KOÇ UNIVERSITY MATH 102 - CALCULUS Final exam May 31, 2006

Duration of Exam: 150 minutes

INSTRUCTIONS: No calculators may be used on the test. No books, no notes, and talking allowed. You must always **explain your answers** and **show your work** to receive **full credit**. Use the back of these pages if necessary. **Print (use CAPITAL LETTERS)** and sign your name, and indicate your section below.

Surname, Name: _____

Signature: _____

Section (Check One):

Section 1:	S. Küçükçifci	
Section 2:	T. Albu (9:30)	
Section 3:	E.Ş. Yazici (15:30)	
Section 4:	T. Albu (12:30)	
Section 5:	E.Ş. Yazici (11:00)	

PROBLEM	POINTS	SCORE
1	15	
2	20	
3	10	
4	20	
5	15	
6	8	
7	12	
TOTAL	100	

Problem 1. Calculate the following limits or show that they do not exist.

(a) (5 pts)
$$\lim_{x \to 1} \frac{(x-1)\sqrt{2x}}{|3x-3|}$$

(b) (4 pts)
$$\lim_{x \to 0} \frac{\ln(1+x)}{\cos x}$$

(c) (6 pts) For which values of a, the function

$$f(x) = \begin{cases} x^3 - 2x & \text{for} \quad x \leq a \\ x^2 & \text{for} \quad x > a \end{cases}$$

is continuous at x = a?

Problem 2. Find the derivative of the following function f in (a)-(c). Simplify your answers.

(a) (3 pts)
$$f(x) = e^{x^2+2} + \ln\left(\frac{x+1}{x^2+2}\right)$$

(b) (6 pts) $f(x) = (\sin x)^{\cos x}$

(c) (6 pts)
$$f(x) = \sqrt[3]{\frac{1+x^3}{1-x^3}}$$

(d) (5 pts) Find the equation of the tangent line at the point P(1, e) to the curve defined by the equation $y = e^{1/x}$. Problem 3. Consider the function

$$f(x) = \frac{e^x}{x+2}$$

(a) (6 pts) Find the horizontal and vertical asymptotes of the graph of f if they exist.

(b) (2 pts) Find the intervals on which the function f is increasing and decreasing.

(c) (2 pts) Determine the local extreme values of the function f.

Problem 4. Calculate the following integrals.

(a) (5 pts)
$$\int \frac{1}{x^2} \sin \frac{1}{x} dx$$

(b) (8 pts)
$$\int \frac{3x^2 + 4x + 4}{x^3 + x} dx$$

(c) (7 pts)
$$\int e^x \sin x \, dx$$

Problem 5. (a) (9 pts) The region between the curve $y = \sin x$, $0 \le x \le \frac{\pi}{4}$, and the *x*-axis is revolved about the *x*-axis to generate a solid. Find its volume.

(b) (6 pts) Find the length of the curve $y = 2x^{3/2} + 1$ from x = 0 to x = 1.

Problem 6. Find the limit of the following sequences (a_n) and determine whether (a_n) converges or diverges.

(a) (4 pts)
$$a_n = \frac{(-1)^n \sin(2n+3)}{3n+4}$$

(b) (4 pts)
$$a_n = \frac{3^n}{n^3}$$

Problem 7. Determine whether the following series converges or diverges. If the series converges, find its sum.

(a) (4 pts)
$$\sum_{n=1}^{\infty} \frac{3n^4 - 2n + 1}{5n^4 - 2n^2 + n}$$

(b) (4 pts)
$$\sum_{n=1}^{\infty} \frac{6}{(2n-1)(2n+1)}$$

(a) (4 pts)
$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{5^n}$$