Part I. (25 points) In Supradyn All Day Vitamin advertisement, the following statistics is announced by Burcu Esmersoy: 77% of people in Turkey press the snooze button (erteleme düğmesi) of their alarm clock at least once every morning.

1. (5 points) In a random sample of 9 subjects who use an alarm clock, what is the probability that exactly 8 of them press the snooze button?

$$\binom{9}{8}(0.77)^8(0.33)^1 = 9(0.123)(0.23) = 0.254$$

2. (8 points) What is the probability that at most 2 of them press the snooze button in a random sample of 9?

$$= \frac{(3)(0.75)^{10}(0.33)^{9} + (3)(0.75)^{1}(0.33)^{1} + (3)(0.75)^{1}(0.75)^{1}$$

3. (6 points) If it is found in a random sample of 9 subjects that 2 of them pressed the snooze button at least once every morning, is the claim of the advertisement supported by this evidence or not? Hint: Use your answer in part 2.

Ho:
$$p=0.77$$

P-value is about 1%, small.

Ha: $p<0.77$

So we reject tho.

It is now likely that the percentage is less than 77% .

4. (9 points) If it is found in a random sample of 99 subjects that 68 of them press the snooze button at least once every morning, is the claim of the advertisement supported or not?

Ho:
$$p = 77\%$$

Ha: $p < 77\%$
 $P = \frac{68}{35} \approx 0.69$

Ha: $p < 77\%$
 $SE = \frac{(0.77)(0.23)}{99}$
 $Z = \frac{0.68 - 0.77}{0.042} = -1.9$
 $Z = \frac{0.042}{0.042} = -1.9$

P-value = $\frac{100\%-84.26\%}{2} = 2.87\%$

The claim of $Z = 2.87\%$ is not supported.

<u>Part II.</u> (15 points) A self-esteem questionnaire is used to collect data from two groups, those who left their job within a few months after graduation (leavers) and those who remained in their job after they graduated (stayers). The summary statistics are as follows for the respective self-esteem scores.

	<u>Leavers</u>	Stayers
Mean	3.05	2.96
SD	0.8	0.7
Sample Size	103	225

1. (9 points) At $\alpha = 0.01$, can it be concluded that leavers have a higher self-esteem than stayers?

Ho:
$$\mu_1 = \mu_2$$
 SELiff = $\sqrt{\frac{(0.8)^2}{103} + \frac{(0.7)^2}{225}} \approx 0.09$

2. (6 points) Construct a 90% confidence interval for the self-esteem score of stayers.

Part III. (20 points) A random sample of 150 beer drinkers were surveyed about their preference for three types of beers, namely light, regular, or dark.

	Light	Regular	Dark	
Male	20	40	20	30
Female	30	30	10	+0
	50	70	CE	1 13 0

1. (3 points) Define the variable(s) in this study.

2. (2 points) Identify the sample(s) in this study.

3. (10 points) Is beer preference independent of the gender of the beer drinker?

Part IV. (15 points)

1. (8 points) Consider the sample given in Part III, pg.3. Find a 95% confidence interval for the difference of the percentages of female and male beer drinkers.

$$\hat{P}_{M} = \frac{80}{150} = 0.53 \qquad \hat{P}_{F} = \frac{70}{150} = 0.47$$

$$SE_{deff} = \sqrt{\frac{0.53(0.47)}{80} + \frac{0.46(0.54)}{70}} = 0.08$$

$$0.53 - 0.47 \mp 1.96(0.08)$$

$$(-0.09, 0.22)$$

2. (7 points) Consider the self-esteem questionnaire in Part II, pg.2. Assume that the self-esteem scores have a normal distribution in the population, and estimate the population parameters with the given statistics. Then, approximately what proportion in the population of leavers has a self-esteem score between 2.5 and 3.5?

mean is estimated as
$$3.05$$

 5.0
 5.0
 $2.5-3.05 \approx -0.68$
 0.8
 $3.5-3.05 \approx 0.56$
 0.8
 $3.5-3.05 \approx 0.56$
 0.8
 $3.5-3.05 \approx 0.56$
 0.8
 $3.5-3.05 \approx 0.56$

Part V. (20 points) In a large city, the typical price paid for a meal in a given restaurant is investigated by a newspaper reporter. The reporter randomly selected 7 Italian restaurants, 6 Seafood restaurants, and 8 Steakhouses and recorded the following prices.

	Italian	Seafood S	Steakhouse	- n= 2(
	\$12		\$24		
	13 15	18 17	19 23	XGM = 1627 +19x6	
	17	26	25 21	X = 16x7+19x6	
	18 20	23 15	22	·21	
	17		27 31	= 19.9	
Mean	16	19	24		
Standard Deviation	2.8	4.6	3.7		

1. (Z points) Identify the variable(s), and the population(s) under investigation.

Variable: Price paid for a meal Populations: 1) Italian restaurants 2) Seafood Restaurants 3) Steakhouses
in the city all of them!

2. (points) Fill in the missing entries in the following table

Sum of Squares d.f. Mean square F

Between 245.8 2 122.9 8.9

Within 248.67 18 13.8

$$7(16-19.9)^{2}+6(19-19.9)^{2}+8(24-19.9)^{2}+24-19.9$$

$$= 245.8$$

$$= 245.8$$

$$-5_{B}^{2} = \frac{245.8}{2} = 122.9 \quad S_{W}^{2} = \frac{248.67}{18} \approx 13.8 \Rightarrow F = \frac{122.9}{13.8}$$

3. (6 points) Can one conclude that there is a significant difference among the meal price for the three types of restaurants?

F_{2,18,0.05} = 3.55, Since 8.9 > 3.55, we reject Ho.

There is a significant difference between the
average meal prices of the three types of restaurant

4. (3 points) State your assumption(s) for the test procedure you used in Question 3 to be applicable.

prices in each population are normally distributed.

2) The populations are independent.

2) The populations are independent.

<u>Part VI.</u> (15 points) A study for finding out how well airline companies serve their customers showed the following customer ratings: 3% excellent, 28% good, 45% fair, and 24% poor. In a later study of service by mobile phone companies, a sample of 400 adults indicated the following customer ratings: 24 excellent, 124 good, 172 fair, and 80 poor. Is the distribution of the customer ratings for phone companies different from the distribution of customer ratings for airline companies?

Expected frequencies:

$$\frac{12 \times \text{cellent}}{12} = \frac{60 \cdot d}{180} = \frac{180}{36}$$
 $\frac{3\%}{3} = \frac{3}{100} = \frac{3}{100} = \frac{45}{100} = \frac{45}{100} = \frac{24}{100} = \frac{24}{$

$$\chi^{2} = \frac{(12-24)^{2}}{12} + \frac{(112-124)^{2}}{112} + \frac{(180-172)^{2}}{180} + \frac{(80-96)^{2}}{36}$$

$$= 12 + 1.286 + 0.356 + 2.67$$

$$= 16.312$$
Ho: $p_{1} = \frac{3}{6}$, $p_{2} = \frac{28}{6}$, $p_{3} = \frac{45}{6}$, $p_{4} = \frac{24}{6}$, $p_{4} = \frac{24}{6}$. $p_{4} = \frac{3}{6}$.

Ha: at least one equality does not hold.

$$\chi^{2}_{0.05,3} = 7.82$$

$$\chi^{2}_{0.05,3} = 7.82$$
Since $16.312 > 7.82$, we reject the solution of customer remains p_{6} , the distribution of customer different from those of arrive companies.