KOÇ UNIVERSITY

 MATH 102 - CALCULUS

 MATH 102 - CALCULUS
 Midterm I March 18, 2009

Duration of Exam: 90 minutes

INSTRUCTIONS: No calculators may be used on the test. No books, no notes, and talking allowed. You must always explain your answers and show your work to receive full credit. Use the back of these pages if necessary. Print (use CAPITAL LETTERS) and sign your name, and indicate your section below.

Surname, Name:

Signature: \qquad

Section (Check One):
Section 1: Aybike Özer M-W (15:30)
Section 2: Burak Özbağcı M-W (14:00)
Section 3: E. Şule Yazıcı Tu-Th(11:00)
Section 4: E. Şule Yazıcı Tu-Th(14:00)
Section 5: Sinan Ünver M-W(11:00)
\qquad

PROBLEM	POINTS	SCORE
1	20	
2	25	
3	20	
4	15	
5	20	
TOTAL	$\mathbf{1 0 0}$	

Problem 1. Calculate the following limits (specify infinite limits):
(a) (5 pts) $\lim _{x \rightarrow \pi^{-}} \frac{x^{2}-8 x+1}{\sin x}$
(b) (5 pts) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x$
(c) (5 pts) $\lim _{x \rightarrow 0} \ln \left(\tan ^{2} x\right)$
(d) (5 pts) $\lim _{x \rightarrow 1} \frac{x^{3}-x}{x^{2}-1}$

Problem 2. a. (10 pts) Let

$$
f(x)=\left\{\begin{array}{ccc}
x^{2}+3 x+6 & \text { for } & x \leqslant 1 \\
2 x+c^{2} & \text { for } & x>1
\end{array}\right.
$$

where c is a fixed real number.
Find all the values of c such that f is continuous for all real numbers.
b. (15 pts) Let $f(x)=x^{3}-x^{2}+x$. Show that there exists a real number c such that $f(c)=10$.

Problem 3. Find the derivative of the following function f.
(a) (5 pts) $f(x)=\sin \left(x^{2}\right)$
(b) $(5 \mathrm{pts}) f(x)=\frac{1}{\sqrt{1+\tan x}}$
(c) (5 pts) $f(x)=\frac{\cos x}{2+\sin x}$
(d) (5 pts) $f(x)=1+x^{2} e^{-x}$

Problem 4. (15 pts) Let f and g be two differentiable functions. Assume $r=f o g$ and; $g^{\prime}(1)=3, g(1)=5$ and $f^{\prime}(5)=11$. Compute

$$
\lim _{h \rightarrow 0} \frac{r(h+1)-r(1)}{h}
$$

Problem 5. (20 pts) Use implicit differentiation to find the equation of the tangent line at the point $(3,1)$ to the curve defined by the equation

$$
2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)
$$

