Question 1: (20 Points)

Evaluate the following integrals :
(a) $\int \sin ^{3}\left(\frac{x}{2}\right) d x$
(b) $\int \sin (2 x) \cos (2 x) d x$
(c) $\int\left(\tan ^{2}(x)+\tan (x)\right) d x$

Question 2: (15 Points)
Evaluate

$$
\int \frac{-x^{3}+2 x^{2}-3 x+6}{\left(x^{2}+1\right)(x-1)^{2}} d x
$$

Question 3: (10 Points + 5 Points):

Show that $\int e^{-\sqrt{x}} d x=-2 \sqrt{x} e^{-\sqrt{x}}-2 e^{-\sqrt{x}}+c$ by
(a) integrating the left side using a substitution and/or Integration by Parts.
(b) using any other method

Question 4: (10 Points)

Find the derivative of $f(x)=(\sin x)^{\tan x}$
(Hint: Express the function $f(x)$ as $e^{h(x)}$, or take the logarithm of both sides and use implicit differentiation)

Question 5: (10 Points)

Evaluate the following integral:

$$
\int \frac{2 d x}{\sqrt{6 x-2 x^{2}+7}}
$$

Question 6: (10 Points)

The graph of $f(x)=x^{3}+b x^{2}+c x+d$ is increasing in the interval $\mathrm{x}<-1$, decreasing in the interval $-1<x<3$, and increasing in the interval $x>3$. The graph is concave down for $x<1$, and concave up for $\mathrm{x}>1$. The inflection point is on the x -axis. Find the constants b, c, and d.

Question 7: (10 Points)

Find an expression for the volume of the solid generated by revolving the region bounded by $y=\tan (x), y=-1, x=0$, and $x=\pi / 4$ about the line $y=-1$. Do NOT evaluate the expression.

Question 8: (5 Points)

Find $\lim _{x \rightarrow \infty} \frac{x^{3}}{3^{x}}$

Question 9: (5 Points)

Find $f^{\prime}(3)$ for any function f whose domain is R satisfying the inequality $\left|f(x)+x^{2}-2 x+4\right| \leq \sin ^{2}(x-3)$ for all real numbers x .

Question 10: (10 Points)

Find the length of the curve $y=f(x)$ between $-3 \leq x \leq-2$, if $f^{\prime}(x)=\sqrt{x^{2}-1}$.

