KOÇ UNIVERSITY MATH 102 - CALCULUS Final May 28, 2009 Duration of Exam: 120 minutes

INSTRUCTIONS: No calculators may be used on the test. No books, no notes, and talking allowed. You must always **explain your answers** and **show your work** to receive **full credit**. Use the back of these pages if necessary. **Print (use CAPITAL LETTERS)** and sign your name, and indicate your section below.

Surname, Name: _____

Signature:

Section (Check One):

Section 1: Aybike Özer M-W (15:30)	
Section 2: Burak Özbağcı M-W (14:00)	
Section 3: E. Şule Yazıcı Tu-Th(11:00)	
Section 4: E. Şule Yazıcı Tu-Th(14:00)	
Section 5: Sinan Ünver M-W(11:00)	

PROBLEM	POINTS	SCORE
1	25	
2	5	
3	10	
4	15	
5	10	
6	25	
7	10	
TOTAL	100	

Problem 1. (25 points) Calculate the following integrals

(a)
$$\int \frac{3x+1}{x^2+1} \, dx =$$

(b)
$$\int_0^\infty \frac{2x}{(x^2+1)^2} \, dx =$$

(c)
$$\int \frac{x+3}{(x+1)(x+2)} dx =$$

(d)
$$\int_0^{\frac{\pi}{2}} x \sin 2x \, dx =$$

(e)
$$\int_{e}^{e^2} \frac{1}{x \ln x} \, dx =$$

Problem 2. (5 points) Calculate $\frac{d}{dx} \int_{1}^{2} t e^{t^{3}} dt$

Problem 3. (10 pts) Calculate the following limit using the L'hospital rule

$$\lim_{x \to \pi/2} \frac{1 - \sin x}{1 + \cos 2x} =$$

Problem 4. (15 pts) If $1200cm^2$ of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Problem 5. (10 pts) Find the domain and sketch the graph of the function $f(x) = \log(x+2)$.

Problem 6.

(a) (10 points) Find the volume of the solid obtained by revolving the region bounded by the curve $y = \sqrt[4]{x}$ and the lines y = 0 and x = 4 about the x-axis.

(b) (15 points) Find c if the area of the region enclosed by $y=x^2-c^2$ and $y=c^2-x^2$ is 576 cm^2 **Problem 7.** (10 pts) Find the equation of the tangent line to the curve $\frac{x^2}{8} + \frac{y^2}{18} = 1$ at the point (-2, -3).