Second-degree Price Discrimination (Nonlinear Pricing)

- Different prices (for the same customer) for different quantities – nonlinear price schedule
- Discounts for bulk purchases
- Entry fees (or Two-part tariffs):
 - Disneyland
 - Clubs and Gyms
- Telephone service providers and utility companies
 - Turkcell packages
- No easy rules here: finding the best nonlinear price schedule is usually a very complex problem
Two-Part Tariffs

- A lump sum fee: F
- A per unit charge: P
- Average price paid depends on amount consumed
- Examples:
 - Disneyland
 - Monthly fee plus per-minute charge for phone services
 - Club membership

Example: Turkcell

Each customer has demand:
\[Q = 120 - 200P \]
where P is measured in YTL/min and Q is measured in minutes/month
\[\text{MC} = \text{AC} = 0.3 \text{ YTL} \]

Plan A: No monthly fee + uniform per minute charge

1. \[P = 0.6 - Q/200 \]
2. \[\text{MR} = 0.6 - Q/100 \]
3. \[0.6 - Q/100 = 0.3 \rightarrow Q = 30 \text{ min} \rightarrow 0.45 \text{ YTL/min} \]

Profits = \((0.45 - 0.3)30 = 4.5 \text{ YTL per customer} \)
Plan B: Fixed monthly fee + per minute charge

- $F = 9$ YTL/month
- $P = 0.3$ YTL/min

How many minutes per month does the customer use?

If he buys the plan he gains $(P(Q) - 0.3)$ for each unit Q he uses and pays 9 YTL. Therefore, best is to use 60 minutes.

His net benefit = $CS - 9 = 60 \times 0.3/2 - 9 = 0$ YTL

The same as his net benefit to not buying the plan. Let’s assume he buys when indifferent

Profits = 9 YTL

Turkcell captures the CS and deadweight loss

General rule
1. $P = MC$ = per unit fee $\rightarrow Q$
2. Lump-sum fee = CS (at $P = MC$)

Practical Difficulties
1. Customers have different types of demands
2. You may not know which customer has which type

You may offer several packages and let the customer choose
Block Pricing

- We buy many products in large quantities
 - Electricity, water, gas, etc.
- Our demand curve is downward sloping
- Quantity discounts allow firms to extract extra surplus

Demand for electricity by a household
P = 20 – Q
MC = AC = 2

Block Pricing Example

Under uniform pricing
MR = 20 − 2Q

MR = MC \rightarrow 20 − 2Q = 2
\rightarrow
Q^* = 9
P^* = $11

Profits = Revenue-TC = 11(9) − 2(9) = $81
PS = Revenue-TVC = 11(9) − 2(9) = $81
CS = 9(20 − 11)/2 = $40.5
Block Pricing Example

Suppose you sell first 9 units at $11 and additional units at $8

How much electricity will the consumer buy?

12 units

What are the profits now?

Profits = (11 – 2) x 9 + (8 – 2) x 3 = 81 + 18 = $99

Can you do better?

Block Pricing Example

Suppose there are two blocks: up to Q₁, price is p₁, and after Q₁, price is p₂

We must have

\[p₁(Q₁) = 20 - Q₁ \]

Let Q₂ be the total amount purchased

\[p₂(Q₂) = 20 - Q₂ \]

\[\pi = p₁(Q₁)Q₁ + p₂(Q₂)(Q₂ - Q₁) - TC(Q₂) \]

\[= (20 - Q₁)Q₁ + (20 - Q₂)(Q₂ - Q₁) - 2Q₂ \]

and we must choose Q₁ and Q₂ to maximize this profit...

\[20 - 2Q₁ - (20 - Q₂) = 0 \rightarrow Q₂ = 2Q₁ \]

\[(20 - Q₂) - (Q₂ - Q₁) = MC = 2 \]

Can be solved as:

Q₁ = 6, Q₂ = 12

P₁ = 14, P₂ = 8 (a quantity discount)

Profits = (14 – 2) x 6 + (8 – 2) x 6 x 6 = 72 + 36 = $108

This is the best two-block pricing (this is also known as two-part tariff)

Can do even better with three blocks or more
Bundling/Tying/Tie-In Sales

• A **tie-in sale** occurs if customers can buy one product only if they agree to purchase another product as well
• **Requirements tie-in sales** occur when a firm requires customers who buy one product from the firm to buy another product from the firm
 – You buy a copier, you have to buy the paper from the firm
 – You buy a printer, you have to buy the ink cartridge from the firm
 • In 2002 more than half the revenues of HP from cartridges
 • Producers installed a chip that prevents refilling (now outlawed by EU)
• You cannot observe the relative willingness to pay of different customers
• You keep the price of paper high
 – if high-volume user is more willing to pay for the copier you can extract some of his consumer surplus

Bundling/Tying/Tie-In Sales

• Pure bundling: customers have to buy different goods together
 – Cable TV bundles several channels
 – A CD contains many songs
 – A magazine contains many articles
• Mixed bundling: customers have the option to buy a bundle or one or more components separately
 – Software suites (Microsoft Office)
 – Value meals at McDonald’s
• Why?
 – Cost savings (easier to sell several articles bound together in a magazine)
 – Complementarities (word-processor and spreadsheet are more productive together)
• Another reason could be price discrimination
• Can be used for price discrimination when consumers have different willingness to pay for the goods sold in the bundle
Pure Bundling

Two types of customers, 1 million each

<table>
<thead>
<tr>
<th>Willingness to Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Word Processor</td>
</tr>
<tr>
<td>$120</td>
</tr>
<tr>
<td>$100</td>
</tr>
</tbody>
</table>

Suppose $MC = AVC = 0 \rightarrow$ profit maximization \leftrightarrow revenue maximization
Profit maximizing prices when sold separately: $P_W = $100, $P_S = $100 $\rightarrow r = $400 mil
Profit maximizing price of the bundle: $P = $220 $\rightarrow r = $440 mil
Profits increase by $40 mil

Conditions for Price Discrimination

1. Market power: downward sloping firm demand curve
 - not only monopolies
 - downward sloping demand \rightarrow consumer surplus under uniform price
 - price discrimination is an attempt to capture CS

2. Prevent resale
 - nature of commodity
 - services: haircuts, physical examination, legal advice
 - restrictions on use: student discounts require ID, copyright, etc.

3. Different elasticities of demand
Informational Requirements

- Very good information → FDPD
- Only knows there are high- and low-willingness to pay customers; cannot identify them → SDPD
 - customers self-select
 - quantity discounts
 - tie-in sales
- Knows elasticity is related to identifiable group characteristic, such as a sociodemographic trait → TDPD

Double Marginalization

- Goods are usually sold by manufacturers to wholesalers and then to retailers and to consumers
- If each seller has some market power this may lead to a loss in overall profits
- This is known as double marginalization

![Diagram of Double Marginalization]

Manufacturer → p → Retailer → p → Consumer
Example

Honda uses independent dealers to sell cars to the public
Assume constant MC = AC = 2
\[P = 20 - Q \]

Where \(Q \) is the number of Hondas sold annually

Honda sells the cars at price \(p \) to the dealers
Assume, for simplicity, that dealers' marginal cost of retailing is zero

Dealer's profits = \((20 - Q - p)Q\)
Maximizing gives \(20 - 2Q = p \) or \(Q = 10 - p/2 \) and \(P = 20 - 10 + p/2 = 10 + p/2 \)

Honda's profits = \((11 - 2) \times 9 = 81\)
Maximizing gives \(p = 11 \)
Therefore \(Q = 4.5 \) and \(P = 15.5 \)

Honda's Profits = \((11 - 2) \times 4.5 = 40.5\)
Dealer's profits = \((15.5 - 11) \times 4.5 = 20.25\)

Retailer demand \(P = 20 - Q \)
Given any wholesale price \(p \) the dealer chooses according to
retail MR = \(p \)
or
\[20 - 2Q = p \]
Therefore, retail MR is wholesale inverse demand
Wholesale MR = \(20 - 4Q \)
Honda chooses according to
Wholesale MR = \(20 - 4Q \leq 2 \leq MC \)
\(Q = 4.5, p = 11, P = 15.5 \)

Honda's Profits = 40.5
Dealer's profits = 20.25

What if Honda sells directly?
Suppose marginal cost of retailing directly is zero
\[MR = 20 - 2Q \leq 2 \leq MC \rightarrow Q = 9, P = 11 \]

Honda's profits = \((11 - 2) \times 9 = 81\)
If marginal cost of retailing directly is \(c \)
\[MR = 20 - 2Q \leq 2 \leq c \leq MC \rightarrow Q = 9 - c/2, P = 11 + c/2 \]

Honda's profits = \((11 + c/2 - 2 - c) \times (9 - c/2) = (9 - c/2)^2\)
c < 5.27 \(\rightarrow (9 - c/2)^2 > 40.5 \rightarrow \) Honda prefers direct retailing
c > 5.27 \(\rightarrow \) Honda prefers dealer system
Can Honda do better?

What if Honda uses an annual franchise fee, F, and wholesale price scheme?

Dealer’s annual profits = $(20 - Q - p)Q - F$

Maximizing gives $20 - 2Q = p$ or $Q = 10 - p/2$ and $P = 20 - 10 + p/2 = 10 + p/2$

Dealer’s profits = $(20 - 10 + p/2 - p)(10 - p/2) - F$

= $(10 - p/2)^2 - F$

Assume that as long as this is non-negative some dealer accepts this deal

What should Honda set F?

$F = (10 - p/2)^2$

Honda’s profits = $(10 - p/2)^2 + (10 - p/2)(p - 2)$

Maximizing gives $p = 2$, $Q = 9$ and $P = 11$

Honda’s Profits = 81 same as selling directly

What is going on here?

Honda realizes all the profits from manufacturing and retailing. Since the dealer does the retailing, it costs zero

Profits = $(20 - Q)Q - 2Q$ maximized at $Q = 9$

Since the retailer will choose Q according to $MR = MC$ rule, to make him choose $Q = 9$, Honda should pass the MC as wholesale price to the dealer → set $p = MC = 2$