember that solution must exist for this method to work

In more complicated problems evaluating \(f \) at the boundaries could be difficult

For such cases we have the method of the Lagrangian (for equality constraints) and Kuhn-Tucker conditions (for inequality constraints)
Equality Constraints: Lagrangean Method

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g_i : \mathbb{R}^n \to \mathbb{R}$ for each $i = 1, \ldots, k$ be C^1 and consider the problem

$$\max f(x) \text{ s.t. } g_i(x) = 0, \quad i = 1, \ldots, k$$

1. Form the Lagrangean (the λ_i’s are called Lagrange multipliers)

$$L(x, \lambda) = f(x) + \sum_{i=1}^{k} \lambda_i g_i(x)$$

2. Find critical points of $L(x, \lambda)$

$$\frac{\partial L}{\partial x_j}(x, \lambda) = 0, \quad j = 1, \ldots, n$$

$$\frac{\partial L}{\partial \lambda_i}(x, \lambda) = 0, \quad i = 1, \ldots, k$$

3. Evaluate f at each critical point x, choose the one that gives the highest value.

Proposition

Suppose that

1. A global optimum x^* exists
2. Constraint qualification is met at x^*

Then, there exists λ^* such that (x^*, λ^*) is a critical point of L.

- This result implies that if these conditions hold, then the Lagrangean method will identify the optimum.
- Constraint qualification is the condition that rank of the matrix $Dg(x^*)$ (the ijth element is $\partial g_i(x^*)/\partial x_j$) is equal to k. In a problem with two variables x_1, x_2, this is equivalent to $\partial g_i(x^*)/\partial x_1 \neq 0$ or $\partial g_i(x^*)/\partial x_2 \neq 0$.
- In many cases both conditions can be verified to hold before hand and the method can be safely applied.

Example

Maximize $f(x, y) = x^2 - y^2$ subject to $g(x, y) = 1 - x^2 - y^2 = 0$.

Solution

1. Since f is continuous and the constraint set is compact there is a global maximum.
2. $Dg(x, y) = (-2x, -2y)$ and $0^2 + 0^2 = 0 \neq 1$ implies that $Dg(x^*, y^*) \neq (0, 0)$ at any critical point x^*. Therefore, the constraint qualification is satisfied.

Now we can apply the method of Lagrangean:

$$L(x, y, \lambda) = x^2 - y^2 + \lambda(1 - x^2 - y^2)$$

2. Find the critical points:

$$\frac{\partial L(x)}{\partial x} = 2x - 2\lambda x = 0$$

$$\frac{\partial L(x)}{\partial y} = -2y - 2\lambda y = 0$$

$$\frac{\partial L(x)}{\partial \lambda} = 1 - x^2 - y^2 = 0$$

$\lambda = 1$ or $\lambda = -1$, otherwise first two equations imply $x = y = 0$, which contradicts the third equation. Using this fact it is easy to show that there are four possible solutions:

$$(x, y, \lambda) \in \{(1, 0, 1), (-1, 0, 1), (0, 1, -1), (0, -1, -1)\}$$
Solution (cont’d)

3. Evaluate \(f \) at the critical points:

\[
f(1, 0) = f(-1, 0) = 1 \quad f(0, 1) = f(0, -1) = -1
\]

We conclude that the first two points are global maximizers.

Inequality Constraints: Kuhn-Tucker Method

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) and \(h_i : \mathbb{R}^n \rightarrow \mathbb{R} \) for each \(i = 1, \ldots, l \) be \(C^1 \) and consider the problem

\[
\max f(x) \text{ s.t. } h_i(x) \geq 0, \quad i = 1, \ldots, l
\]

1. Form the Lagrangean (\(\lambda \)'s are called Lagrange multipliers)

\[
L(x, \lambda) = f(x) + \sum_{i=1}^{k} \lambda_i h_i(x)
\]

2. Find critical points of \(L(x, \lambda) \)

\[
\frac{\partial L}{\partial x_j}(x, \lambda) = 0, \quad j = 1, \ldots, n
\]

\[
\frac{\partial L}{\partial \lambda_i}(x, \lambda) \geq 0, \quad \lambda_i \geq 0, \quad \lambda_i \frac{\partial L}{\partial \lambda_i}(x, \lambda) = 0, \quad i = 1, \ldots, k
\]

3. Evaluate \(f \) at each critical point \(x \), choose the one that gives the highest value

Example

\[
\max f(x, y) = x^2 - y \quad \text{subject to } g(x, y) = 1 - x^2 - y^2 \geq 0.
\]

Solution

1. Since \(f \) is continuous and the constraint set is compact there is a global maximum.

2. When the constraint binds \(x^2 + y^2 = 1 \), and hence \(x \neq 0 \) or \(y \neq 0 \). This implies that \(Dg(x^*, y^*) \neq (0, 0) \) at any critical point \(x^* \) for which the constraint binds. Therefore, the constraint qualification is satisfied.

Now we can apply the method of Lagrangean.
Solution (cont’d)

1. Set up the Lagrangean:

\[L(x, y, \lambda) = x^2 - y + \lambda(1 - x^2 - y^2) \]

2. Find the critical points:

\[
\begin{align*}
2x - 2\lambda x &= 0 \\
-1 - 2\lambda y &= 0 \\
1 - x^2 - y^2 &\geq 0, \quad \lambda \geq 0, \quad \lambda(1 - x^2 - y^2) = 0
\end{align*}
\]

From the first equation \(\lambda = 1 \) or \(x = 0 \). If \(\lambda = 1 \), then from the second equation \(y = -1/2 \) and from the third condition \(x^2 + y^2 = 1 \). This gives two critical points \((\pm\sqrt{3}/2, -1/2, 1)\). If \(x = 0 \), then from the second equation \(\lambda > 0 \). Then, we must have \(x^2 + y^2 = 1 \), and hence \(y = \pm 1 \). But \(y = 1 \) contradicts second equation and \(\lambda \geq 0 \), and hence the only possible critical value is \((0, -1, 1/2)\).

Solution (cont’d)

3. Evaluate \(f \) at the critical points:

\[f(\sqrt{3}/2, -1/2) = 5/3 \quad f(0, -1) = 1 \]

We conclude that the first two points are global maximizers.

Convexity and Optimization

Under suitable convexity assumptions necessary conditions for local optima become sufficient for global optima:

- For maximization: concave objective function and convex constraint set
- For minimization: convex objective function and convex constraint set

Definition

A set \(D \subset \mathbb{R}^n \) is **convex** if for all \(x, y \in D \) and \(\lambda \in (0, 1) \), it is the case that \(\lambda x + (1 - \lambda)y \in D \).

Concave and Convex Functions

Let \(D \subset \mathbb{R}^n \) and \(f : D \to \mathbb{R} \). From now on we assume \(D \) is convex.

Definition

A function \(f : D \to \mathbb{R} \) is **concave** if for any \(x, y \in D \) and \(\lambda \in (0, 1) \), it is the case that

\[f(\lambda x + (1 - \lambda)y) \geq \lambda f(x) + (1 - \lambda)f(y) \]

and **convex** if

\[f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \]
Concave and Convex Functions

Definition
A function \(f : \mathcal{D} \to \mathbb{R} \) is **strictly concave** if for any \(x \neq y \in \mathcal{D} \) and \(\lambda \in (0, 1) \), it is the case that
\[
f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)
\]
and **strictly convex** if
\[
f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)
\]

Theorem
\(f : \mathcal{D} \to \mathbb{R} \) is (strictly) concave if and only if \(-f \) is (strictly) convex.

Concave and Convex Functions

Theorem
Let \(f : \mathcal{D} \to \mathbb{R} \) be a \(C^2 \) function, where \(\mathcal{D} \subset \mathbb{R}^n \) is open and convex. Then,
1. \(f \) is concave if and only if \(D^2 f(x) \) is negative semidefinite for all \(x \in \mathcal{D} \).
2. \(f \) is convex if and only if \(D^2 f(x) \) is positive semidefinite for all \(x \in \mathcal{D} \).
3. If \(D^2 f(x) \) is negative definite for all \(x \in \mathcal{D} \), then \(f \) is strictly concave.
4. If \(D^2 f(x) \) is positive definite for all \(x \in \mathcal{D} \), then \(f \) is strictly convex.

Concave and Convex Functions

Example
Let \(f(x) = -(x-1)^2 + 2 \). Then, \(f''(x) = -2 < 0 \) and hence this function is strictly concave.

Concave and Convex Functions

Example
Let \(f(x) = 1 - x^2 - y^2 \). Then, \(f_{11} = -2 < 0 \) and \(f_{11}f_{22} - f_{12}^2 = (-2)(-2) - 0 > 0 \), and hence this function is strictly concave.
Convexity and Optimization

Theorem

Let \(f : D \to \mathbb{R} \) be concave and \(D \) convex. Then,
1. Any local maximum of \(f \) is a global maximum.
2. The set of maximizers is either empty or convex. If \(f \) is strictly concave, then the set of maximizers is either empty or contains a single point.

Theorem

Let \(f : D \to \mathbb{R} \) be differentiable and concave and \(D \) convex. Then, \(x \) is an interior maximum of \(f \) on \(D \) if and only if \(D f(x) = 0 \).

Convexity and Kuhn-Tucker

- \(U \subset \mathbb{R}^n \) open and convex
- \(f : U \to \mathbb{R} \) and \(h_i : U \to \mathbb{R} \) for each \(i = 1, \ldots, l \) concave and \(C^1 \)
- Consider the problem
 \[
 \max f(x) \text{ s.t. } h_i(x) \geq 0, \quad i = 1, \ldots, l
 \]
 - If there is some \(\bar{x} \in U \) such that \(h_i(\bar{x}) > 0 \) for all \(i = 1, \ldots, l \)
 - known as Slater’s condition
 - Kuhn-Tucker method will always identify global optima
 - No need to verify
 - existence of a solution
 - constraint qualification

Example

Let \(f : \mathbb{R} \to \mathbb{R} \) and consider the problem:

\[
\max f(x) = -(x - 2)^2 \text{ subject to } h(x) = x - 1 \geq 0
\]

Solution

1. \(f'(x) = -2(x - 2) \) and \(f''(x) = -2 < 0 \), and hence \(f \) is (strictly) concave; \(h''(x) = 0 \), and hence \(h \) is concave.
2. There is an \(x \in \mathbb{R} \) (e.g., \(x = 2 \)) such that \(h(x) > 0 \)

This implies

1. If the Lagrangean has no critical point, then there is no solution to the problem.
2. If \((x^*, \lambda^*) \) is a critical point, then it is a solution. In fact, since \(f \) strictly concave, it is the unique solution.
Solution (cont’d)

1. Set up the Lagrangean:

\[L(x, \lambda) = -(x - 2)^2 + \lambda(x - 1) \]

2. Find the critical points:

\[-2(x - 2) + \lambda = 0\]

\[x - 1 \geq 0, \quad \lambda \geq 0, \quad \lambda(x - 1) = 0 \]

- First equation and \(\lambda \geq 0 \Rightarrow x \geq 2 \)
- \(\lambda(x - 1) = 0 \Rightarrow \lambda = 0 \)
- First equation \(\Rightarrow x = 2 \)

Therefore, the only critical point is \((2, 0)\), and \(x = 2 \) is the unique global maximizer.