KOÇ UNIVERSITY		
FALL 2017	MATH102	
MIDTERM 2	December 9, 2017	
Duration of the	exam: 75 minutes	

Instructions: Calculators are not allowed. No books, no notes, no talking allowed. Explain your answers to get full credit. You can use the back of these pages.

Name, Surname:

Signature: _____

Section:

 \Box 1 (Mo & We 14.30-15.45) \Box 2 (Mo & We 16.00-17.15)

Problem	Points	Score
1	30	
2	25	
3	25	
4	25	
Total	105	

a) Use implicit differentiation to find an equation of the tangent line to the curve

$$x^2 + 2xy + 4y^2 = 12$$

at the point (2,1)

(10 points).

b) Find the limit

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx}$$

where a, b > 0 are fixed numbers. (*Hint:L'Hospital*)

(10 points)

c) Find the absolute maximum and absolute minimum values of

$$f(x) = \ln(x^2 + x + 1)$$

on the interval [-1, 1].

(10 points)

Sketch the curve $y = \frac{2x^2 + x - 1}{x^2}$ using the gu	idelines A-H. (25 points)
A Domain	B Intercepts
C Symmetry	D Asymptotes
E Intervals of Increase or Decrease	F Local Max./Min.
G Concavity and Points of Inflection	H Sketch

a) A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other into a circle. How should the wire be cut so that the total area enclosed is (a) a maximum (b) a minimum? (Formulas for Circle with radius r: circumference $2\pi r$, area πr^2) (20 points)

b) Evaluate the integral

(5 points)

$$\int_0^1 (3 + x\sqrt{x}) \ dx$$

a) Evaluate the integral

(5 points)

$$\int_{1}^{3} \frac{x^3 - 2x^2 - x}{x^2} \, dx$$

b) Evaluate the indefinite integral

(10 points)

$$\int \frac{\cos(\ln(x))}{x} \, dx$$

c) Evaluate the indefinite integral

(10 points)

$$\int \frac{2^x}{2^x + 3} \, dx$$