KOÇ UNIVERSITY
 FALL 2017 MATH102
 MIDTERM 2 December 9, 2017
 Duration of the exam: 75 minutes

Instructions: Calculators are not allowed. No books, no notes, no talking allowed. Explain your answers to get full credit. You can use the back of these pages.

Name, Surname: \qquad

Signature: \qquad

Section:1 (Mo \& We 14.30-15.45)2 (Mo \& We 16.00-17.15)

Problem	Points	Score
1	30	
2	25	
3	25	
4	25	
Total	$\mathbf{1 0 5}$	

Problem 1

a) Use implicit differentiation to find an equation of the tangent line to the curve

$$
x^{2}+2 x y+4 y^{2}=12
$$

at the point $(2,1)$
(10 points).
b) Find the limit

$$
\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}
$$

where $a, b>0$ are fixed numbers. (Hint:L'Hospital)
(10 points)
c) Find the absolute maximum and absolute minimum values of

$$
f(x)=\ln \left(x^{2}+x+1\right)
$$

on the interval $[-1,1]$.

Problem 2

Sketch the curve $y=\frac{2 x^{2}+x-1}{x^{2}}$ using the guidelines A-H.

A Domain
B Intercepts

C Symmetry

E Intervals of Increase or Decrease

G Concavity and Points of Inflection

D Asymptotes

F Local Max./Min.

H Sketch

Problem 3

a) A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other into a circle. How should the wire be cut so that the total area enclosed is (a) a maximum (b) a minimum? (Formulas for Circle with radius r : circumference $2 \pi r$, area πr^{2})
(20 points)

b) Evaluate the integral

$$
\int_{0}^{1}(3+x \sqrt{x}) d x
$$

a) Evaluate the integral

$$
\int_{1}^{3} \frac{x^{3}-2 x^{2}-x}{x^{2}} d x
$$

b) Evaluate the indefinite integral

$$
\int \frac{\cos (\ln (x))}{x} d x
$$

c) Evaluate the indefinite integral

$$
\int \frac{2^{x}}{2^{x}+3} d x
$$

