KOÇ UNIVERSITY

 MATH 102 - CALCULUS

 MATH 102 - CALCULUS
 Midterm I March 17, 2006

Duration of Exam: 90 minutes

INSTRUCTIONS: No calculators may be used on the test. No books, no notes, and talking allowed. You must always explain your answers and show your work to receive full credit. Use the back of these pages if necessary. Print (use CAPITAL LETTERS) and sign your name, and indicate your section below.

Surname, Name:

Signature: \qquad

Section (Check One):
Section 1: S. Küçükçifci
Section 2: T. Albu (9:30)
Section 3: E.Ş. Yazici (15:30)
Section 4: T. Albu (12:30)
Section 5: E.Ş. Yazici (11:00)

PROBLEM	POINTS	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	$\mathbf{1 0 0}$	

Problem 1. Calculate the following limit or show that it does not exist:
(a) (5 pts) $\lim _{x \rightarrow 2} \frac{|4-2 x|}{3 x-6}(1-2 x)$
(b) (5 pts) $\lim _{x \rightarrow-\infty} \frac{-5 x^{4}+x^{2}-3}{3 x^{4}-4 x+7}$
(c) (5 pts) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(15 x)}{\tan (3 x) \tan (5 x)}$
(d) (5 pts) $\lim _{x \rightarrow 1} \frac{x^{10}-2 x-3}{x^{2}+4 x-5}$

Problem 2. Let

$$
f(x)=\left\{\begin{array}{ccc}
2 x^{3}-3 x+5 & \text { for } & x \leqslant 0 \\
7 \sin ^{2}(3 x)+a^{2} & \text { for } & x>0
\end{array}\right.
$$

where a is a fixed real number.
(a) (6 pts) Show that f is continuous on $(-\infty, 0) \cup(0, \infty)$ for any value of a.
(b) (8 pts) Find all the values of a such that f is continuous at $x=0$.
(b) (2 pts) Find all the values of a such that f is discontinuous at $x=0$.
(c) (4 pts) Find all the values of a such that f is continuous on $(-\infty, \infty)$.

Explain all your answers.

Problem 3. Find the derivative of the following function f. Simplify your answers.
(a) $(5 \mathrm{pts}) f(x)=\sqrt[5]{x^{3}}+\frac{1}{\sqrt[3]{x^{5}}}$
(b) $(5 \mathrm{pts}) f(x)=\frac{3 x}{\sqrt{2-x^{2}}}$
(c) (5 pts) $f(x)=\cos (3 x) \sin ^{3} x$
(d) (5 pts) $f(x)=\left(3+\tan ^{4} x\right)^{5}$

Problem 4. Consider the function

$$
f(x)=\sqrt{2 x+7}
$$

(a) (3 pts) What is the domain of f ?
(b) (3 pts) What is the range of f ?
(c) (8 pts) Find the derivative f^{\prime} of f using the definition of the derivative.
(d) (4 pts) Find the derivative f^{\prime} of f using the differentiation rules, and compare the result with the one you found in (c).
(e) (2 pts) What is the domain of f^{\prime} ?

Problem 5.
(a) (12 pts) Use implicit differentiation to find $\frac{d y}{d x}$ if

$$
y^{3} \sin y=2 x^{3}+3 y^{2}-5
$$

(b) (8 pts) Find the equation of the tangent line at the point $P(0,1 / 2)$ to the curve defined by the equation

$$
y=\sin (2 x+(\pi / 6))
$$

