Question 1 (15 Points): Find the following limits:

(a) $\lim_{h \to 0} \frac{\frac{1}{2+h} - \frac{1}{2}}{h}$

(b)
$$\lim_{x \to 0} \frac{\tan(4x)}{\sin(5x)}$$

(c) Let $f(x) = \frac{\tan(4x)}{\sin(5x)}$ for $-\pi/2 < x < \pi/2$, $x \neq 0$. How would you define f(0) so that f(x) is continuous?

Question 2 (15 Points):

(a) y = f(x) is a one-to-one function, and the point (-1, 2) is on its graph. Let $f^{-1}(x)$ be the inverse function of f(x), and $f'(x) = \frac{d}{dx}f(x)$ be the derivative of f(x). The equation of the tangent to y = f(x) at (-1, 2) is y = 2x + b. Find the following. Justify your answers.

(i) b (ii) $f^{-1}(2)$ (iii) f'(-1)(iv) $f^{-1}(f(-1))$ (v) $\frac{d}{dx}f^{-1}(x)\Big|_{x=2}$

(b) If $sin(x) = -\frac{1}{2}$, then what are all possible values for tan(x)?

Question 3 (15 Points):

Let $f'(x) = \frac{d}{dx} f(x)$ be the derivative of f(x). Find

(a) f'(x) for $f(x) = \sqrt[3]{\sin(x^2)}$

(b) The slope of the tangent at (1,-1) to the circle $x^2 + y^2 = 2$

(c) The function f(x) is continuous in the interval (-5, 3). Find all local extrema of f(x) in the interval (-5, 3) if f'(1) does not exist and

Х	(-5, -2)	-2	(-2, -1)	-1	(-1, 0)	0	(0,1)	(1,3)
f'(x)	_	0	+	0	+	0	-	+

Question 4 (10 Points):

(a) Find the $\frac{d}{dx} \int_{\sqrt{x}}^{3x} t^2 dt$ using the Fundamental Theorem of Calculus. (b) Find $\frac{d}{dx} \int_{\sqrt{x}}^{3x} t^2 dt$ by first finding $\int_{\sqrt{x}}^{3x} t^2 dt$, and then taking the derivative of the result. (c) Find $\int_{1}^{e} (2(\ln(x) + 1)) dx$ given that the derivative of $x^2 \ln(x)$ is $2(\ln(x) + 1)$.

Question 5 (20 Points): (a) Evaluate

$$\int_{0.5}^{1} \frac{x^2 + 13}{x^2 + 1} dx$$

(b) Find the area between the curve $y = 2x\sqrt{x^2 + 1}$, $0 \le x \le \sqrt{3}$, and the x-axis

Question 6 (10 Points):

Determine whether the improper integral $\int_{0}^{\infty} e^{-x} dx$ is convergent or divergent. If the improper integral is convergent, evaluate it.

Question 7 (10 Points): Determine whether the following sequence is convergent or divergent. If the sequence is convergent, find its limit.

(a)
$$a_n = \frac{(-1)^n n}{n+1}$$

(b) $a_n = \frac{\ln(n+1)}{\sqrt{n}}$

Question 8 (10 Points): For each of the following series, write the first 2 terms and determine whether the series is convergent or divergent. If the series converges, find its sum.

(a)
$$\sum_{n=1}^{\infty} (-1)^n$$

(b) $\sum_{n=0}^{\infty} \frac{2^{2n}}{3^{n+1}5^n}$