
Multivariable Calculus

§13.3 Lagrange Multipliers

We will consider constrained extreme value problems, i.e. the

maximizing/minimizing problems where the variables are related by

an equation called the constraint. Functions and constraints in

concern may involve two or three variables. We may have different

types of constrained extreme value problems such as

maximize/minimize f(x, y) subject to g(x, y) = 0

maximize/minimize f(x, y, z) subject to g(x, y, z) ≤ 0 ( or g(x, y, z) ≥ 0)

In the second example above the constraint is given as g ≤ 0. In

this case we can seperate the region as g < 0 and g = 0, and then

find the extreme values seperately for each of these regions. For the

case g < 0, it is enough to find the ciritical and singular points of

f(x, y, z) satisfying the inequality g(x, y, z) < 0 (Recall Theorem 1

of §13.2). So our main focus is the set of points satisfying g = 0

which is clarified by the following theorem.
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Theorem 1. Let f(x, y) and g(x, y) be functions with continuous

first order partial derivatives around a point P0 = (x0, y0) satisfying

g(x0, y0) = 0. Suppose that f(x0, y0) is a local extremum of f on the

set of points satisfying g(x, y) = 0. Also suppose that

i) P0 is not an endpoint of the curve given by g(x, y) = 0, and

ii) ∇g(P0) 6= 0.

Then there exists λ0 such that (x0, y0, λ0) is a critical point of the

function

L(x, y, λ) = f(x, y) + λg(x, y).

Note that if the functions f and g involve three variables, then

the theorem still holds.

Now let’s explore the theorem. The critical points of L(x, y, λ) =

f(x, y)+λg(x, y) (Lagrange function) are the points (x, y, λ) satisfying

L1(x, y, λ) = f1(x, y) + λg1(x, y) = 0

L2(x, y, λ) = f2(x, y) + λg2(x, y) = 0

L3(x, y, λ) = g(x, y) = 0.
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The third equation guarantees that our point obeys the constraint.

The first and second conditions can be combined and written in terms

of gradients of f and g as

∇f(x, y) + λ∇g(x, y) = 0

So we look for the points on g(x, y) = 0 at which the gradients of f

and g differ by a constant multiple (−λ in the above notation).

Indeed this is the idea behind the proof of the above theorem; if

we set u to be the projection of ∇f(a, b) on ∇g(a, b)

u = Proj ∇g∇f

for some point (a, b) then f has a positive (respectively negative)

directional derivative along (∇f(a, b)−u) (respectively −(∇f −u)).

So f can not have a local extreme value at (a, b).

3



Multivariable Calculus

Example 1. Find the absolute maximum of f(x, y) = xy on the

ellipse x2 + 2y2 = 1.

Solution: We need to

maximize f(x, y) = xy subject to g(x, y) = x2 + 2y2 − 1 = 0

Note that we can parametrize the ellipse x2 + 2y2 = 1, and then

reduce the problem to maximizing a function in single variable (See

§13.2). But let’s solve the question by the method of Lgrange multipliers.

Let

L(x, y, λ) = f(x, y) + λg(x, y) = xy + λ(x2 + 2y2 − 1).

Then we have

L1(x, y, λ) = y + 2λx = 0,

L2(x, y, λ) = x+ 4λy = 0,

L3(x, y, λ) = x2 + 2y2 − 1 = 0.

By the first and the second equalites we obtain

y(1− 8λ2) = 0 =⇒ y = 0 or λ = ±1/2
√

2
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But y = 0 also impleis that x = 0 which violates the constraint

x2 + 2y2 = 1. So we must have λ = ±1/2
√

2. So in any case we find

x = ±
√

2y. Plugging in the constraint we find the four points

(±1/
√

2,±1/2).

Our theorem gurantees that the maximum will be attained at one

of these points, and in this case the maximum is

f(1/
√

2, 1/2) = f(−1/
√

2,−1/2) = 1/2
√

2
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Example 2. Find the minimum of f(x, y, z) = xy + z on the unit

sphere.

Solution: Since the unit sphere x2+y2+z2 = 1 is closed and bounded

f has an absolute minimum on it. Our problem is to

minimize f(x, y, z) = xy+z subject to g(x, y, z) = x2+y2+z2−1 = 0

The Lagrange function is L(x, y, z, λ) = xy+z−1+λ(x2+y2+z2−1).

Then we have

L1(x, y, z, λ) = y + 2λx = 0,

L2(x, y, z, λ) = x+ 2λy = 0,

L3(x, y, z, λ) = 1 + 2λz = 0,

L4(x, y, z, λ) = x2 + y2 + z2 − 1 = 0.

The first and the second equations imply that x = y = 0 or λ =

±1/2. In the second case we see that z = −2λ = ±1 and again have

that x = y = 0. We have two points (0, 0,±1), so the minimum is

f(0, 0,−1) = −1
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We may also consider problems with more than one constraint.

For example if we assume that the problem

maximize (or minimize) f(x, y, z) subject to g(x, y, z) = 0 and h(x, y, z) = 0

has a solution at P0 = (x0, y0, z0) then the intersection of the constraints

will be a curve with the tangent vector T = ∇g(P0)×∇h(P0) at P0.

Then ∇f(P0) must be perpendicular to T (Otherwise f has nonzero

directional derivatives along ±T, and so can not have a local extreme

value). But since T is already perpendicular to ∇g(P0) and ∇h(P0),

then∇f(P0) must be in the plane determined by∇g(P0) and∇h(P0).

In short there exist λ0 and µ0 such that (x0, y0, z0, λ0, µ0) is a critical

point of the Lagrange function

L(x, y, z, λ, µ) = f(x, y, z) + λg(x, y, z) + µh(x, y, z).
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Example 3. Maximize f(x, y, z) = xyz subject to g(x, y, z) = x +

y + z = 0 and x2 + y2 + z2 = 1.

Solution: The Lagrange function is L(x, y, z, λ, µ) = xyz+λ(x+ y+

z) + µ(x2 + y2 + z2 − 1). So we have

L1 = yz + λ+ 2µx = 0,

L2 = xz + λ+ 2µy = 0,

L3 = xy + λ+ 2µz = 0,

L4 = x+ y + z = 0,

L5 = x2 + y2 + z2 = 1

Subtracting L2 from L1 we find that (y − x)(z − 2µ) = 0. Similarly

we have

(z − x)(y − 2µ) = 0, (z − y)(x− 2µ) = 0

Considering all possible cases we find the following points

(1, 1,−2), (1,−2, 1), (−2, 1, 1), (−1,−1, 2), (−1, 2,−1), (2,−1,−1).

(Exercise: Verify these points). So the minimum is f(1, 1,−2) = −2.
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