KOÇ UNIVERSITY

MATH 203 - CALCULUS 2

Midterm II Monday, May 13, 2015 starting at 19:00

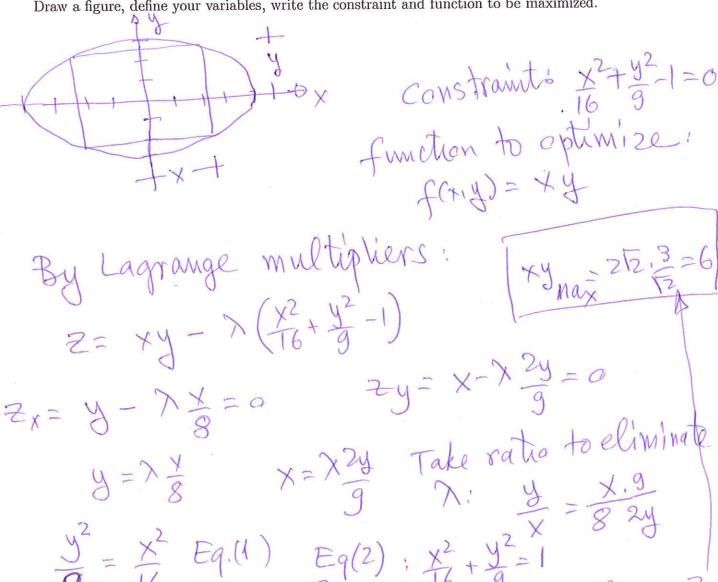
Duration of Exam: 75 minutes

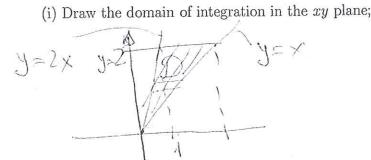
Each question case (i) or (ii) or (iii) is 7 points; 5 points are a bonus.

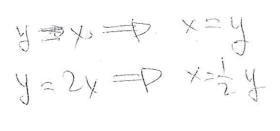
INSTRUCTIONS: No calculators may be used on the test. No books, no notes, and no talking allowed. You must always explain your answers and show your work to receive full credit. Use the back of these pages if necessary. Print (use CAPITAL LETTERS) and sign your name, and indicate your section below.

Name: —		
Surname		
Signature	DI	 -
Section (Check One):	
	Section 1: Attila Aşkar T-Th (8:30)	
	Section 2: Attila Aşkar T-Th(11:30)	-
	Section 3: Ayşe Soysal M-W (8:30)	-
	Section 4: Avse Sovsal M-W(10:00)	******

PROBLEM	POINTS	SCORE	
1	14		
2	28		-
3	21		
4	21	Ultra de la composición del composición de la co	
5	21		
TOTAL	105		


1. (14 points)


least


(i) Given two numbers whose total is 100. Find the largest value of the sum of the squares of these two numbers by Lagrange multipliers.

Let the numbers be $x \neq y$. $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constraint:} \quad x + y = 100$ $f(x_1y) = x^2 + y^2 ; \quad \text{constrain$

(ii) Find by the Lagrange multiplers method the rectangle of maximum area, which has its sides parallel to the coordinate axes and which is inscribed into the ellipse $x^2/16 + y^2/9 = 1$. Draw a figure, define your variables, write the constraint and function to be maximized.

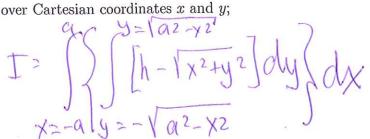
(ii) Write (Do not calculate) the double integral $\int \int xy \, dA$ over \mathcal{D} with the integration

(28 points) The domain \mathcal{D} is defined by the boundaries $\{y=x, y=2x, y=2\}$

over
$$y$$
 first; $y+2x$
 $y=0$ $y=x$ $y=0$ $y=x$ $y=x$ $y=x$ $y=x$ $y=x$

(iii) Write (Do not calculate) the double integral $\int \int xy \ dA$ over \mathcal{D} with the integration over x first;

ver
$$x$$
 first; 2

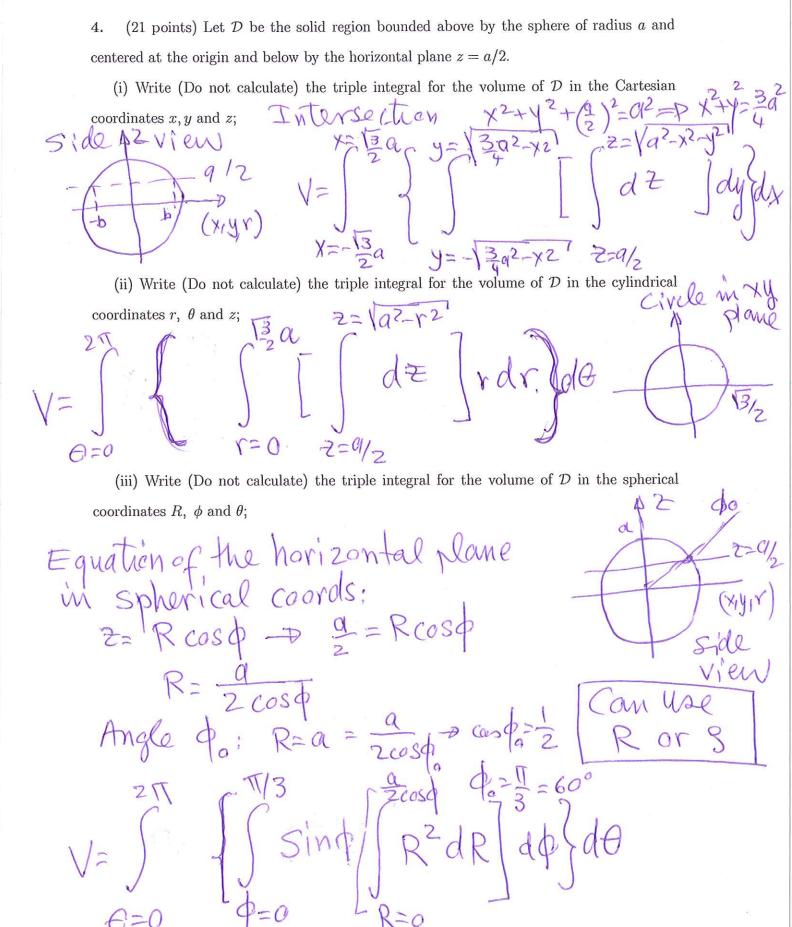

$$\begin{array}{c}
X = y \\
X = 1
\end{array}$$

$$\begin{array}{c}
X = y \\
X = 2
\end{array}$$

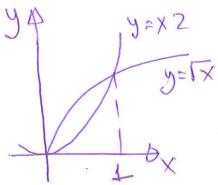
$$\begin{array}{c}
X = y \\
X = 2
\end{array}$$

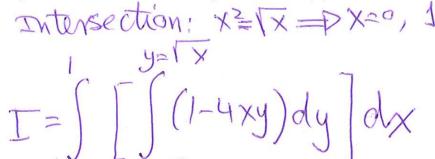
(iv) Calculate the value of the integral defined in one of (ii) or (iii) of your choice.

- (21 points) Let \mathcal{D} be the region inside the circle of radius a that is centered at the origin. Let $f(x, y) = h - \sqrt{x^2 + y^2}$, h is a constant.
- (i) Write (Do not calculate) the double integral $\int \int f(x, y) dA$ over \mathcal{D} with the integration



- (ii) Write (Do not calculate) the double integral $\int \int f(x, y) dA$ over \mathcal{D} with the integration over polar coordinates r and θ ;


(iii) Calculate the value of the integral defined in one of (i) or (ii) of your choice.


From (ii)
$$T = 2\pi \left[h \frac{r^2}{2} - \frac{r^3}{3} \right]^{r=0} = 2\pi \frac{a^2}{6} (3h-2a)$$

$$r=0$$

- (21 points) The domain \mathcal{D} is defined by the parabolas $y=x^2$ and $y=\sqrt{x}$ as its 5. boundaries. f(x, y) = 1 - 4xy is a given function.
- (i) Write (Do not calculate) the double integral $\int \int f(x, y) dA$ over \mathcal{D} with an integration over the Cartesian coordinates x and y and draw the domain of integration in the xy plane;

(ii) Write (Do not calculate) the double integral $\int \int f(x, y) dA$ over \mathcal{D} with the integration over the generalized coordinates u and v that are suggested by the boundary curves (FROM the Book: P: 832) and draw the domain of integration in the uv plane;

$$J = \frac{\partial(u_1 v)}{\partial(x_1 y)} =$$

$$U = \frac{x^{2}}{y} \qquad V = \frac{y^{2}}{x} \qquad J = \frac{\partial(u_{1}v)}{\partial(x_{1}y)} = \begin{vmatrix} 2x & -y^{2} \\ y & -x^{2} \end{vmatrix} = 4 - 1 = 3$$

(iii) Calculate the value of the integral defined in one of (i) or (ii). Boundaries

 $[y-4xy^2]$ $dx = ([(x-2x^2)-(x^2-x^2)]$ X=a

$$=\frac{\chi^{3/2}}{\binom{3/2}}-\frac{3\chi^3}{3}+\frac{2\chi^6}{6}\Big|=\frac{2}{3}-1+\frac{1}{3}=0$$