Homework 8 - Solutions

Section 4.2

4. Absolute maximum at r; absolute minimum at a; local maxima at b and r; local minimum at d; ncither a maximum nor a minimum at c and s.
5. There is no absolute maximum value; absolute minimum value is $g(4)-1$; local maximum values are $g(3)-4$ and $g(6)=3$; local minimum values are $g(2)=2$ and $g(4)=1$.
6. Absolute minimum at 1 , absolute maximum at 5 ,
local maximum at 2 , local minimum at 4

7. f has no local maximum or minimum, but 2 and 4 are critical numbers

8. $f(x)=2-\frac{1}{3} x, x \geq-2$. Absolute maximum $f(-2)=\frac{8}{3}$; no local maximum. No absolute or local minimum.

9. $f(x)=e^{x}$. No absolute or local maximum or minimum value.

10. $f(x)= \begin{cases}4-x^{2} & \text { if }-2 \leq x<0 \\ 2 x-1 & \text { if } 0 \leq x \leq 2\end{cases}$

Abolute minimum $f(0)=-1$; no local minimim.
No absolute or local maximum.

28. $g(t)=|3 t-4|=\left\{\begin{array}{ll}3 t-4 & \text { if } 3 t-4 \geq 0 \\ -(3 t-4) & \text { if } 3 t-4<0\end{array}= \begin{cases}3 \iota-4 & \text { if } t \geq \frac{4}{3} \\ 4-3 t & \text { if } t<\frac{4}{3}\end{cases}\right.$
$g^{\prime}(t)=\left\{\begin{array}{ll}3 & \text { if } t>\frac{4}{3} \\ -3 & \text { if } t<\frac{4}{3}\end{array}\right.$ and $g^{\prime}(t)$ does not exist at $t=\frac{4}{3}$, so $t=\frac{4}{3}$ is a critical number.
32. $g(x)=x^{1 / 3}-x^{-2 / 3} \Rightarrow g^{\prime}(x)=\frac{1}{3} x^{-2 / 3}+\frac{2}{3} x^{-5 / 3}=\frac{1}{3} x^{-5 / 3}(x+2)=\frac{x+2}{3 x^{5 / 3}}$.
$g^{\prime}(-2)=0$ and $g^{\prime}(0)$ does not exist, but 0 is not in the domain of g, so the only critical number is -2 .
34. $g(\theta)=4 \theta-\tan \theta \Rightarrow g^{\prime}(\theta)=4-\sec ^{2} \theta . \quad g^{\prime}(\theta)=0 \quad \Rightarrow \quad \sec ^{2} \theta=4 \quad \Rightarrow \quad \sec \theta= \pm 2 \quad \Rightarrow \quad \cos \theta= \pm \frac{1}{2} \Rightarrow$ $\theta=\frac{\pi}{3}+2 n \pi, \frac{5 \pi}{3}+2 n \pi, \frac{2 \pi}{3}+2 n \pi$, and $\frac{4 \pi}{3}+2 n \pi$ are critical numbers.

Note: The values of θ that make $g^{\prime}(\theta)$ undefined are not in the domain of g.
Q. $f(x)=5+54 x-2 x^{3},[0,4] . \quad f^{\prime}(x)=54-6 x^{2}=6\left(9-x^{2}\right)=6(3+x)(3-x)=0 \quad \Leftrightarrow \quad x=-3,3 . \quad f(0)=5$,
$f(3)=113$, and $f(4)=93$. So $f(3)=113$ is the absolute maximum value and $f(0)=5$ is the absolute minimum value.
46. $f(x)=\left(x^{2}-1\right)^{3}, \quad[-1,2] . \quad f^{\prime}(x)=3\left(x^{2}-1\right)^{2}(2 x)=6 x(x+1)^{2}(x-1)^{2}=0 \quad \Leftrightarrow \quad x=-1,0,1 . \quad f(\pm 1)=0$,
$f(0)=-1$, and $f(2)=27$. So $f(2)=27$ is the absolute maximum value and $f(0)=-1$ is the absolute minimum value.
47. $f(t)=t \sqrt{4-t^{2}}, \quad[-1,2]$.
$f^{\prime}(t)=t \cdot \frac{1}{2}\left(4-t^{2}\right)^{-1 / 2}(-2 t)+\left(4-t^{2}\right)^{1 / 2} \cdot 1=\frac{-t^{2}}{\sqrt{4-t^{2}}}+\sqrt{4-t^{2}}=\frac{-t^{2}+\left(4-t^{2}\right)}{\sqrt{4-t^{2}}}=\frac{4-2 t^{2}}{\sqrt{4-t^{2}}}$.
$f^{\prime}(t)=0 \Rightarrow 4-2 t^{2}=0 \Rightarrow t^{2}=2 \Rightarrow t= \pm \sqrt{2}$, but $t--\sqrt{2}$ is not in the given interval, $[-1,2]$.
$f^{\prime}(t)$ does not exist if $4-t^{2}=0 \Rightarrow t- \pm 2$, but -2 is not in the given interval. $f(-1)=-\sqrt{3}, f(\sqrt{2})=2$, and $f(2)=0$. So $f(\sqrt{2})=2$ is the absolute maximum value and $f(-1)=-\sqrt{3}$ is the absolute minimum value.
52. $f(x)=x-2 \tan ^{-1} x,[0,4] . \quad f^{\prime}(x)=1-2 \cdot \frac{1}{1+x^{2}}=0 \quad \Leftrightarrow \quad 1=\frac{2}{1+x^{2}} \Leftrightarrow 1+x^{2}=2 \quad \Leftrightarrow \quad x^{2}=1 \Leftrightarrow$ $x= \pm 1 . \quad f(0)=0, f(1)=1-\frac{\pi}{2} \approx-0.57$, and $f(4)=4-2 \tan ^{-1} 4 \approx 1.35$. So $f(4)=4-2 \tan ^{-1} 4$ is the absolute maximum value and $f(1)=1-\frac{\pi}{2}$ is the absolute minimum value.
53. $f(t)=2 \cos t+\sin 2 t,[0, \pi / 2]$.
$f^{\prime}(t)=-2 \sin t+\cos 2 t \cdot 2=-2 \sin t+2\left(1-2 \sin ^{2} t\right)=-2\left(2 \sin ^{2} t+\sin t-1\right)=-2(2 \sin t-1)(\sin t+1)$. $f^{\prime}(t)=0 \Rightarrow \sin t=\frac{1}{2}$ or $\sin t=-1 \Rightarrow t=\frac{\pi}{6} . f(0)=2, f\left(\frac{\pi}{6}\right)=\sqrt{3}+\frac{1}{2} \sqrt{3}=\frac{3}{2} \sqrt{3} \approx 2.60$, and $f\left(\frac{\pi}{2}\right)=0$. So $f\left(\frac{\pi}{6}\right)=\frac{3}{2} \sqrt{3}$ is the absolute maximum value and $f\left(\frac{\pi}{2}\right)=0$ is the absolute minimum value.

Section 4.3

6. (a) f is increasing on the intervals where $f^{\prime}(x)>0$, namely, $(2,4)$ and $(6,9)$.
(b) f has a local maximum where it changes from increasing to decreasing, that is, where f^{\prime} changes from positive to negatire (at $x=4$). Similarly, where f^{\prime} changes from negative to positive, f has a local minimum (at $x=2$ and at $x=6$)
(c) When f^{\prime} is increasing, its derivative $f^{\prime \prime}$ is positive and hence, f is concave upward. This happens on $(1,3),(5,7)$, and $(8,9)$. Similarly, f is concave downward when f^{\prime} is decreasing -that is, on $(0,1),(3,5)$, and $(7,8)$.
(d) f has inflection points at $x=1,3,5,7$, and 8 , since the direction of concavity changes at each of these values.
7. (a) $f(x)=4 x^{3}+3 x^{2}-6 x+1 \quad \Rightarrow \quad f^{\prime}(x)=12 x^{2}+6 x-6=6\left(2 x^{2}+x-1\right)=6(2 x-1)(x+1)$. Thus, $f^{\prime}(x)>0 \Leftrightarrow x<-1$ or $x>\frac{1}{2}$ and $f^{\prime}(x)<0 \Leftrightarrow-1<x<\frac{1}{2}$. So f is increasing on $(-\infty,-1)$ and $\left(\frac{1}{2}, \infty\right)$ and f is decreasing on $\left(-1, \frac{1}{2}\right)$.
(b) f changes from increasing to decreasing at $x=-1$ and from decreasing to increasing at $x=\frac{1}{2}$. Thus, $f(-1)=6$ is a local maximum value and $f\left(\frac{1}{2}\right)=-\frac{3}{4}$ is a local minimum value.
(c) $f^{\prime \prime}(x)=24 x+6=6(4 x+1) . \quad f^{\prime \prime}(x)>0 \Leftrightarrow x>-\frac{1}{4}$ and $f^{\prime \prime}(x)<0 \Leftrightarrow x<-\frac{1}{4}$. Thus, f is concave upward on $\left(-\frac{1}{4}, \infty\right)$ and concave downward on $\left(-\infty,-\frac{1}{4}\right)$. There is an inflection point at $\left(-\frac{1}{4}, f\left(-\frac{1}{4}\right)\right)=\left(-\frac{1}{4}, \frac{21}{8}\right)$.
8. (a) $f(x)-\frac{x^{2}}{x^{2}+3} \Rightarrow f^{\prime}(x)=\frac{\left(x^{2}+3\right)(2 x)-x^{2}(2 x)}{\left(x^{2}+3\right)^{2}}=\frac{6 x}{\left(x^{2}+3\right)^{2}}$. The denominator is positive so the sign of $f^{\prime}(x)$ is determined by the sign of x. Thus, $f^{\prime}(x)>0 \Leftrightarrow x>0$ and $f^{\prime}(x)<0 \Leftrightarrow x<0$. So f is increasing on $(0, \infty)$ and f is decreasing on $(-\infty, 0)$.
(b) f changes from decreasing to increasing at $x=0$. Thus, $f(0)=0$ is a local minimum value.
(c) $f^{\prime \prime}(x)=\frac{\left(x^{2}+3\right)^{2}(6)-6 x \cdot 2\left(x^{2}+3\right)(2 x)}{\left[\left(x^{2}+3\right)^{2}\right]^{2}}=\frac{6\left(x^{2}+3\right)\left[x^{2}+3-4 x^{2}\right]}{\left(x^{2}+3\right)^{4}}=\frac{6\left(3-3 x^{2}\right)}{\left(x^{2}+3\right)^{3}}=\frac{-18(x+1)(x-1)}{\left(x^{2}+3\right)^{3}}$. $f^{\prime \prime}(x)>0 \Leftrightarrow-1<x<1$ and $f^{\prime \prime}(x)<0 \Leftrightarrow x<-1$ or $x>1$. Thus, f is concave upward on $(-1,1)$ and concave downward on $(-\infty,-1)$ and $(1, \infty)$. There are inflection points at $\left(\pm 1, \frac{1}{4}\right)$.
9. (a) $y=f(x)=\frac{\ln x}{\sqrt{x}}$. (Note that f is only defined for $x>0$.)

$$
f^{\prime}(x)=\frac{\sqrt{x}(1 / x)-\ln x\left(\frac{1}{2} x^{-1 / 2}\right)}{x}=\frac{\frac{1}{\sqrt{x}}-\frac{\ln x}{2 \sqrt{x}}}{x} \cdot \frac{2 \sqrt{x}}{2 \sqrt{x}}=\frac{2-\ln x}{2 x^{3 / 2}}>0 \Leftrightarrow 2-\ln x>0 \Leftrightarrow
$$ $\ln x<2 \Leftrightarrow x<e^{2}$. Therefore f is increasing on $\left(0, e^{2}\right)$ and decreasing on $\left(e^{2}, \infty\right)$.

(b) f changes from increasing to decreasing at $x=e^{2}$, so $f\left(e^{2}\right)=\frac{\ln e^{2}}{\sqrt{e^{2}}}=\frac{2}{e}$ is a local maximum value.
(c) $f^{\prime \prime}(x)=\frac{2 x^{3 / 2}(-1 / x)-(2-\ln x)\left(3 x^{1 / 2}\right)}{\left(2 x^{3 / 2}\right)^{2}}=\frac{-2 x^{1 / 2}+3 x^{1 / 2}(\ln x-2)}{4 x^{3}}=\frac{x^{1 / 2}(-2+3 \ln x-6)}{4 x^{3}}=\frac{3 \ln x-8}{4 x^{5 / 2}}$ $f^{\prime \prime}(x)=0 \Leftrightarrow \ln x=\frac{8}{3} \Leftrightarrow x=e^{8 / 3} . \quad f^{\prime \prime}(x)>0 \Leftrightarrow x>e^{8 / 3}$, so f is concave upward on $\left(e^{8 / 3}, \infty\right)$ and concave downward on $\left(0, e^{8 / 3}\right)$. There is an inflection point at $\left(e^{8 / 3}, \frac{8}{3} e^{-4 / 3}\right) \approx(14.39,0.70)$.
24. (a) $g(x)=200+8 x^{3}+x^{4} \Rightarrow g^{\prime}(x)=24 x^{2}+4 x^{3}=4 x^{2}(6+x)=0$ when $x=-6$ and when $x=0$.
$g^{\prime}(x)>0 \Leftrightarrow x>-6[x \neq 0]$ and $g^{\prime}(x)<0 \Leftrightarrow x<-6$, so g is decreasing on $(-\infty,-6)$ and g is increasing on $(-6, \infty)$, with a horizontal tangent at $x=0$.
(b) $g(-6)=-232$ is a local minimum value.

There is no local maximum value.
(c) $g^{\prime \prime}(x)=48 x+12 x^{2}=12 x(4+x)=0$ when $x=-4$ and when $x=0$.
$g^{\prime \prime}(x)>0 \Leftrightarrow x<-4$ or $x>0$ and $g^{\prime \prime}(x)<0 \Leftrightarrow-4<x<0$, so g is
CU on $(-\infty,-4)$ and $(0, \infty)$, and g is CD on $(-4,0)$. There are inflection points at $(-4,-56)$ and $(0,200)$.
(d)

28. (a) $B(x)=3 x^{2 / 3}-x \Rightarrow B^{\prime}(x)=2 x^{-1 / 3}-1=\frac{2}{\sqrt[3]{x}}-1=\frac{2-\sqrt[3]{x}}{\sqrt[3]{x}}$. $B^{\prime}(x)>0$ if $0<x<8$ and $B^{\prime}(x)<0$ if $x<0$ or $x>8$, so B is decreasing on $(-\infty, 0)$ and $(8, \infty)$, and B is increasing on $(0,8)$.
(b) $B(0)=0$ is a local minimum value. $B(8)=4$ is a local maximum value.
(c) $B^{\prime \prime}(x)=-\frac{2}{3} x^{-4 / 3}=\frac{-2}{3 x^{4 / 3}}$, so $B^{\prime \prime}(x)<0$ for all $x \neq 0 . B$ is concave downward on $(-\infty, 0)$ and $(0, \infty)$. There is no inflection point.

31. (a) $f(\theta)=2 \cos \theta+\cos ^{2} \theta, 0 \leq \theta \leq 2 \pi \quad \Rightarrow \quad f^{\prime}(\theta)=-2 \sin \theta+2 \cos \theta(-\sin \theta)=-2 \sin \theta(1+\cos \theta)$.
$f^{\prime}(\theta)=0 \Leftrightarrow \theta=0, \pi$, and $2 \pi . f^{\prime}(\theta)>0 \Leftrightarrow \pi<\theta<2 \pi$ and $f^{\prime}(\theta)<0 \Leftrightarrow 0<\theta<\pi$. So f is increasing on ($\pi, 2 \pi$) and f is decreasing on $(0, \pi)$.
(b) $f(\pi)=-1$ is a local minimum value.
(c) $f^{\prime}(\theta)=-2 \sin \theta(1+\cos \theta) \Rightarrow$

$$
\begin{aligned}
f^{\prime \prime}(\theta) & =-2 \sin \theta(-\sin \theta)+(1+\cos \theta)(-2 \cos \theta)=2 \sin ^{2} \theta-2 \cos \theta-2 \cos ^{2} \theta \\
& =2\left(1-\cos ^{2} \theta\right)-2 \cos \theta-2 \cos ^{2} \theta=-4 \cos ^{2} \theta-2 \cos \theta+2 \\
& =-2\left(2 \cos ^{2} \theta+\cos \theta-1\right)=-2(2 \cos \theta-1)(\cos \theta+1)
\end{aligned}
$$

Since $-2(\cos \theta+1)<0[$ for $\theta \neq \pi], f^{\prime \prime}(\theta)>0 \Rightarrow 2 \cos \theta-1<0 \Rightarrow \cos \theta<\frac{1}{2} \Rightarrow \frac{\pi}{3}<\theta<\frac{5 \pi}{3}$ and $f^{\prime \prime}(\theta)<0 \Rightarrow \cos \theta>\frac{1}{2} \Rightarrow 0<\theta<\frac{\pi}{3}$ or $\frac{5 \pi}{3}<\theta<2 \pi$. So f is CU on $\left(\frac{\pi}{3}, \frac{5 \pi}{3}\right)$ and f is CD on $\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{5 \pi}{3}, 2 \pi\right)$. There are points of inflection at $\left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right)=\left(\frac{\pi}{3}, \frac{5}{4}\right)$ and $\left(\frac{5 \pi}{3}, f\left(\frac{5 \pi}{3}\right)\right)=\left(\frac{5 \pi}{3}, \frac{5}{4}\right)$.
(d)

34. $f(x)=\frac{x^{2}}{(x-2)^{2}}$ has domain $(-\infty, 2) \cup(2, \infty)$.
(a) $\lim _{x \rightarrow \pm \infty} \frac{x^{2}}{x^{2}-4 x+4}=\lim _{x \rightarrow \pm \infty} \frac{x^{2} / x^{2}}{\left(x^{2}-4 x+4\right) / x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{1}{1-4 / x+4 / x^{2}}=\frac{1}{1-0+0}=1$, so $y=1$ is a HA. $\lim _{x \rightarrow 2^{+}} \frac{x^{2}}{(x-2)^{2}}=\infty$ since $x^{2} \rightarrow 4$ and $(x-2)^{2} \rightarrow 0^{+}$as $x \rightarrow 2^{+}$, so $x=2$ is a VA.
(b) $f(x)=\frac{x^{2}}{(x-2)^{2}} \Rightarrow f^{\prime}(x)=\frac{(x-2)^{2}(2 x)-x^{2} \cdot 2(x-2)}{\left[(x-2)^{2}\right]^{2}}=\frac{2 x(x-2)[(x-2)-x]}{(x-2)^{4}}=\frac{-4 x}{(x-2)^{3}}$.
$f^{\prime}(x)>0$ if $0<x<2$ and $f^{\prime}(x)<0$ if $x<0$ or $x>2$, so f is increasing on $(0,2)$ and f is decreasing on $(-\infty, 0)$ and $(2, \infty)$.
(c) $f(0)=0$ is a local minimum value.
(d) $f^{\prime \prime}(x)=\frac{(x-2)^{3}(-4)-(-4 x) \cdot 3(x-2)^{2}}{\left[(x-2)^{3}\right]^{2}}$

$f^{\prime \prime}(x)>0$ if $x>-1(x \neq 2)$ and $f^{\prime \prime}(x)<0$ if $x<-1$. Thus, f is CU on
$(-1,2)$ and $(2, \infty)$, and f is CD on $(-\infty,-1)$. There is an inflection point at $\left(-1, \frac{1}{9}\right)$.
38. $f(x)=\frac{e^{x}}{1+e^{x}}$ has domain \mathbb{R}.
(a) $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{e^{x} / e^{x}}{\left(1+e^{x}\right) / e^{x}}=\lim _{x \rightarrow \infty} \frac{1}{e^{-x}+1}=\frac{1}{0+1}=1$, so $y=1$ is a HA.

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{e^{x}}{1+e^{x}}-\frac{0}{1+0}-0 \text {, so } y=0 \text { is a HA. No VA. }
$$

(b) $f^{\prime}(x)=\frac{\left(1+e^{x}\right) e^{x}-e^{x} \cdot e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}>0$ for all x. Thus, f is increasing on \mathbb{R}.
(c) There is no local maximum or minimum.
(d) $f^{\prime \prime}(x)=\frac{\left(1+e^{x}\right)^{2} e^{x}-e^{x} \cdot 2\left(1+e^{x}\right) e^{x}}{\left[\left(1+e^{x}\right)^{2}\right]^{2}}$

$$
=\frac{e^{x}\left(1+e^{x}\right)\left[\left(1+e^{x}\right)-2 e^{x}\right]}{\left(1+e^{x}\right)^{4}}=\frac{e^{x}\left(1-e^{x}\right)}{\left(1+e^{x}\right)^{3}}
$$

(e)

$$
f^{\prime \prime}(x)>0 \Leftrightarrow 1-e^{x}>0 \Leftrightarrow x<0, \text { so } f \text { is CU on }(-\infty, 0) \text { and CD on }(0, \infty)
$$

There is an inflection point at $\left(0, \frac{1}{2}\right)$.
50. (a) $f(3)=2 \Rightarrow$ the point $(3,2)$ is on the graph of $f . f^{\prime}(3)=\frac{1}{2} \Rightarrow$ the slope of the tangent line at $(3,2)$ is $\frac{1}{2} \cdot f^{\prime}(x)>0$ for all $x \Rightarrow f$ is increasing on \mathbb{R}. $f^{\prime \prime}(x)<0$ for all $x \rightarrow f$ is concave downward on \mathbb{R}. A possible graph for f is shown.

(b) The tangent line at $(3,2)$ has equation $y-2=\frac{1}{2}(x-3)$, or $y=\frac{1}{2} x+\frac{1}{2}$, and x-intercept -1 . Since f is concave downward on \mathbb{R}, f is below the x-axis at $x=-1$, and hence changes sign at least once. Since f is increasing on \mathbb{R}, it changes sign at most once. Thus, it changes sign exactly once and there is one solution of the equation $f(x)=0$.
(c) $f^{\prime \prime}<0 \Rightarrow f^{\prime}$ is decreasing. Since $f^{\prime}(3)=\frac{1}{2}, f^{\prime}(2)$ must be greater than $\frac{1}{2}$, so no, it is not possible that $f^{\prime}(2)=\frac{1}{3}$.
59. $f(x)=a x^{3}+b x^{2}+c x+d \Rightarrow f^{\prime}(x)=3 a x^{2}+2 b x+c$.

We are given that $f(1)=0$ and $f(-2)=3$, so $f(1)=a+b+c+d=0$ and $f(-2)=-8 a+4 b-2 c+d=3$. Also $f^{\prime}(1)=3 a+2 b+c=0$ and $f^{\prime}(-2)=12 a-4 b+c=0$ by Fermat's Theorem. Solving these four equations, we get $a=\frac{2}{9}, b=\frac{1}{3}, c=-\frac{4}{3}, d=\frac{7}{9}$, so the function is $f(x)=\frac{1}{9}\left(2 x^{3}+3 x^{2}-12 x+7\right)$.

61. $f(x)=\tan x-x \Rightarrow f^{\prime}(x)=\sec ^{2} x-1>0$ for $0<x<\frac{\pi}{2} \operatorname{since} \sec ^{2} x>1$ for $0<x<\frac{\pi}{2}$. So f is increasing on $\left(0, \frac{\pi}{2}\right)$. Thus, $f(x)>f(0)=0$ for $0<x<\frac{\pi}{2} \Rightarrow \tan x-x>0 \Rightarrow \tan x>x$ for $0<x<\frac{\pi}{2}$.
64. If $3 \leq f^{\prime}(x) \leq 5$ for all x, then by the Mean Value Theorem, $f(8)-f(2)=f^{\prime}(c) \cdot(8-2)$ for some c in $[2,8 \mid$.
(f is differentiable for all x, so, in particular, f is differentiable on $(2,8)$ and continuous on $[2,8]$. Thus, the hypotheses of the Mean Value Theorem are satisfied.) Since $f(8)-f(2)=6 f^{\prime}(c)$ and $3 \leq f^{\prime}(c) \leq 5$, it follows that $6 \cdot 3 \leq 6 f^{\prime}(c) \leq 6 \cdot 5 \quad \Rightarrow \quad 18 \leq f(8)-f(2) \leq 30$.

