Inversion Formulas in Truncated Data Ray-Tomography

Matias Courdurier
Dept. de Matemáticas, Universidad Católica de Chile.
mcourdurier@mat.puc.cl

Abstract

In Ray-Tomography the goal is to recover a function in higher dimensions from knowledge of integrals of the function along lines. For example, in the Euclidean setting we let \(f \in C_0^\infty(\mathbb{R}^2) \), and for each straight line \(L \) in \(\mathbb{R}^2 \), we define the Ray-Transform of \(f \) along \(L \) as

\[
Rf(L) := \int_L f(l) \, dl \quad (dl = \text{Lebesgue measure in } L).
\]

The inversion problem consists of recovering \(f \) at all or some points of \(\mathbb{R}^2 \) from knowledge of \(Rf \) along all or some of the straight lines in \(\mathbb{R}^2 \). Or if \(\mathbb{H} \) is the Hyperbolic plane and \(f : \mathbb{H} \to \mathbb{R} \) is smooth and compactly supported, for each \(\gamma : \mathbb{R} \to \mathbb{H} \) arc-length parametrized geodesic we define the Ray-Transform of \(f \) along \(\gamma \) as

\[
Rf(\gamma) := \int_{\mathbb{R}} f(\gamma(s)) \, ds.
\]

Again, the inversion problem consists of recovering \(f \) at all or some points of \(\mathbb{H} \) from knowledge of \(Rf \) along all or some geodesics in \(\mathbb{H} \).

These two particular cases of Ray-Tomography are closely related to applications in medical imaging techniques, like Computed Tomography or Positron Emission Tomography [3], as well as to geological exploration techniques, appearing as the linearized problem in Travel Time Tomography [7].

The ray transform has been amply studied in general settings [8]. In addition to injectivity, support theorems and stability results for particular cases, inversion formulas have also been provided [2, 3, 5, 6]. Unfortunately, these inversion formulas require knowledge of \(Rf \) over all straight lines (or geodesics) to recover \(f \) at one given point, which is very inconvenient from the point of view of applications.

A different approach for the Euclidean case was proposed in [4]. The inversion of the Ray-Transform is reduced to a problem of inverting a one dimensional Hilbert transform. A new inversion formula, not requiring knowledge of all of \(Rf \), was obtained (eg. [4]) and injectivity and stability results for other cases of Euclidean truncated measurements followed [1].

In this talk we will first present how the Ray-Transform appears as a model of the measurements in the applications mentioned above. Then we will overview the non-locality issue of the previous inversion formulas. Afterwards we will go into more detail about the approach for the Euclidean setting introduced in [4], with the generalizations obtained in [1]. To conclude, we will present some new results generalizing the approach in [4] to the Hyperbolic plane setting.
References

