Koç University, Mathematics Seminar

Date \& Time: Thursday, November 06, 17:30-18:30
Place: SCI-103
Speaker: Emine Şule Yazıcı (Koç University) email: eyazici@ku.edu.tr web: http://home.ku.edu.tr/~eyazici

Title: A polynomial embedding of pairs of orthogonal partial latin squares
Abstract: Let N represent a set of n distinct elements. A non-empty subset P of $N \times N \times N$ is said to be a partial latin square, of order n, if for all $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in P$ and for all distinct $i, j, k \in\{1,2,3\}$,

$$
x_{i}=y_{i} \text { and } x_{j}=y_{j} \text { implies } x_{k}=y_{k} .
$$

If $|P|=n^{2}$, then we say that P is a latin square, of order n. Two partial latin squares P and Q, of the same order are said to be orthogonal if they have the same non-empty cells and for all $r_{1}, c_{1}, r_{2}, c_{2}, x, y \in N$

$$
\left\{\left(r_{1}, c_{1}, x\right),\left(r_{2}, c_{2}, x\right)\right\} \subseteq P \text { implies }\left\{\left(r_{1}, c_{1}, y\right),\left(r_{2}, c_{2}, y\right)\right\} \nsubseteq Q
$$

In 1960 Evans proved that a partial latin square of order n can always be embedded in some latin square of order t for every $t \geq 2 n$. In the same paper Evans raised the question as to whether a pair of finite partial latin squares which are orthogonal can be embedded in a pair of finite orthogonal latin squares. We show that a pair of orthogonal partial latin squares of order t can be embedded in a pair of orthogonal latin squares of order at most $16 t^{4}$ and all orders greater than or equal to $48 t^{4}$. This is the first polynomial embedding result of its kind.

