§13.2 Extreme Values of Functions Defined on Restricted Domains

Recall that a continous function $f(x, y)$ defined on a closed and bounded region D in \mathbb{R}^{2} takes its absolute maximum/minimum on D. In this section we will see how to find these absolute extreme values.

Theorem 1. Suppose that a function $f(x, y)$ has a local or absolute extreme value at some point (a, b) in its domain. Then (a, b) is one of the following:
i) a critical point, i.e. $\nabla f(a, b)=0$
ii a singular point, i.e. $\nabla f(a, b)$ does not exists
iii) a boundary point.

So the theorem provides a useful method to find absolute extreme values:

Step 1: Find all critical and singular points of f.

Step 2: Find the extreme values of f on the boundary.

Step 3: Compare the values of f at the boundary points and at critical and singular points.

Example 1. Find the absolute maximum and minimum values of $f(x, y)=x^{2}+2 x y-y^{2}$ on the disc $x^{2}+y^{2} \leq 1$.

Solution: Since $f(x, y)$ is continuous on the unit disc, f takes its absolute extreme values. First we compute the partial derviatives of f as

$$
f_{1}(x, y)=2 x+y, \quad f_{2}(x, y)=x-2 y .
$$

So f has no singular point and the only critical point is $(0,0)$.
Now we consider the boundary points, i.e. the points on the unit circle $x^{2}+y^{2}=1$. It is enough to find the absolute extreme values of f on the boundary as we will compare them with $f(0,0)$.

It is useful to parametrize the boundary whenever it is possible. We can simply take the parametrization

$$
x=\cos t, y=\sin t, t \in[0,2 \pi] .
$$

Then we have

$$
f(\cos t, \sin t)=\cos ^{2} t+2 \cos t \sin t-\sin ^{2} t=\cos (2 t)+\sin (2 t)
$$

So we are reduced to computing the absolute extreme values of

$$
g(t)=\cos (2 t)+\sin (2 t), t \in[0,2 \pi]
$$

The absolute maximum and minimum on the boundary are

$$
g(\pi / 8)=\sqrt{2} \text { and } g(5 \pi / 8)=-\sqrt{2}
$$

respectively (Exercise). Since $f(0,0)=0$ we conclude that the absolute maximum and minimum of $f(x, y)$ on $x^{2}+y^{2} \leq 1$ are

$$
f(\cos (\pi / 8), \sin (\pi / 8))=\sqrt{2}, \quad \text { and } f(\cos (5 \pi / 8), \sin (5 \pi / 8))=-\sqrt{2}
$$

Example 2. Find the absolute maximum and minimum values of $f(x, y)=x y+x^{2}$ on the triangular region D given by $-1 \leq x \leq$ $1, x-1 \leq y \leq-x+1$.

Solution: First by computing the partial derviatives $f_{1}(x, y)=y+2 x$, $f_{2}(x, y)=x$ we see that f has no singular points, and also that the only critical point is $(0,0)$.

The boundary of the domain is the triangle with vertices $(1,0)$, $(-1,-2)$ and $(-1,2)$. So the sides of the triangle can be parametrized by the line segments

$$
\begin{aligned}
& x=-1,-2 \leq y \leq 2 \\
& y=-x+1,-1 \leq x \leq 1 \\
& y=x-1,-1 \leq x \leq 1
\end{aligned}
$$

So on each side of the triangle our function f reduces to a function in single variable as

$$
\begin{aligned}
& g_{1}(y)=-y+1,-2 \leq y \leq 2 \\
& g_{2}(x)=x,-1 \leq x \leq 1 \\
& g_{3}(x)=2 x^{2}-x,-1 \leq x \leq 1
\end{aligned}
$$

If we compute the extreme values of the above functions on the specified domains, we see that the maximum and minimum on the boundary are $f(-1,-2)=3$ and $f(-1,2)=-1$ respectively (Exercise).

Since $f(0,0)=0$, the absolute maximum and minimum of $f(x, y)$ on D are $f(-1,-2)=3$ and $f(-1,2)=-1$ respectively.

