KOÇ UNIVERSITY MATH 102 - CALCULUS Midterm II April 28, 2009

Duration of Exam: 90 minutes

INSTRUCTIONS: No calculators may be used on the test. No books, no notes, and talking allowed. You must always explain your answers and show your work to receive full credit. Use the back of these pages if necessary. Print (use CAPITAL LETTERS) and sign your name, and indicate your section below.

Surname, Name:

Signature: \qquad

Section (Check One):
Section 1: Aybike Özer M-W (15:30)
Section 2: Burak Özbağcı M-W (14:00)
Section 3: E. Şule Yazıcı Tu-Th(11:00)
Section 4: E. Şule Yazıcı Tu-Th(14:00)
Section 5: Sinan Ünver M-W(11:00)
\qquad
-
\qquad

PROBLEM	POINTS	SCORE
1	35	
2	10	
3	10	
4	20	
5	25	
TOTAL	$\mathbf{1 0 0}$	

Problem 1. (35 points) Calculate the following integrals
(a) $\int \frac{\cos x}{\sin ^{5} x} d x=$
(b) $\int_{-1}^{2}\left|x^{3}\right| d x=$
(c) $\int \sqrt{x^{3}}+\frac{1}{\sqrt[3]{x^{5}}} d x=$
(d) $\int_{0}^{1} 3 x^{2} d x=$
(e) $\int_{e}^{e^{2}} \frac{(\ln x)^{5}}{x} d x=$
(f) $\int_{0}^{1} x e^{x^{2}} d x=$
(g) $\int \frac{3 x}{x^{2}+1} d x=$

Problem 2. (10 points) Find the critical points of the function $f(x)=\int_{0}^{x}\left(1-e^{t^{2}-1}\right) d t$

Problem 3. (10 pts) Calculate the following limit using the L'hospital rule

$$
\lim _{x \rightarrow \infty} x \tan \frac{1}{x}=
$$

Problem 4. (20 pts) If $1200 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Problem 5. A continuous function f satisfies the properties given below.
(1) The domain of f is \mathbb{R}
(2) $f(-1)=0 ; f(2)=0 ; f(0)=1$.
(3) $\lim _{x \rightarrow \infty} f(x)=-\infty ; \lim _{x \rightarrow-\infty} f(x)=1$
(4) $f^{\prime}(x)>0$ when $x \in(-1,1)$; $f^{\prime}(x)<0$ when $x \in(-\infty,-1) \cup(1, \infty)$; and $f^{\prime}(-1)=f^{\prime}(1)=0$
(5) $f^{\prime \prime}(x)>0$ when $x \in(-\sqrt{3}, 0) ; f^{\prime \prime}(x)<0$ when $x \in(-\infty,-\sqrt{3}) \cup(0, \sqrt{3}) \cup(\sqrt{3}, \infty)$; $f^{\prime \prime}(-\sqrt{3})=f^{\prime \prime}(0)=f^{\prime \prime}(\sqrt{3})=0$
(a) (5 points) Find the local maximum points and local minimum points of f.
(b) (5 points) Find inflection points and the intervals where the graph of f is concave up or concave down.
(c) (5 points) Find the asymptotes of f.
(d) (10 points) Sketch the graph of a function f which satisfies the properties above.

