Homework 12 - Solutions

Section 5.7

1. $\int \sin ^{3} x \cos ^{2} x d x=\int \sin ^{2} x \cos ^{2} x \sin x d x=\int\left(1-\cos ^{2} x\right) \cos ^{2} x \sin x d x$

$$
\begin{aligned}
& =\int\left(1-u^{2}\right) u^{2}(-d u) \quad[u=\cos x, d u=-\sin x d x] \\
& =\int\left(u^{2}-1\right) u^{2} d u=\int\left(u^{4}-u^{2}\right) d u=\frac{1}{5} u^{5}-\frac{1}{3} u^{3}+C=\frac{1}{5} \cos ^{5} x-\frac{1}{3} \cos ^{3} x+C
\end{aligned}
$$

2. $\int_{0}^{\pi / 2} \cos ^{5} x d x=\int_{0}^{\pi / 2}\left(\cos ^{2} x\right)^{2} \cos x d x=\int_{0}^{\pi / 2}\left(1-\sin ^{2} x\right)^{2} \cos x d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left(1-u^{2}\right)^{2} d u \quad[u=\sin x, d u=\cos x d x] \\
& =\int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u=\left[u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}\right]_{0}^{1}=\left(1-\frac{2}{3}+\frac{1}{5}\right)-0=\frac{3}{15}
\end{aligned}
$$

6. $\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{2} x d x=\int_{0}^{\pi / 2} \frac{1}{4}\left(4 \sin ^{2} x \cos ^{2} x\right) d x=\int_{0}^{\pi / 2} \frac{1}{4}(2 \sin x \cos x)^{2} d x=\frac{1}{4} \int_{0}^{\pi / 2} \sin ^{2} 2 x d x$

$$
=\frac{1}{4} \int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 4 x) d x=\frac{1}{8} \int_{0}^{\pi / 2}(1-\cos 4 x) d x=\frac{1}{8}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\pi / 2}=\frac{1}{8}\left(\frac{\pi}{2}\right)=\frac{\pi}{16}
$$

21. $\frac{5 x+1}{(2 x+1)(x-1)}=\frac{A}{2 x+1}+\frac{B}{x-1}$. Multiply both sides by $(2 x+1)(x-1)$ to get $5 x+1=A(x-1)+B(2 x+1) \Rightarrow$ $5 x+1=A x-A+2 B x+B \Rightarrow 5 x+1=(A+2 B) x+(-A+B)$.
The coefficients of x must be equal and the constant terms are also equal, so $A+2 B=5$ and
$-A+B=1$. Adding these equations gives us $3 B=6 \Leftrightarrow B=2$, and hence, $A=1$. Thus,
$\int \frac{5 x+1}{(2 x+1)(x-1)} d x=\int\left(\frac{1}{2 x+1}+\frac{2}{x-1}\right) d x=\frac{1}{2} \ln |2 x+1|+2 \ln |x-1|+C$.
Another method: Substituting 1 for x in the equation $5 x+1=A(x-1)+B(2 x+1)$ gives $6=3 B \quad \Leftrightarrow \quad B=2$.
Substituting $-\frac{1}{2}$ for x gives $-\frac{3}{2}=-\frac{3}{2} A \quad \Leftrightarrow \quad A=1$.
22. $\frac{x-4}{x^{2}-5 x+6}=\frac{A}{x-2}+\frac{B}{x-3}$. Multiply both sides by $(x-2)(x-3)$ to get $x-4=A(x-3)+B(x-2) \Rightarrow$ $x-4=A x-3 A+B x-2 B \Rightarrow x-4=(A+B) x+(-3 A-2 B)$.

The coefficients of x must be equal and the constant terms are also equal, so $A+B=1$ and $-3 A-2 B=-4$.
Adding twice the first equation to the second gives us $-A=-2 \Leftrightarrow A=2$, and hence, $B=-1$.Thus,

$$
\begin{aligned}
\int_{0}^{1} \frac{x-4}{x^{2}-5 x+6} d x & =\int_{0}^{1}\left(\frac{2}{x-2}-\frac{1}{x-3}\right) d x=[2 \ln |x-2|-\ln |x-3|]_{0}^{1} \\
& =(0-\ln 2)-(2 \ln 2-\ln 3)=-3 \ln 2+\ln 3\left[\text { or } \ln \frac{3}{8}\right]
\end{aligned}
$$

Another method: Substituting 3 for x in the equation $x-4=A(x-3)+B(x-2)$ gives $-1=B$. Substituting 2 for x gives $-2=-A \Leftrightarrow A=2$.
24. $\frac{x^{2}+2 x-1}{x^{3}-x}=\frac{x^{2}+2 x-1}{x(x+1)(x-1)}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x-1}$. Multiply both sides by $x(x+1)(x-1)$ to get $x^{2}+2 x-1=A(x+1)(x-1)+B x(x-1)+C x(x+1) \Rightarrow$
$x^{2}+2 x-1=A x^{2}-A+B x^{2}-B x+C x^{2}+C x \Rightarrow$
$x^{2}+2 x-1=(A+B+C) x^{2}+(-B+C) x-A$. Equating constant terms, we get $-A=-1 \quad \Leftrightarrow \quad A=1$.
Equating coefficients of x^{2} gives $1=1+B+C \quad \Leftrightarrow \quad 0=B+C$. Equating coefficients of x gives $2=-B+C$.
Adding these equations gives $2=2 C \quad \Leftrightarrow \quad C=1$, and hence, $B=-1$. Thus,
$\int \frac{x^{2}+2 x-1}{x^{3}-x} d x=\int\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x-1}\right) d x=\ln |x|-\ln |x+1|+\ln |x-1|+C=\ln \left|\frac{x(x-1)}{x+1}\right|+C$.
Another method: Substituting 0 for x in the equation $x^{2}+2 x-1=A(x+1)(x-1)+B x(x-1)+C x(x+1)$
gives $-1=-A \Leftrightarrow A=1$. Substituting -1 for x gives $-2=2 B \Leftrightarrow B=-1$. Substituting 1 for x gives $2=2 C \quad \Leftrightarrow \quad C=1$.
28. $\frac{x^{2}-x+6}{x^{3}+3 x}=\frac{x^{2}-x+6}{x\left(x^{2}+3\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+3}$. Multiply by $x\left(x^{2}+3\right)$ to get $x^{2}-x+6=A\left(x^{2}+3\right)+(B x+C) x$.

Substituting 0 for x gives $6=3 A \quad \Leftrightarrow \quad A=2$. The coefficients of the x^{2}-terms must be equal, so $1=A+B \Rightarrow$ $B=1-2=\mathbf{- 1}$. The coefficients of the x-terms must be equal, so $-1=C$. Thus,

$$
\begin{aligned}
\int \frac{x^{2}-x+6}{x^{3}+3 x} d x & =\int\left(\frac{2}{x}+\frac{-x-1}{x^{2}+3}\right) d x=\int\left(\frac{2}{x}-\frac{x}{x^{2}+3}-\frac{1}{x^{2}+3}\right) d x \\
& =2 \ln |x|-\frac{1}{2} \ln \left(x^{2}+3\right)-\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}+C
\end{aligned}
$$

Section 5.10

2. (a) Since $y=\frac{1}{2 x-1}$ is defined and continuous on $[1,2], \int_{1}^{2} \frac{1}{2 x-1} d x$ is proper.
(b) Since $y=\frac{1}{2 x-1}$ has an infinite discontinuity at $x=\frac{1}{2}, \int_{0}^{1} \frac{1}{2 x-1} d x$ is a Type II improper integral.
(c) Since $\int_{-\infty}^{\infty} \frac{\sin x}{1+x^{2}} d x$ has an infinite interval of integration, it is an improper integral of Type I.
(d) Since $y=\ln (x-1)$ has an infinite discontinuity at $x=1, \int_{1}^{2} \ln (x-1) d x$ is a Type II improper integral.
3. $\int_{3}^{\infty} \frac{1}{(x-2)^{3 / 2}} d x=\lim _{t \rightarrow \infty} \int_{3}^{t}(x-2)^{-3 / 2} d x=\lim _{t \rightarrow \infty}\left[-2(x-2)^{-1 / 2}\right]_{3}^{t} \quad[u=x-2, d u=d x]$

$$
=\lim _{t \rightarrow \infty}\left(\frac{-2}{\sqrt{t-2}}+\frac{2}{\sqrt{1}}\right)=0+2=2 . \quad \text { Convergent }
$$

8. $\int_{0}^{\infty} \frac{x}{\left(x^{2}+2\right)^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x}{\left(x^{2}+2\right)^{2}} d x=\lim _{t \rightarrow \infty} \frac{1}{2}\left[\frac{-1}{x^{2}+2}\right]_{0}^{t}=\frac{1}{2} \lim _{t \rightarrow \infty}\left(\frac{-1}{t^{2}+2}+\frac{1}{2}\right)$

$$
=\frac{1}{2}\left(0+\frac{1}{2}\right)=\frac{1}{4} . \quad \text { Convergent }
$$

10. $\int_{-\infty}^{-1} e^{-2 t} d t=\lim _{x \rightarrow-\infty} \int_{x}^{-1} e^{-2 t} d t=\lim _{x \rightarrow-\infty}\left[-\frac{1}{2} e^{-2 t}\right]_{x}^{-1}=\lim _{x \rightarrow-\infty}\left[-\frac{1}{2} e^{2}+\frac{1}{2} e^{-2 x}\right]=\infty$.

Divergent
11. $\int_{2 \pi}^{\infty} \sin \theta d \theta=\lim _{t \rightarrow \infty} \int_{2 \pi}^{t} \sin \theta d \theta=\lim _{t \rightarrow \infty}[-\cos \theta]_{2 \pi}^{t}=\lim _{t \rightarrow \infty}(-\cos t+1)$. This limit does not exist, so the integral is divergent. Divergent
12. $I=\int_{-\infty}^{\infty}\left(y^{3}-3 y^{2}\right) d y=I_{1}+I_{2}=\int_{-\infty}^{0}\left(y^{3}-3 y^{2}\right) d y+\int_{0}^{\infty}\left(y^{3}-3 y^{2}\right) d y$, but $I_{1}=\lim _{t \rightarrow-\infty}\left[\frac{1}{4} y^{4}-y^{3}\right]_{t}^{0}=\lim _{t \rightarrow-\infty}\left(t^{3}-\frac{1}{4} t^{4}\right)=-\infty$. Since I_{1} is divergent, I is divergent, and there is no need to evaluate I_{2}. Divergent
14. $\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x=\lim _{t \rightarrow \infty} \int_{1}^{\sqrt{t}} e^{-u}(2 d u) \quad\left[\begin{array}{rl}u & =\sqrt{x}, \\ d u & =d x /(2 \sqrt{x})\end{array}\right]$

$$
=2 \lim _{t \rightarrow \infty}\left[-e^{-u}\right]_{1}^{\sqrt{t}}=2 \lim _{t \rightarrow \infty}\left(-e^{-\sqrt{t}}+e^{-1}\right)=2\left(0+e^{-1}\right)=2 e^{-1} . \quad \text { Convergent }
$$

19. $\int_{1}^{\infty} \frac{\ln x}{x} d x=\lim _{t \rightarrow \infty}\left[\frac{(\ln x)^{2}}{2}\right]_{1}^{t}\left[\begin{array}{l}\text { by substitution with } \\ u=\ln x, d u=d x / x\end{array}\right]=\lim _{t \rightarrow \infty} \frac{(\ln t)^{2}}{2}=\infty . \quad$ Divergent
20. $I=\int_{-\infty}^{\infty} x^{3} e^{-x^{4}} d x=I_{1}+I_{2}=\int_{-\infty}^{0} x^{3} e^{-x^{4}} d x+\int_{0}^{\infty} x^{3} e^{-x^{4}} d x$. Now

$$
\begin{aligned}
I_{2} & =\lim _{t \rightarrow \infty} \int_{0}^{t} x^{3} e^{-x^{4}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t^{4}} e^{-u}\left(\frac{1}{4} d u\right) \quad\left[\begin{array}{c}
u=x^{4} . \\
d u=4 x^{3} d x
\end{array}\right] \\
& =\frac{1}{4} \lim _{t \rightarrow \infty}\left[-e^{-u}\right]_{0}^{t^{4}}=\frac{1}{4} \lim _{t \rightarrow \infty}\left(-e^{-t^{4}}+1\right)=\frac{1}{4}(0+1)=\frac{1}{4} .
\end{aligned}
$$

Since $f(x)=x^{3} e^{-x^{4}}$ is an odd function, $I_{1}=-\frac{1}{4}$, and hence, $I=0$. Convergent
25. $\int_{0}^{1} \frac{3}{x^{5}} d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} 3 x^{-5} d x=\lim _{t \rightarrow 0^{+}}\left[-\frac{3}{4 x^{4}}\right]_{t}^{1}=-\frac{3}{4} \lim _{t \rightarrow 0^{+}}\left(1-\frac{1}{t^{4}}\right)=\infty$. Divergent
30. $f(y)=1 /(4 y-1)$ has an infinite discontinuity at $y=\frac{1}{4}$.
$\int_{1 / 4}^{1} \frac{1}{4 y-1} d y=\lim _{t \rightarrow(1 / 4)^{+}} \int_{t}^{1} \frac{1}{4 y-1} d y=\lim _{t \rightarrow(1 / 4)^{+}}\left[\frac{1}{4} \ln |4 y-1|\right]_{t}^{1}=\lim _{t \rightarrow(1 / 4)^{+}}\left[\frac{1}{4} \ln 3-\frac{1}{4} \ln (4 t-1)\right]=\infty$, so $\int_{1 / 4}^{1} \frac{1}{4 y-1} d y$ diverges, and hence, $\int_{0}^{1} \frac{1}{4 y-1} d y$ diverges. Divergent
33. $I=\int_{0}^{2} z^{2} \ln z d z=\lim _{t \rightarrow 0^{+}} \int_{t}^{2} z^{2} \ln z d z=\lim _{t \rightarrow 0^{+}}\left[\frac{z^{3}}{3^{2}}(3 \ln z-1)\right]_{t}^{2} \quad\left[\begin{array}{c}\text { integrate by parts } \\ \text { or use Formula 101 }\end{array}\right]$

$$
=\lim _{t \rightarrow 0^{+}}\left[\frac{8}{9}(3 \ln 2-1)-\frac{1}{9} t^{3}(3 \ln t-1)\right]=\frac{8}{3} \ln 2-\frac{8}{9}-\frac{1}{9} \lim _{t \rightarrow 0^{+}}\left[t^{3}(3 \ln t-1)\right]=\frac{8}{3} \ln 2-\frac{8}{9}-\frac{1}{9} L .
$$

Now $L=\lim _{t \rightarrow 0^{+}}\left[t^{3}(3 \ln t-1)\right]=\lim _{t \rightarrow 0^{+}} \frac{3 \ln t-1}{t^{-3}} \stackrel{H}{=} \lim _{t \rightarrow 0^{+}} \frac{3 / t}{-3 / t^{4}}=\lim _{t \rightarrow 0^{+}}\left(-t^{3}\right)=0$.
Thus, $L=0$ and $I=\frac{8}{3} \ln 2-\frac{8}{9} . \quad$ Convergent
49. $\int_{0}^{\infty} \frac{d x}{\sqrt{x}(1+x)}=\int_{0}^{1} \frac{d x}{\sqrt{x}(1+x)}+\int_{1}^{\infty} \frac{d x}{\sqrt{x}(1+x)}=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{d x}{\sqrt{x}(1 \mid x)}+\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{d x}{\sqrt{x}(1+x)}$. Now

$$
\begin{aligned}
\int \frac{d x}{\sqrt{x}(1+x)} & =\int \frac{2 u d u}{u\left(1+u^{2}\right)}\left[\begin{array}{c}
u=\sqrt{x}, x=u^{2}, \\
d x=2 u d u
\end{array}\right]=2 \int \frac{d u}{1+u^{2}}=2 \tan ^{-1} u+C=2 \tan ^{-1} \sqrt{x}+C, \text { so } \\
\int_{0}^{\infty} \frac{d x}{\sqrt{x}(1+x)} & =\lim _{t \rightarrow 0^{+}}\left[2 \tan ^{-1} \sqrt{x}\right]_{t}^{1}+\lim _{t \rightarrow \infty}\left[2 \tan ^{-1} \sqrt{x}\right]_{1}^{t} \\
& =\lim _{t \rightarrow 0^{+}}\left[2\left(\frac{\pi}{4}\right)-2 \tan ^{-1} \sqrt{t}\right]+\lim _{t \rightarrow \infty}\left[2 \tan ^{-1} \sqrt{t}-2\left(\frac{\pi}{4}\right)\right]=\frac{\pi}{2}-0+2\left(\frac{\pi}{2}\right)-\frac{\pi}{2}=\pi .
\end{aligned}
$$

61. We use integration by parts: let $u=x, d v=x e^{-x^{2}} d x \quad \Rightarrow \quad d u=d x, v=-\frac{1}{2} e^{-x^{2}}$. So

$$
\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\lim _{t \rightarrow \infty}\left[-\frac{1}{2} x e^{-x^{2}}\right]_{0}^{t}+\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x=\lim _{t \rightarrow \infty}\left[-\frac{t}{2 e^{t^{2}}}\right]+\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x
$$

(The limit is 0 by l'Hospital's Rule.)

Section 6.1

1. $A=\int_{x=0}^{x=4}\left(y_{T}-y_{B}\right) d x=\int_{0}^{4}\left[\left(5 x-x^{2}\right)-x\right] d x=\int_{0}^{4}\left(4 x-x^{2}\right) d x=\left[2 x^{2}-\frac{1}{3} x^{3}\right]_{0}^{4}=\left(32-\frac{64}{3}\right)-(0)=\frac{32}{3}$
2. $A=\int_{0}^{2}\left(\sqrt{x+2}-\frac{1}{x+1}\right) d x=\left[\frac{2}{3}(x+2)^{3 / 2}-\ln (x+1)\right]_{0}^{2}$

$$
-\left[\frac{2}{3}(4)^{3 / 2}-\ln 3\right]-\left[\frac{2}{3}(2)^{3 / 2}-\ln 1\right]-\frac{16}{3}-\ln 3-\frac{4}{3} \sqrt{2}
$$

13. $12-x^{2}=x^{2}-6 \Leftrightarrow 2 x^{2}=18 \Leftrightarrow$

$$
\begin{aligned}
x^{2} & =9 \Leftrightarrow x= \pm 3, \text { so } \\
A & =\int_{-3}^{3}\left[\left(12-x^{2}\right)-\left(x^{2}-6\right)\right] d x \\
& =2 \int_{0}^{3}\left(18-2 x^{2}\right) d x \quad[\text { by symmetry }] \\
& =2\left[18 x-\frac{2}{3} x^{3}\right]_{0}^{3}=2[(54-18)-0] \\
& =2(36)=72
\end{aligned}
$$

14. $x^{2}=4 x-x^{2} \Leftrightarrow 2 x^{2}-4 x=0 \quad \Leftrightarrow \quad 2 x(x-2)=0 \quad \Leftrightarrow \quad x=0$ or 2 , so

$$
\begin{aligned}
A & =\int_{0}^{2}\left[\left(4 x-x^{2}\right)-x^{2}\right] d x \\
& =\int_{0}^{2}\left(4 x-2 x^{2}\right) d x \\
& =\left[2 x^{2}-\frac{2}{3} x^{3}\right]_{0}^{2} \\
& =8-\frac{16}{3}=\frac{8}{3}
\end{aligned}
$$

15. $e^{x}=x e^{x} \Leftrightarrow e^{x}-x e^{x}=0 \quad \Leftrightarrow \quad e^{x}(1-x)=0 \quad \Leftrightarrow \quad x=1$.

$$
\begin{aligned}
A & =\int_{0}^{1}\left(e^{x}-x e^{x}\right) d x \\
& \left.=\left[e^{x}-\left(x e^{x}-e^{x}\right)\right]_{0}^{1} \text { [use parts with } u=x \text { and } d v=e^{x} d x\right] \\
& =\left[2 e^{x}-x e^{x}\right]_{0}^{1}=(2 e-e)-(2-0)=e-2
\end{aligned}
$$

16. $A=\int_{0}^{2 \pi}[(2-\cos x)-\cos x] d x$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}(2-2 \cos x) d x \\
& =[2 x-2 \sin x]_{0}^{2 \pi} \\
& =(4 \pi-0)-0=4 \pi
\end{aligned}
$$

24.

The curves intersect when $\cos x=1-\cos x$ (on $[0, \pi]) \Leftrightarrow 2 \cos x=1 \Leftrightarrow \cos x=\frac{1}{2} \Leftrightarrow x=\frac{\pi}{3}$.
$A=\int_{0}^{\pi / 3}[\cos x-(1-\cos x)] d x+\int_{\pi / 3}^{\pi}[(1-\cos x)-\cos x] d x$
$=\int_{0}^{\pi / 3}(2 \cos x-1) d x+\int_{\pi / 3}^{\pi}(1-2 \cos x) d x$
$=[2 \sin x-x]_{0}^{\pi / 3}+[x-2 \sin x]_{\pi / 3}^{\pi}$
$=\left(\sqrt{3}-\frac{\pi}{3}\right)-0+(\pi-0)-\left(\frac{\pi}{3}-\sqrt{3}\right)=2 \sqrt{3}+\frac{\pi}{3}$

40.

We start by finding the equation of the tangent line to $y=x^{2}$ at the point $(1,1)$:
$y^{\prime}=2 x$, so the slope of the tangent is $2(1)=2$, and its equation is
$y-1=2(x-1)$, or $y=2 x-1$. We would need two integrals to integrate with respect to x, but only one to integrate with respect to y.

$$
\begin{aligned}
A & =\int_{0}^{1}\left[\frac{1}{2}(y+1)-\sqrt{y}\right] d y=\left[\frac{1}{4} y^{2}+\frac{1}{2} y-\frac{2}{3} y^{3 / 2}\right]_{0}^{1} \\
& =\frac{1}{4}+\frac{1}{2}-\frac{2}{3}=\frac{1}{12}
\end{aligned}
$$

