KOÇ UNIVERSITY
 MATH 102 - CALCULUS
 Final May 28, 2009

 Duration of Exam: 120 minutes

 Duration of Exam: 120 minutes}

INSTRUCTIONS: No calculators may be used on the test. No books, no notes, and talking allowed. You must always explain your answers and show your work to receive full credit. Use the back of these pages if necessary. Print (use CAPITAL LETTERS) and sign your name, and indicate your section below.

Surname, Name:

Signature: \qquad

Section (Check One):
Section 1: Aybike Özer M-W (15:30)
Section 2: Burak Özbağcı M-W (14:00)
Section 3: E. Şule Yazıcı Tu-Th(11:00)
Section 4: E. Şule Yazıcı Tu-Th(14:00)
Section 5: Sinan Ünver M-W(11:00)
\qquad
\qquad

PROBLEM	POINTS	SCORE
1	25	
2	5	
3	10	
4	15	
5	10	
6	25	
7	10	
TOTAL	$\mathbf{1 0 0}$	

Problem 1. (25 points) Calculate the following integrals
(a) $\int \frac{3 x+1}{x^{2}+1} d x=$
(b) $\int_{0}^{\infty} \frac{2 x}{\left(x^{2}+1\right)^{2}} d x=$
(c) $\int \frac{x+3}{(x+1)(x+2)} d x=$
(d) $\int_{0}^{\frac{\pi}{2}} x \sin 2 x d x=$
(e) $\int_{e}^{e^{2}} \frac{1}{x \ln x} d x=$

Problem 2. (5 points) Calculate $\frac{d}{d x} \int_{1}^{2} t e^{t^{3}} d t$

Problem 3. (10 pts) Calculate the following limit using the L'hospital rule

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{1+\cos 2 x}=
$$

Problem 4. (15 pts) If $1200 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Problem 5. (10 pts) Find the domain and sketch the graph of the function $f(x)=\log (x+2)$.

Problem 6.

(a) (10 points) Find the volume of the solid obtained by revolving the region bounded by the curve $y=\sqrt[4]{x}$ and the lines $y=0$ and $x=4$ about the x-axis.
(b) (15 points)Find c if the area of the region enclosed by $y=x^{2}-c^{2}$ and $y=c^{2}-x^{2}$ is $576 \mathrm{~cm}^{2}$

Problem 7. (10 pts) Find the equation of the tangent line to the curve $\frac{x^{2}}{8}+\frac{y^{2}}{18}=1$ at the point $(-2,-3)$.

