Homework 8 – Solutions

Section 4.2

- 4. Absolute maximum at r; absolute minimum at a; local maxima at b and r; local minimum at d; neither a maximum nor a minimum at c and s.
- 6. There is no absolute maximum value; absolute minimum value is g(4) = 1; local maximum values are g(3) = 4 and g(6) = 3; local minimum values are g(2) = 2 and g(4) = 1.
 - Absolute minimum at 1, absolute maximum at 5, local maximum at 2, local minimum at 4

10. *f* has no local maximum or minimum, but 2 and 4 are critical numbers

16. $f(x) = 2 - \frac{1}{3}x, x \ge -2$. Absolute maximum $f(-2) = \frac{8}{3}$; no local maximum. No absolute or local

22.
$$f(x) = \begin{cases} 4 - x^2 & \text{if } -2 \le x < 0\\ 2x - 1 & \text{if } 0 \le x \le 2 \end{cases}$$

Abolute minimum f(0) = -1; no local minimim. No absolute or local maximum.

28.
$$g(t) = |3t - 4| = \begin{cases} 3t - 4 & \text{if } 3t - 4 \ge 0\\ -(3t - 4) & \text{if } 3t - 4 < 0 \end{cases} = \begin{cases} 3t - 4 & \text{if } t \ge \frac{4}{3}\\ 4 - 3t & \text{if } t < \frac{4}{3} \end{cases}$$
$$g'(t) = \begin{cases} 3 & \text{if } t > \frac{4}{3}\\ -3 & \text{if } t < \frac{4}{3} \end{cases} \text{ and } g'(t) \text{ does not exist at } t = \frac{4}{3}, \text{ so } t = \frac{4}{3} \text{ is a critical number.} \end{cases}$$

32.
$$g(x) = x^{1/3} - x^{-2/3} \Rightarrow g'(x) = \frac{1}{3}x^{-2/3} + \frac{2}{3}x^{-5/3} = \frac{1}{3}x^{-5/3}(x+2) = \frac{x+2}{3x^{5/3}}$$

g'(-2) = 0 and g'(0) does not exist, but 0 is not in the domain of g, so the only critical number is -2.

34. $g(\theta) = 4\theta - \tan \theta \Rightarrow g'(\theta) = 4 - \sec^2 \theta$. $g'(\theta) = 0 \Rightarrow \sec^2 \theta = 4 \Rightarrow \sec \theta = \pm 2 \Rightarrow \cos \theta = \pm \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3} + 2n\pi$, $\frac{5\pi}{3} + 2n\pi$, $\frac{2\pi}{3} + 2n\pi$, and $\frac{4\pi}{3} + 2n\pi$ are critical numbers. *Note:* The values of θ that make $g'(\theta)$ undefined are not in the domain of g.

4. $f(x) = 5 + 54x - 2x^3$, [0, 4]. $f'(x) = 54 - 6x^2 = 6(9 - x^2) = 6(3 + x)(3 - x) = 0 \iff x = -3, 3$. f(0) = 5, f(3) = 113, and f(4) = 93. So f(3) = 113 is the absolute maximum value and f(0) = 5 is the absolute minimum value.

4. $f(x) = (x^2 - 1)^3$, [-1, 2]. $f'(x) = 3(x^2 - 1)^2(2x) = 6x(x + 1)^2(x - 1)^2 = 0 \iff x = -1, 0, 1.$ $f(\pm 1) = 0$, f(0) = -1, and f(2) = 27. So f(2) = 27 is the absolute maximum value and f(0) = -1 is the absolute minimum value. 4. $f(t) = t \sqrt{4 - t^2}$, [-1, 2]. $f'(t) = t \cdot \frac{1}{2}(4 - t^2)^{-1/2}(-2t) + (4 - t^2)^{1/2} \cdot 1 = \frac{-t^2}{\sqrt{4 - t^2}} + \sqrt{4 - t^2} = \frac{-t^2 + (4 - t^2)}{\sqrt{4 - t^2}} = \frac{4 - 2t^2}{\sqrt{4 - t^2}}.$ $f'(t) = 0 \implies 4 - 2t^2 = 0 \implies t^2 = 2 \implies t = \pm\sqrt{2}$, but $t = -\sqrt{2}$ is not in the given interval, [-1, 2]. f'(t) does not exist if $4 - t^2 = 0 \implies t = \pm 2$, but -2 is not in the given interval. $f(-1) = -\sqrt{3}$, $f(\sqrt{2}) = 2$, and f(2) = 0. So $f(\sqrt{2}) = 2$ is the absolute maximum value and $f(-1) = -\sqrt{3}$ is the absolute minimum value.

52. $f(x) = x - 2\tan^{-1} x$, [0, 4]. $f'(x) = 1 - 2 \cdot \frac{1}{1 + x^2} = 0 \iff 1 = \frac{2}{1 + x^2} \iff 1 + x^2 = 2 \iff x^2 = 1 \iff x = \pm 1$. f(0) = 0, $f(1) = 1 - \frac{\pi}{2} \approx -0.57$, and $f(4) = 4 - 2\tan^{-1} 4 \approx 1.35$. So $f(4) = 4 - 2\tan^{-1} 4$ is the absolute maximum value and $f(1) = 1 - \frac{\pi}{2}$ is the absolute minimum value.

53.
$$f(t) = 2\cos t + \sin 2t$$
, $[0, \pi/2]$.
 $f'(t) = -2\sin t + \cos 2t \cdot 2 = -2\sin t + 2(1 - 2\sin^2 t) = -2(2\sin^2 t + \sin t - 1) = -2(2\sin t - 1)(\sin t + 1)$.
 $f'(t) = 0 \implies \sin t = \frac{1}{2} \text{ or } \sin t = -1 \implies t = \frac{\pi}{6}$. $f(0) = 2$, $f(\frac{\pi}{6}) = \sqrt{3} + \frac{1}{2}\sqrt{3} = \frac{3}{2}\sqrt{3} \approx 2.60$, and $f(\frac{\pi}{2}) = 0$.
So $f(\frac{\pi}{6}) = \frac{3}{2}\sqrt{3}$ is the absolute maximum value and $f(\frac{\pi}{2}) = 0$ is the absolute minimum value.

Section 4.3

- 6. (a) f is increasing on the intervals where f'(x) > 0, namely, (2, 4) and (6, 9).
- (b) f has a local maximum where it changes from increasing to decreasing, that is, where f' changes from positive to negative (at x = 4). Similarly, where f' changes from negative to positive, f has a local minimum (at x = 2 and at x = 6).
 - (c) When f' is increasing, its derivative f'' is positive and hence, f is concave upward. This happens on (1,3), (5,7), and (8,9). Similarly, f is concave downward when f' is decreasing—that is, on (0, 1), (3, 5), and (7,8).
 - (d) f has inflection points at x = 1, 3, 5, 7, and 8, since the direction of concavity changes at each of these values.
- 8. (a) $f(x) = 4x^3 + 3x^2 6x + 1 \implies f'(x) = 12x^2 + 6x 6 = 6(2x^2 + x 1) = 6(2x 1)(x + 1)$. Thus, $f'(x) > 0 \implies x < -1 \text{ or } x > \frac{1}{2} \text{ and } f'(x) < 0 \implies -1 < x < \frac{1}{2}$. So f is increasing on $(-\infty, -1)$ and $(\frac{1}{2}, \infty)$ and f is decreasing on $(-1, \frac{1}{2})$.
 - (b) f changes from increasing to decreasing at x = −1 and from decreasing to increasing at x = ¹/₂. Thus, f(−1) = 6 is a local maximum value and f(¹/₂) = −³/₄ is a local minimum value.
 - (c) f''(x) = 24x + 6 = 6(4x + 1). $f''(x) > 0 \iff x > -\frac{1}{4}$ and $f''(x) < 0 \iff x < -\frac{1}{4}$. Thus, f is concave upward on $\left(-\frac{1}{4}, \infty\right)$ and concave downward on $\left(-\infty, -\frac{1}{4}\right)$. There is an inflection point at $\left(-\frac{1}{4}, f\left(-\frac{1}{4}\right)\right) = \left(-\frac{1}{4}, \frac{21}{8}\right)$.

10. (a) $f(x) = \frac{x^2}{x^2 + 3} \Rightarrow f'(x) = \frac{(x^2 + 3)(2x) - x^2(2x)}{(x^2 + 3)^2} = \frac{6x}{(x^2 + 3)^2}$. The denominator is positive so the sign of f'(x) is determined by the sign of x. Thus, $f'(x) > 0 \iff x > 0$ and $f'(x) < 0 \iff x < 0$. So f is increasing on $(0, \infty)$ and f is decreasing on $(-\infty, 0)$.

(b) f changes from decreasing to increasing at x = 0. Thus, f(0) = 0 is a local minimum value.

c)
$$f''(x) = \frac{(x^2+3)^2(6) - 6x \cdot 2(x^2+3)(2x)}{[(x^2+3)^2]^2} = \frac{6(x^2+3)[x^2+3-4x^2]}{(x^2+3)^4} = \frac{6(3-3x^2)}{(x^2+3)^3} = \frac{-18(x+1)(x-1)}{(x^2+3)^3}.$$

 $f''(x) > 0 \iff -1 < x < 1$ and $f''(x) < 0 \iff x < -1$ or x > 1. Thus, f is concave upward on (-1, 1) and concave downward on $(-\infty, -1)$ and $(1, \infty)$. There are inflection points at $(\pm 1, \frac{1}{4})$.

15. (a) $y = f(x) = \frac{\ln x}{\sqrt{x}}$. (Note that f is only defined for x > 0.)

$$f'(x) = \frac{\sqrt{x}\left(1/x\right) - \ln x \left(\frac{1}{2}x^{-1/2}\right)}{x} = \frac{\frac{1}{\sqrt{x}} - \frac{\ln x}{2\sqrt{x}}}{x} \cdot \frac{2\sqrt{x}}{2\sqrt{x}} = \frac{2 - \ln x}{2x^{3/2}} > 0 \quad \Leftrightarrow \quad 2 - \ln x > 0 \quad \Leftrightarrow \quad 2 - \ln x > 0$$

 $\ln x < 2 \quad \Leftrightarrow \quad x < e^2$. Therefore f is increasing on $(0, e^2)$ and decreasing on (e^2, ∞) .

- (b) *f* changes from increasing to decreasing at $x = e^2$, so $f(e^2) = \frac{\ln e^2}{\sqrt{e^2}} = \frac{2}{e}$ is a local maximum value. (c) $f''(x) = \frac{2x^{3/2}(-1/x) - (2 - \ln x)(3x^{1/2})}{(2x^{3/2})^2} = \frac{-2x^{1/2} + 3x^{1/2}(\ln x - 2)}{4x^3} = \frac{x^{1/2}(-2 + 3\ln x - 6)}{4x^3} = \frac{3\ln x - 8}{4x^{5/2}}$ $f''(x) = 0 \quad \Leftrightarrow \quad \ln x = \frac{8}{3} \quad \Leftrightarrow \quad x = e^{8/3}. \quad f''(x) > 0 \quad \Leftrightarrow \quad x > e^{8/3}, \text{ so } f \text{ is concave upward on } (e^{8/3}, \infty) \text{ and concave downward on } (0, e^{8/3}).$ There is an inflection point at $\left(e^{8/3}, \frac{8}{3}e^{-4/3}\right) \approx (14.39, 0.70).$
- 24. (a) $g(x) = 200 + 8x^3 + x^4 \Rightarrow g'(x) = 24x^2 + 4x^3 = 4x^2(6+x) = 0$ when x = -6 and when x = 0. $g'(x) > 0 \Leftrightarrow x > -6$ $[x \neq 0]$ and $g'(x) < 0 \Leftrightarrow x < -6$, so g is decreasing on $(-\infty, -6)$ and g is increasing on $(-6, \infty)$, with a horizontal tangent at x = 0.
 - (b) g(-6) = -232 is a local minimum value.
 There is no local maximum value.
 - (c) $g''(x) = 48x + 12x^2 = 12x(4 + x) = 0$ when x = -4 and when x = 0. $g''(x) > 0 \iff x < -4$ or x > 0 and $g''(x) < 0 \iff -4 < x < 0$, so g is CU on $(-\infty, -4)$ and $(0, \infty)$, and g is CD on (-4, 0). There are inflection points at (-4, -56) and (0, 200).

x < 0 or x > 8, so B is decreasing on $(-\infty, 0)$ and $(8, \infty)$, and B is increasing on (0, 8).

- (b) B(0) = 0 is a local minimum value. B(8) = 4 is a local maximum value.
- (c) $B''(x) = -\frac{2}{3}x^{-4/3} = \frac{-2}{3x^{4/3}}$, so B''(x) < 0 for all $x \neq 0$. B is concave downward on $(-\infty, 0)$ and $(0, \infty)$. There is no inflection point.

(8, 4)

(d)

(d)

31. (a) $f(\theta) = 2\cos\theta + \cos^2\theta$, $0 \le \theta \le 2\pi \implies f'(\theta) = -2\sin\theta + 2\cos\theta (-\sin\theta) = -2\sin\theta (1+\cos\theta)$. $f'(\theta) = 0 \quad \Leftrightarrow \quad \theta = 0, \pi, \text{ and } 2\pi. \ f'(\theta) > 0 \quad \Leftrightarrow \quad \pi < \theta < 2\pi \text{ and } f'(\theta) < 0 \quad \Leftrightarrow \quad 0 < \theta < \pi. \text{ So } f \text{ is increasing } f'(\theta) < 0$ on $(\pi, 2\pi)$ and f is decreasing on $(0, \pi)$. (b) $f(\pi) = -1$ is a local minimum value. (c) $f'(\theta) = -2\sin\theta (1 + \cos\theta) \Rightarrow$ $f''(\theta) = -2\sin\theta \left(-\sin\theta\right) + (1+\cos\theta)(-2\cos\theta) = 2\sin^2\theta - 2\cos\theta - 2\cos^2\theta$ $= 2(1 - \cos^2 \theta) - 2\cos\theta - 2\cos^2 \theta = -4\cos^2 \theta - 2\cos\theta + 2$ $= -2(2\cos^2\theta + \cos\theta - 1) = -2(2\cos\theta - 1)(\cos\theta + 1)$ Since $-2(\cos\theta + 1) < 0$ [for $\theta \neq \pi$], $f''(\theta) > 0 \Rightarrow 2\cos\theta - 1 < 0 \Rightarrow \cos\theta < \frac{1}{2} \Rightarrow \frac{\pi}{3} < \theta < \frac{5\pi}{3}$ and $f''(\theta) < 0 \Rightarrow \cos \theta > \frac{1}{2} \Rightarrow 0 < \theta < \frac{\pi}{3} \text{ or } \frac{5\pi}{3} < \theta < 2\pi. \text{ So } f \text{ is CU on } \left(\frac{\pi}{3}, \frac{5\pi}{3}\right) \text{ and } f \text{ is CD on } \left(0, \frac{\pi}{3}\right) \text{ and } f \text{ is CD on } \left(0, \frac{\pi}{3}\right) \text{ and } f \text{ is CD on } \left(0, \frac{\pi}{3}\right) \text{ and } f \text{ is CD on } \left(0, \frac{\pi}{3}\right) \text{ and } f \text{ is CD on } \left(0, \frac{\pi}{3}\right) \text{ and } f \text{ is CD on } \left(0, \frac{\pi}{3}\right) \text{ and } f \text{ is CD on } \left(0, \frac{\pi}{3}\right) \text{ and } f \text{ is CD on } \left(0, \frac{\pi}{3}\right) \text{ or } f \text{ or$ $\left(\frac{5\pi}{3}, 2\pi\right)$. There are points of inflection at $\left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right) = \left(\frac{\pi}{3}, \frac{5}{4}\right)$ and $\left(\frac{5\pi}{3}, f\left(\frac{5\pi}{3}\right)\right) = \left(\frac{5\pi}{3}, \frac{5}{4}\right)$. (d) **34.** $f(x) = \frac{x^2}{(x-2)^2}$ has domain $(-\infty, 2) \cup (2, \infty)$. (a) $\lim_{x \to \pm \infty} \frac{x^2}{x^2 - 4x + 4} = \lim_{x \to \pm \infty} \frac{x^2/x^2}{(x^2 - 4x + 4)/x^2} = \lim_{x \to \pm \infty} \frac{1}{1 - 4/x + 4/x^2} = \frac{1}{1 - 0 + 0} = 1,$ so y = 1 is a HA. $\lim_{x \to 2^+} \frac{x^2}{(x-2)^2} = \infty$ since $x^2 \to 4$ and $(x-2)^2 \to 0^+$ as $x \to 2^+$, so x = 2 is a VA. (b) $f(x) = \frac{x^2}{(x-2)^2} \quad \Rightarrow \quad f'(x) = \frac{(x-2)^2(2x) - x^2 \cdot 2(x-2)}{[(x-2)^2]^2} = \frac{2x(x-2)[(x-2)-x]}{(x-2)^4} = \frac{-4x}{(x-2)^3}.$ f'(x) > 0 if 0 < x < 2 and f'(x) < 0 if x < 0 or x > 2, so f is increasing on (0, 2) and f is decreasing on $(-\infty, 0)$ and $(2,\infty)$. (c) f(0) = 0 is a local minimum value. (e) (d) $f''(x) = \frac{(x-2)^3(-4) - (-4x) \cdot 3(x-2)^2}{[(x-2)^3]^2}$ $=\frac{4(x-2)^2[-(x-2)+3x]}{(x-2)^6}=\frac{8(x+1)}{(x-2)^4}$ f''(x) > 0 if x > -1 ($x \neq 2$) and f''(x) < 0 if x < -1. Thus, f is CU on

(-1,2) and $(2,\infty)$, and f is CD on $(-\infty, -1)$. There is an inflection point at $(-1, \frac{1}{9})$.

38. $f(x) = \frac{e^{x}}{1 + e^{x}} \text{ has domain } \mathbb{R}.$ (a) $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{e^{x}/e^{x}}{(1 + e^{x})/e^{x}} = \lim_{x \to \infty} \frac{1}{e^{-x} + 1} = \frac{1}{0 + 1} = 1, \text{ so } y = 1 \text{ is a HA.}$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^{x}}{1 + e^{x}} = \frac{0}{1 + 0} = 0, \text{ so } y = 0 \text{ is a HA. No VA.}$ (b) $f'(x) = \frac{(1 + e^{x})e^{x} - e^{x} \cdot e^{x}}{(1 + e^{x})^{2}} = \frac{e^{x}}{(1 + e^{x})^{2}} > 0 \text{ for all } x. \text{ Thus, } f \text{ is increasing on } \mathbb{R}.$ (c) There is no local maximum or minimum.
(e)
(f''(x) = \frac{(1 + e^{x})^{2}e^{x} - e^{x} \cdot 2(1 + e^{x})e^{x}}{[(1 + e^{x})^{2}]^{2}} $= \frac{e^{x}(1 + e^{x})[(1 + e^{x}) - 2e^{x}]}{(1 + e^{x})^{4}} = \frac{e^{x}(1 - e^{x})}{(1 + e^{x})^{3}}$ $f''(x) > 0 \quad \Leftrightarrow \quad 1 - e^{x} > 0 \quad \Leftrightarrow \quad x < 0, \text{ so } f \text{ is CU on } (-\infty, 0) \text{ and CD on } (0, \infty).$ There is an inflection point at $(0, \frac{1}{2})$.

50. (a) f(3) = 2 ⇒ the point (3, 2) is on the graph of f. f'(3) = 1/2 ⇒ the slope of the tangent line at (3, 2) is 1/2. f'(x) > 0 for all x ⇒ f is increasing on R.
f''(x) < 0 for all x ⇒ f is concave downward on R. A possible graph for f is shown.

(b) The tangent line at (3, 2) has equation y - 2 = ¹/₂(x - 3), or y = ¹/₂x + ¹/₂, and x-intercept -1. Since f is concave downward on ℝ, f is below the x-axis at x = -1, and hence changes sign at least once. Since f is increasing on ℝ, it changes sign at most once. Thus, it changes sign exactly once and there is one solution of the equation f(x) = 0.
(c) f'' < 0 ⇒ f' is decreasing. Since f'(3) = ¹/₂, f'(2) must be greater than ¹/₂, so no, it is not possible that f'(2) = ¹/₃

-2, 3)

59. $f(x) = ax^3 + bx^2 + cx + d \Rightarrow f'(x) = 3ax^2 + 2bx + c.$

We are given that f(1) = 0 and f(-2) = 3, so f(1) = a + b + c + d = 0 and f(-2) = -8a + 4b - 2c + d = 3. Also f'(1) = 3a + 2b + c = 0 and f'(-2) = 12a - 4b + c = 0 by Fermat's Theorem. Solving these four equations, we get $a = \frac{2}{9}, b = \frac{1}{3}, c = -\frac{4}{3}, d = \frac{7}{9}$, so the function is $f(x) = \frac{1}{9}(2x^3 + 3x^2 - 12x + 7)$.

61. $f(x) = \tan x - x \Rightarrow f'(x) = \sec^2 x - 1 > 0$ for $0 < x < \frac{\pi}{2}$ since $\sec^2 x > 1$ for $0 < x < \frac{\pi}{2}$. So f is increasing on $(0, \frac{\pi}{2})$. Thus, f(x) > f(0) = 0 for $0 < x < \frac{\pi}{2} \Rightarrow \tan x - x > 0 \Rightarrow \tan x > x$ for $0 < x < \frac{\pi}{2}$.

64. If $3 \le f'(x) \le 5$ for all x, then by the Mean Value Theorem, $f(8) - f(2) = f'(c) \cdot (8-2)$ for some c in [2,8].

(*f* is differentiable for all *x*, so, in particular, *f* is differentiable on (2, 8) and continuous on [2, 8]. Thus, the hypotheses of the Mean Value Theorem are satisfied.) Since f(8) - f(2) = 6f'(c) and $3 \le f'(c) \le 5$, it follows that

 $6 \cdot 3 \le 6f'(c) \le 6 \cdot 5 \implies 18 \le f(8) - f(2) \le 30.$