Homework 11 - Solutions

Section 5.4

7. $f(t)=\frac{1}{t^{3}+1}$ and $g(x)=\int_{1}^{x} \frac{1}{t^{3}+1} d t$, so by FTC1, $g^{\prime}(x)=f(x)=\frac{1}{x^{3}+1}$. Note that the lower limit, 1 , could be any real number greater than -1 and not affect this answer.
8. $f(t)=e^{t^{2}-t}$ and $g(x)=\int_{3}^{x} e^{t^{2}-t} d t$, so by FTC1, $g^{\prime}(x)=f(x)=e^{x^{2}-x}$.
9. Let $u=\frac{1}{x}$. Then $\frac{d u}{d x}=-\frac{1}{x^{2}}$. Also, $\frac{d h}{d x}=\frac{d h}{d u} \frac{d u}{d x}$, so-
$h^{\prime}(x)=\frac{d}{d x} \int_{2}^{1 / x} \arctan t d t=\frac{d}{d u} \int_{2}^{u} \arctan t d t \cdot \frac{d u}{d x}=\arctan u \frac{d u}{d x}=-\frac{\arctan (1 / x)}{x^{2}}$.
10. Let $u=x^{2}$. Then $\frac{d u}{d x}=2 x$. Also, $\frac{d h}{d x}=\frac{d h}{d u} \frac{d \bar{u}}{d x}$, so

$$
h^{\prime}(x)=\frac{d}{d x} \int_{0}^{x^{2}} \sqrt{1+r^{3}} d r=\frac{d}{d u} \int_{0}^{u} \sqrt{1+r^{3}} d r \cdot \frac{d u}{d x}=\sqrt{1+u^{3}}(2 x)=2 x \sqrt{1+\left(x^{2}\right)^{3}}=2 x \sqrt{1+x^{6}}
$$

25. By FTC2, $\int_{1}^{4} f^{\prime}(x) d x=f(4)-f(1)$, so $17=f(4)-12 \quad \Rightarrow \quad f(4)=17+12=29$.

Section 5.5

2. Let $u=2+x^{4}$. Then $d u=4 x^{3} d x$ and $x^{3} d x=\frac{1}{4} d u$, so $\int x^{3}\left(2+x^{4}\right)^{5} d x=\int u^{5}\left(\frac{1}{4} d u\right)=\frac{1}{4} \frac{u^{6}}{6}+C=\frac{1}{24}\left(2+x^{4}\right)^{6}+C$.
3. Let $u=1-6 t$. Then $d u=-6 d t$ and $d t=-\frac{1}{6} d u$, so

$$
\int \frac{d t}{(1-6 t)^{4}}=\int \frac{-\frac{1}{6} d u}{u^{4}}=-\frac{1}{6} \int u^{-4} d u=-\frac{1}{6} \frac{u^{-3}}{-3}+C=\frac{1}{18 u^{3}}+C=\frac{1}{18(1-6 t)^{3}}+C
$$

7. Let $u=x^{2}$. Then $d u=2 x d x$ and $x d x=\frac{1}{2} d u$, so $\int x \sin \left(x^{2}\right) d x=\int \sin u\left(\frac{1}{2} d u\right)=-\frac{1}{2} \cos u+C=-\frac{1}{2} \cos \left(x^{2}\right)+C$.
8. Let $u=x^{3}+5$. Then $d u=3 x^{2} d x$ and $x^{2} d x=\frac{1}{3} d u$, so

$$
\int x^{2}\left(x^{3}+5\right)^{9} d x=\int u^{9}\left(\frac{1}{3} d u\right)=\frac{1}{3} \cdot \frac{1}{10} u^{10}+C=\frac{1}{30}\left(x^{3}+5\right)^{10}+C .
$$

12. Let $u=e^{x}$. Then $d u=e^{x} d x$, so $\int e^{x} \cos \left(e^{x}\right) d x=\int \cos u d u=\sin u+C=\sin \left(e^{x}\right)+C$.
13. Let $u=\ln x$. Then $d u=\frac{d x}{x}$, so $\int \frac{(\ln x)^{2}}{x} d x=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3}(\ln x)^{3}+C$.
14. Let $u=x^{2}+1$. Then $d u=2 x d x$ and $x d x=\frac{1}{2} d u$, so

$$
\int \frac{x}{\left(x^{2}+1\right)^{2}} d x=\int u^{-2}\left(\frac{1}{2} d u\right)=\frac{1}{2} \cdot \frac{-1}{u}+C=\frac{-1}{2 u}+C=\frac{-1}{2\left(x^{2}+1\right)}+C .
$$

23. Let $u=x^{3}+3 x$. Then $d u=\left(3 x^{2}+3\right) d x$ and $\frac{1}{3} d u=\left(x^{2}+1\right) d x$, so $\int\left(x^{2}+1\right)\left(x^{3}+3 x\right)^{4} d x=\int u^{4}\left(\frac{1}{3} d u\right)=\frac{1}{3} \cdot \frac{1}{5} u^{5}+C=\frac{1}{15}\left(x^{3}+3 x\right)^{5}+C$.
24. Let $u=e^{x}+1$. Then $d u=e^{x} d x$, so $\int \frac{e^{x}}{e^{x}+1} d x=\int \frac{d u}{u}=\ln |u|+C=\ln \left(e^{x}+1\right)+C$.
25. Let $u=\cos x$. Then $d u=-\sin x d x$ and $\sin x d x=-d u$, so
$\int \frac{\sin x}{1+\cos ^{2} x} d x=\int \frac{-d u}{1+u^{2}}=-\tan ^{-1} u+C=-\tan ^{-1}(\cos x)+C$.
26. Let $u=1+7 x$, so $d u=7 d x$. When $x=0, u=1$; when $x=1, u=8$. Thus,

$$
\int_{0}^{1} \sqrt[3]{1+7 x} d x=\int_{1}^{8} u^{1 / 3}\left(\frac{1}{7} d u\right)=\frac{1}{7}\left[\frac{3}{4} u^{4 / 3}\right]_{1}^{8}=\frac{3}{28}\left(8^{4 / 3}-1^{4 / 3}\right)=\frac{3}{28}(16-1)=\frac{45}{28}
$$

48. Let $u=\sin x$, so $d u=\cos x d x$. When $x=0, u=0$; when $x=\frac{\pi}{2}, u=1$. Thus,

$$
\int_{0}^{\pi / 2} \cos x \sin (\sin x) d x=\int_{0}^{1} \sin u d u=[-\cos u]_{0}^{1}=-(\cos 1-1)=1-\cos 1 .
$$

55. Let $u=\ln x$, so $d u=\frac{d x}{x}$. When $x=e, u=1$; when $x=e^{4} ; u=4$. Thus,

$$
\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}=\int_{1}^{4} u^{-1 / 2} d u=2\left[u^{1 / 2}\right]_{1}^{4}=2(2-1)=2
$$

Section 5.6

1. Let $u=\ln x, d v=x^{2} d x \quad \Rightarrow \quad d u=\frac{1}{x} d x, v=\frac{1}{3} x^{3}$. Then by Equation 2 ,

$$
\begin{aligned}
\int x^{2} \ln x d x & =(\ln x)\left(\frac{1}{3} x^{3}\right)-\int\left(\frac{1}{3} x^{3}\right)\left(\frac{1}{x}\right) d x=\frac{1}{3} x^{3} \ln x-\frac{1}{3} \int x^{2} d x=\frac{1}{3} x^{3} \ln x-\frac{1}{3}\left(\frac{1}{3} x^{3}\right)+C \\
& =\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C \quad\left[\text { or } \frac{1}{3} x^{3}\left(\ln x-\frac{1}{3}\right)+C\right]
\end{aligned}
$$

2. Let $u=\theta, d v=\cos \theta d \theta \Rightarrow d u=d \theta, v=\sin \theta$. Then by Equation 2 , $\int \theta \cos \theta d \theta=\theta \sin \theta-\int \sin \theta d \theta=\theta \sin \theta+\cos \theta+C$.
3. Let $u=r, d v=e^{r / 2} d r \Rightarrow d u=d r, v=2 e^{r / 2}$.

Then $\int r e^{r / 2} d r=2 r e^{r / 2}-\int 2 e^{r / 2} d r=2 r e^{r / 2}-4 e^{r / 2}+C=2(r-2) e^{r / 2}+C$.
6. Let $u=t, d v=\sin 2 t d t \Rightarrow d u=d t, v=-\frac{1}{2} \cos 2 t$. Then
$\int t \sin 2 t d t=-\frac{1}{2} t \cos 2 t+\frac{1}{2} \int \cos 2 t d t=-\frac{1}{2} t \cos 2 t+\frac{1}{4} \sin 2 t+C$.
9. Let $u=\ln \sqrt[3]{x}, d v=d x \Rightarrow d u=\frac{1}{\sqrt[3]{x}}\left(\frac{1}{3} x^{-2 / 3}\right) d x=\frac{\mathbf{1}}{3 x} d x, v=x$. Then
$\int \ln \sqrt[3]{x} d x=x \ln \sqrt[3]{x}-\int x \cdot \frac{1}{3 x} d x=x \ln \sqrt[3]{x}-\frac{1}{3} x+C$.
Second solution: Rewrite $\int \ln \sqrt[3]{x} d x=\frac{1}{3} \int \ln x d x$, and apply Example 2 .
Third solution: Substitute $y=\sqrt[3]{x}$, to obtain $\int \ln \sqrt[3]{x} d x=3 \int y^{2} \ln y d y$, and apply Exercise 1 .
16. First let $u=x^{2}+1, d v=e^{-x} d x \Rightarrow d u=2 x d x, v=-e^{-x}$. By (6),
$\int_{0}^{1}\left(x^{2}+1\right) e^{-x} d x=\left[-\left(x^{2}+1\right) e^{-x}\right]_{0}^{1}+\int_{0}^{1} 2 x e^{-x} d x=-2 e^{-1}+1+2 \int_{0}^{1} x e^{-x} d x$.
Next let $U=x, d V=e^{-x} d x \Rightarrow d U=d x, V=-e^{-x}$. By (6) again,
22. Let $u=r^{2}, d v=\frac{r}{\sqrt{4+r^{2}}} d r \quad \Rightarrow \quad d u=2 r d r, v=\sqrt{4+r^{2}}$. By (6),

$$
\begin{aligned}
\int_{0}^{1} \frac{r^{3}}{\sqrt{4+r^{2}}} d r & =\left[r^{2} \sqrt{4+r^{2}}\right]_{0}^{1}-2 \int_{0}^{1} r \sqrt{4+r^{2}} d r=\sqrt{5}-\frac{2}{3}\left[\left(4+r^{2}\right)^{3 / 2}\right]_{0}^{1} \\
& =\sqrt{5}-\frac{2}{3}(5)^{3 / 2}+\frac{2}{3}(8)=\sqrt{5}\left(\begin{array}{ll}
1 & \frac{10}{3}
\end{array}\right)+\frac{16}{3}=\frac{16}{3}-\frac{7}{3} \sqrt{5}
\end{aligned}
$$

23. Let $u-(\ln x)^{2}, d v=d x \Rightarrow d u=\frac{2}{x} \ln x d x, v \leqslant x$. By $(6), I^{\prime}=\int_{1}^{2}(\ln x)^{2} d x=\left[x(\ln x)^{2}\right]_{1}^{2}-2 \int_{1}^{2} \ln x d x$. To evaluate the last integral, let $U=\ln x, d V=d x \Rightarrow d U=\frac{1}{x} d x, V=x$. Thus,

$$
\begin{aligned}
I & =\left[x(\ln x)^{2}\right]_{1}^{2}-2\left([x \ln x]_{1}^{2}-\int_{1}^{2} d x\right)=\left[x(\ln x)^{2}-2 x \ln x+2 x\right]_{1}^{2} \\
& =\left(2(\ln 2)^{2}-4 \ln 2+4\right)-(0-0+2)=2(\ln 2)^{2}-4 \ln 2+2
\end{aligned}
$$

24. Let $u=\sin (t-s), d v=e^{s} d s \Rightarrow d u=-\cos (t-s) d s, v=e^{s}$. Then
$I=\int_{0}^{t} e^{s} \sin (t-s) d s=\left[e^{s} \sin (t-s)\right]_{0}^{t}+\int_{0}^{t} e^{s} \cos (t-s) d s=e^{t} \sin 0-e^{0} \sin t+I_{1}$. For I_{1}, let $U=\cos (t-s)$,
$d V=e^{s} d s \Rightarrow d U=\sin (t-s) d s, V=e^{s}$. So $I_{1}=\left[e^{s} \cos (t-s)\right]_{0}^{t}-\int_{0}^{t} e^{s} \sin (t-s) d s=e^{t} \cos 0-e^{0} \cos t-I$.
Thus, $I=-\sin t+e^{t}-\cos t-I \Rightarrow 2 I=e^{t}-\cos t-\sin t \Rightarrow I=\frac{1}{2}\left(e^{t}-\cos t-\sin t\right)$.
25. Let $y=\sqrt{x}$, so that $d y=\frac{1}{2} x^{-1 / 2} d x=\frac{1}{2 \sqrt{x}} d x=\frac{1}{2 y} d x$. Thus, $\int \cos \sqrt{x} d x=\int \cos y(2 y d y)=2 \int y \cos y d y$. Now use parts with $u=y, d v=\cos y d y, d u=d y, v=\sin y$ to get $\int y \cos y d y=y \sin y-\int \sin y d y=y \sin y+\cos y+C_{1}$,
so $\int \cos \sqrt{x} d x=2 y \sin y+2 \cos y+C=2 \sqrt{x} \sin \sqrt{x}+2 \cos \sqrt{x}+C$.
26. Let $y=\ln x$, so that $d y=\frac{1}{x} d x \quad \Rightarrow \quad d x=x d y=e^{y} d y$. Thus,
$\int \sin (\ln x) d x=\int \sin y e^{y} d y=\frac{1}{2} e^{y}(\sin y-\cos y)+C \quad\left[\right.$ by Example 4] $=\frac{1}{2} x[\sin (\ln x)-\cos (\ln x)]+C$.
27. For $I=\int_{1}^{4} x f^{\prime \prime}(x) d x$, let $u=x, d v=f^{\prime \prime}(x) d x \Rightarrow d u=d x, v=f^{\prime}(x)$. Then $I=\left[x f^{\prime}(x)\right]_{1}^{4}-\int_{1}^{4} f^{\prime}(x) d x=4 f^{\prime}(4)-1 \cdot f^{\prime}(1)-[f(4)-f(1)]=4 \cdot 3-1 \cdot 5-(7-2)=12-5-5=2$.

We used the fact that $f^{\prime \prime}$ is continuous to guarantee that I exists.

