Question 1 (15 Points):

Find the following limits:
(a) $\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h}$
(b) $\lim _{x \rightarrow 0} \frac{\tan (4 x)}{\sin (5 x)}$
(c) Let $f(x)=\frac{\tan (4 x)}{\sin (5 x)}$ for $-\pi / 2<x<\pi / 2, x \neq 0$. How would you define $f(0)$ so that $f(x)$ is continuous?

Question 2 (15 Points):

(a) $y=f(x)$ is a one-to-one function, and the point $(-1,2)$ is on its graph. Let $f^{-1}(x)$ be the inverse function of $f(x)$, and $f^{\prime}(x)=\frac{d}{d x} f(x)$ be the derivative of $f(x)$. The equation of the tangent to $y=f(x)$ at $(-1,2)$ is $y=2 x+b$. Find the following. Justify your answers.
(i) b
(ii) $f^{-1}(2)$
(iii) $f^{\prime}(-1)$
(iv) $f^{-1}(f(-1))$
(v) $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=2}$
(b) If $\sin (x)=-\frac{1}{2}$, then what are all possible values for $\tan (x)$?

Question 3 (15 Points):

Let $f^{\prime}(x)=\frac{d}{d x} f(x)$ be the derivative of $f(x)$. Find
(a) $f^{\prime}(x)$ for $f(x)=\sqrt[3]{\sin \left(x^{2}\right)}$
(b) The slope of the tangent at $(1,-1)$ to the circle $x^{2}+y^{2}=2$
(c) The function $f(x)$ is continuous in the interval $(-5,3)$. Find all local extrema of $f(x)$ in the interval $(-5,3)$ if $f^{\prime}(1)$ does not exist and

x	$(-5,-2)$	-2	$(-2,-1)$	-1	$(-1,0)$	0	$(0,1)$	$(1,3)$
$f^{\prime}(x)$	-	0	+	0	+	0	-	+

Question 4 (10 Points):

(a) Find the $\frac{d}{d x} \int_{\sqrt{x}}^{3 x} t^{2} d t$ using the Fundamental Theorem of Calculus.
(b) Find $\frac{d}{d x} \int_{\sqrt{x}}^{3 x} t^{2} d t$ by first finding $\int_{\sqrt{x}}^{3 x} t^{2} d t$, and then taking the derivative of the result.
(c) Find $\int_{1}^{e}(2(\ln (x)+1)) d x$ given that the derivative of $x^{2} \ln (x)$ is $2(\ln (x)+1)$.

Question 5 (20 Points):

(a) Evaluate

$$
\int_{0,5}^{1} \frac{x^{2}+13}{x^{2}+1} d x
$$

(b) Find the area between the curve $y=2 x \sqrt{x^{2}+1}, 0 \leq x \leq \sqrt{3}$, and the x-axis

Question 6 (10 Points):

Determine whether the improper integral $\int_{0}^{\infty} e^{-x} d x$ is convergent or divergent. If the improper integral is convergent, evaluate it.

Question 7 (10 Points):

Determine whether the following sequence is convergent or divergent. If the sequence is convergent, find its limit.
(a) $a_{n}=\frac{(-1)^{n} n}{n+1}$
(b) $a_{n}=\frac{\ln (n+1)}{\sqrt{n}}$

Question 8 (10 Points):

For each of the following series, write the first 2 terms and determine whether the series is convergent or divergent. If the series converges, find its sum.
(a) $\sum_{n=1}^{\infty}(-1)^{n}$
(b) $\sum_{n=0}^{\infty} \frac{2^{2 n}}{3^{n+1} 5^{n}}$

