Question 1. (30 Points)

Consider the function $f(x)=2 x^{3}+c x^{2}+2 x$.
a) For what values of c will this function have extrema (maxima and/or minima)?
b) Find the x-coordinates of the turning points (inflection points) in terms of c.
c) For what values of c will this function have saddle points? (A saddle point is where the first derivative is zero and where the concavity changes. The first derivative does not change sign at a saddle point.)
d) The derivative of $f(x)$ is $f^{\prime}(x)=6\left(x+\frac{c}{6}\right)^{2}-\frac{c^{2}}{6}+2$. Sketch $f(x)$ for $c=6$ and $c=3$ using the expression for the derivative.

Question 2. (20 Points)
a) The tip of an isoceles triangle is at (0,0), and its other two points are at (a, b) and $(-a, b)$, which are on a semi-circle with center $(0,0)$ and radius 2 . What is the maximum possible area of this triangle? (a and b are positive numbers.)
b) The tangent to the graph of the function $f(x)=\log _{2} x$ at $x=8$ is $y=$ $0.1803 x+1.5573$. The differential of $f(x)$ at $x=8$ is $d f=A d x$. What is A? Write the approximate value of $\log _{2}(8.01)$ in terms of A.

Question 3. Find the following limits: (20 Points)
a) $\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}$
b) $\lim _{x \rightarrow 0} \frac{\cos x}{\sin x}-\frac{1}{x}$
c) $\lim _{x \rightarrow 0} \frac{\cos m x-\cos n x}{x^{2}}$
d) $\lim _{x \rightarrow 1} \frac{x}{x-1}-\frac{1}{\ln x}$

Question 4. Evaluate the following integrals (40 Points)
a) $\int_{0}^{1} x e^{-x^{2}} d x$
b) $\int \frac{2^{x}}{2^{x}+3} d x$
c) $\int \frac{\cos x}{\sin ^{2} x} d x$
d) $\int \cos \sqrt{x} d x$
e) $\int(\arcsin x)^{2} d x$
f) $\int x^{3} \ln x d x$

