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Abstract
Our aim in this paper is to apply the technique of
parametric ‘bootstrapping’ (or ‘resampling’) to
determine what sampling frequency of traffic
measurements is necessary for the proper engineering of
high-speed data networks. Recent studies have shown that
Fractional Brownian Motion (FBM) is a good model for
the traffic observed in high-speed data networks,
capturing both self-similarity and long-range dependence.
We investigate the effect of the frequency of collection of
traffic measurements on the estimation of FBM traffic
parameters and, in turn, on the accuracy of link
engineering. We go beyond earlier studies to obtain the
statistical properties of link engineering that is based on
traffic estimation from sampled measurements. The key
idea is to ‘resample’ by creating replicate data sets with
the same parametric model as the original data set, from
which the variability of the quantities of interest can be
assessed with reference to the time-resolution of the
traffic measurements, which is our basic control variable.
We find that link engineering based on traffic
measurements sampled at one-minute intervals produces
significant error, in the range 7-26%, while engineering
based on measurements sampled at one-second intervals
results in an error in the range 2-4%. Hence, we conclude
that for acceptable accuracy in capacity engineering for
IP traffic, traffic measurements should be collected at a
finer time-resolution than one-minute intervals, and that
measurements at one-second intervals lead to acceptable
accuracy.

1. Introduction
Traffic measurements are collected in networks both to
assess current network performance and to detect traffic
trends and estimate the load for use in network
engineering. On the basis of the available measurements,

the engineering algorithms must ensure that the
provisioned capacity is sufficient to meet the anticipated
demand for broadband applications, but not so excessive
as to render broadband services uneconomical. In this
paper, we apply the technique of ‘bootstrapping’ (or
‘resampling’) to determine what sampling frequency of
traffic measurements is necessary for the proper
engineering of high-speed data networks.

Many analyses of fine-grained measurements over the
last decade have established the self-similar and long-
range dependent nature of traffic in high-speed data
networks (see e.g. [1], [11], and [12]). More recent studies
(e.g. [8]) also examine the multifractal character of data
traffic, where applicable. These studies show that most
high-speed traffic is generated by services that use the
Internet Protocol (IP), and that the percentage of World-
Wide-Web traffic has grown to around 30% of network
traffic. In this study, we focus on traffic aggregated from
many sources, which can be modeled parsimoniously by
the FBM traffic model (which is ‘fractal’ but not
‘multifractal’, reflecting the effect of a high level of
aggregation). The FBM model captures self-similarity and
long-range dependence in a single parameter H, known as
the Hurst parameter, which can be estimated from the
actual traffic.

In this paper, we go beyond the results in [3] in
investigating how the estimation of FBM parameters of
traffic (by the variance-time and wavelet methods) is
affected by the frequency of collection of traffic
measurements, and how this effect translates into an effect
on link dimensioning. In [3], the estimates of the FBM
parameters were used as ‘point estimates’ for the purpose
of link-dimensioning calculations, with no attempt to
evaluate the statistical properties of the dimensioning
results. Even for the FBM parameters themselves, there
was only limited statistical information available from
theoretical analysis. While the properties of the estimators
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of H  produced by the two estimation methods are well
known, the joint estimation of H and the peakedness
parameter of the traffic model is relatively new.

In this paper, we employ statistical resampling, or
bootstrap, with realistic input parameters for the FBM
traffic model, in order to arrive at more conclusive results
than were obtained in [3]. The key idea is to ‘resample’ by
creating replicate data sets with the same parametric
model as the original data set, from which the variability
of the quantities of interest can be assessed with reference
to our basic control variable, the time-resolution of traffic
measurements, for both the estimation methods. For the
FBM traffic parameters ),( Ha themselves, Eric van den
Berg [14] has carried out an analysis of their statistics, as
derived from replicated data sets, for estimation by the
variance-time method. What is accomplished in this paper
is the derivation, by parametric resampling, of the
properties of the estimator N̂ (for both the variance-time
and the wavelet estimation methods) of the number of
sources that can be supported on a given link, which is a
complicated function of the FBM traffic parameters. We
find that link engineering based on traffic measurements
sampled at one-minute intervals produces significant error,
in the range 11-26% for the variance-time method and 7-
8% for the wavelet method. With measurements at one-
second intervals, the engineering error lies in the range 2-
4% for the variance-time method and 2-3% for the wavelet
method. Hence, we conclude that for acceptable accuracy
in capacity engineering for IP traffic, traffic measurements
should be collected at a finer time-resolution than one-
minute intervals, and that measurements at one-second
intervals lead to acceptable accuracy.

The outline of the paper is as follows. In Section 2, we
discuss traffic measurements, and describe the two data
sets that we have used in this study. In Section 3, the FBM
traffic model is introduced, and the bootstrap procedure
for this parametric model is then described in detail. The
variance-time and wavelet methods of estimation of FBM
parameters are briefly reviewed, along with the link-
dimensioning algorithm, in Section 4. The resampling
results are reported and analyzed in Section 5, and our
conclusions are stated in Section 6.

2. Traffic Measurements

The traffic measurements collected by most switches are
in the form of traffic counts reported at regular intervals of
coarse time-resolution, typically 15 minutes. More
frequent measurements are obtained only occasionally for
‘special studies’, since the regular collection of traffic
measurements at intervals smaller than 15 minutes places
large demands on switch processing, when the collection
relies on the mechanism of network management queries,

as in SNMP (Simple Network Management Protocol). On
the other hand, it may be reasonable to invoke the
mechanism, say, once a week for a chosen hour (over
which data traffic may be assumed stationary) that is
judged to be critical for capacity management. Alternative
measurements are discussed in [9]. Our aim in this study is
to determine the influence of the time-resolution of the
traffic measurements on the accuracy of capacity
management that is based on those measurements.
Previous results [3] indicate that a 15-minute time interval
is not adequate for this purpose in the case of high-speed
data traffic approximated by the FBM model. Therefore,
in this paper, we focus on a comparison between
measurements collected at 1-minute intervals and those
collected at 1-second intervals.

It is well established now [1] [11] [12] that the traffic
in high-speed data networks is self-similar and long-range
dependent in nature − i.e., the traffic “looks” the same
when measured over a wide range of time scales, and
correlation remains significant across large time scales,
respectively. As for the protocol, the traffic is mostly
generated by services that use the Internet Protocol (IP).
This applies, for example, to the early Bellcore traffic
measurements reported by [11].

In this paper, we consider two sets of traffic
measurements as our data sets. In each data set, the
measurements are the traffic counts in bytes collected at
regular intervals at the relevant time-resolution of
observation. Data Set 1 consists of 3600 measurements on
a Frame Relay link, at 1-second intervals, for a total
duration of one hour. Data Set 2 consists of 24000
measurements on an ethernet, at 40-millisecond intervals,
for a total duration of 16 minutes. We use these data sets
to estimate the parameters of our traffic model, which is
Fractional Brownian Motion (FBM), as described below.
Data Sets 1 and 2 were studied in [3], and their Hurst
parameters were found to be 0.67 and 0.81, respectively,
as estimated from measurements at one-second intervals.

3. Traffic Model and Resampling

3.1. FBM Traffic Model
The FBM model for data traffic is completely specified by
three parameters ),,( Ham  where
m  : mean traffic rate, say, in bytes/time-unit
a  : peakedness (the ratio of variance of traffic arrivals in
time-unit to mean traffic rate stated for the same time-unit)
H : Hurst parameter (a dimensionless measure of
persistence of correlations in traffic, with ½ ≤ H  <1).

The total traffic arriving in the interval (0,t] is given by

)()( tXmamttA +=
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Table 1: Parameters )( Ha,m,  for data sets

Parameters m (bytes/sec) a (byte-sec) H
Data Set 1 800 505 0.67
Data Set 2 3,188 12.7 0.81

where X (t) is a standard FBM with Hurst parameter H
[13]. The incremental traffic over the interval (t,t+1] is
given by

)()1( tAtA −+ ,  �,3,2,1=t
This is a parsimonious model, which captures the self-
similarity and long range dependence observed in
aggregate data traffic [11] [13]. The burstiness over all
time scales is represented by the single parameter H.

In this paper, we focus on data traffic aggregated from
many independent sources. For this case, FBM is a good
traffic model. As described in Section 2, we have two data
sets, which represent widely different values for the
parameters ),,( Ham . Methods for estimating these
parameters, described in [3], are summarized in Section 4.
The estimated values of these parameters are given in
Table 1.

3.2 Resampling Traffic Measurements

Traffic measurements are fundamental for the proper
engineering of high-speed data networks. Our main focus
is the frequency of these measurements for that  purpose.
Since very few data sets are available from real networks
for such an extensive study, in this paper, we exploit
resampling ideas from statistics [4] to fill the gap. Also,
the frequency of measurements in existing switching
systems is rarely at the one-second interval that was
considered in [3]; rather, the usual frequency is 15
minutes. In this situation, one has to obtain measurements
collected at fine time-resolutions as part of special studies,
and these are too few to be conclusive. With resampling,
once the basic traffic model is accepted as a reasonable
representation for the traffic, it is possible to generate as
many samples as are needed.

The key idea is to ‘resample’ from replicate data sets
created on the same parametric model as the original data,
from which the variability of the quantities of interest can
be assessed. Such ‘resampling’ is especially useful when
the variability is not known theoretically and hence cannot
be computed or estimated from a single data set. This
approach is also referred to as bootstrap method [5],
which term is used interchangeably with resampling
below. Historically, Efron [6] introduced the term
“bootstrap” as a nonparametric procedure when he made
the connection of Monte Carlo methods to standard
methods of parametric inference, and drew the attention of

statisticians to their potential use for nonparametric
inference. This work and subsequent developments made
connection with earlier resampling ideas and formed the
so-called nonparametric bootstrap. Currently, bootstrap
procedures refer both to parametric and nonparametric
resampling, where the common idea is to replicate a given
data set (see e.g. [4] for a comprehensive treatment of the
subject).

Our main purpose is to evaluate the effect of the
frequency of measurements on the estimated number of
independent and homogeneous sources N, each described
by the FBM model ),,( Ham , that can be carried on a T1
link. Certainly, this can be observed on the real Data Sets
1 and 2 that we have described in Section 2, by using their
respective parameters ),,( Ham , but with no variance
information on the point estimate of the number of
sources. Indeed, this was done in [3]. A more reliable
comparison is to involve in the analysis the mean and
variance of the number of sources estimated for each
sampling frequency; and these, being the properties of the
estimator N̂ of the number of sources, can only be found
from bootstrap, since the theoretical mean and variance
are not known. The same is true for the confidence
intervals. Although, theoretically, confidence intervals are
available for the triplet ),,( Ham  from a single data set,
these intervals do not translate into a corresponding
interval for N due to the complicated relationship between
N  and ),,( Ham .

The Bootstrap Procedure

In this paper, we use parametric resampling as our
bootstrap procedure [4] where a parametric model (in this
paper, the FBM model) is assumed. A computer
simulation of FBM traffic streams with input parameters
obtained from the available data set is the main idea.  A
nonparametric bootstrap, on the other hand, would be
based on no assumptions on the model, and would work
through ‘resampling’ measurements (with replacement)
from the available data set. We choose the parametric
bootstrap because of the good fit and desirable properties
of the FBM  model for aggregate data traffic.

We typically produce R replicates of each data set
from a fast and accurate FBM traffic generator [2]. The
physical relationship of a data set with its replicates is the
common set of FBM parameters that characterize both the
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original data set and the derived replicates; these
parameters are inputs for the generation algorithm. Hence,
no model validation needs to be done, as the generated
samples are indeed FBM streams (up to numerical
approximation, of course) for a given triplet ),,( Ham . As
a result of randomness, R different estimators

RrHam rrr ,,2,1),ˆ,ˆ,ˆ( �=  are obtained from this
simulation. The two estimation methods used, namely
variance-time and wavelet methods, are described in the
next section. Using RrHam rrr ,,2,1),ˆ,ˆ,ˆ( �= , we

compute the estimated number of sources RNNN ˆ,,ˆ,ˆ
21 � .

This set of R replicates is, in turn, used to estimate the
properties of the estimator N̂ , such as its mean, bias, and
standard deviation. Also, a confidence interval on N can
be obtained by using the percentiles of the set

RNNN ˆ,,ˆ,ˆ
21 � . For each original data stream, this

procedure of generating R replicate streams and
constructing R estimators is carried out twice, once using
the parameter estimates ),,( Ham  derived by sampling the
original data stream at one-second granularity, and a
second time using the parameter estimates derived by
sampling the same stream at one-minute granularity.

Nature of Results Available from Bootstrap Procedure

In Section 5, we compare, for example, the difference of
the means of estimated number of sources, and find out
the size of the dimensioning error that is incurred by going
from fine-grained measurements to coarser-grained ones
(which was our primary goal). We test the statistical
hypothesis that there is a significant estimation error,
which translates into error in dimensioning, and hence, in
capacity management, by reducing the frequency of traffic
measurements from one-second to one-minute. As by-
products of the whole bootstrap procedure, we also obtain
the properties of the estimators â  and Ĥ , in addition to
those of N̂ , for a given estimation method.  The
properties that are already theoretically available are
confirmed, and the unavailable ones are obtained
empirically. Such results also offer a good basis for
comparison of the two estimation methods.

Resampling, or bootstrap, is especially useful in
applications such as the one considered in this paper. An
alternative could be to perform Monte Carlo simulations
for a range of values of ),,( Ham  and make the same
comparisons. However, the range of values would be
rather arbitrary and might not cover some values that are
estimated from new real traffic streams. In contrast,
bootstrap is portable to any future applications: for each
new triplet )ˆ,ˆ,ˆ( Ham , one can repeat this procedure
inexpensively using computing power, and obtain results.

Since the parameters ),,( Ham  for the two data sets that
we use are quite different, our results appear to have
general validity.

4. Estimation of FBM Parameters and
Dimensioning

4.1.   Estimation of FBM Parameters
In this paper, we make use of the variance-time method
and the wavelet method for estimating the parameters of
the FBM model from traffic measurements. The methods
are described in [3], and are summarized here for
reference.

Consider the traffic counts }{ 1,...,Nk,xk = , where

kx  is the number of traffic units arriving in the k’th
measurement interval, and N is the total number of
samples. In both methods, the estimate of the mean arrival
rate is given by
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straight line with slope HS 2= , with an ordinate-axis
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)(ˆ nV of the n-fold aggregated sequence (for values of n
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b) Estimate of a and H in Wavelet Method

We consider the joint estimation of a and H by the
wavelet estimation method given in [15], using
Daubechies wavelets with two vanishing moments. Let

),( kjd , jnk ,,1 �= , Jj ,,1 �= denote the 'details'
obtained by the discrete wavelet transform of the sequence
of traffic counts }{ 1,...,Nk,xk = , where J is such that

21 22 ++ ≤≤ JJ N , and jn  is the number of coefficients
available at octave j. The statistic central to the method is
given by

),(
1

1 2 kj
n

k
d

n

j

j
j �

=
=µ , Jj ,,1 �= .

Then, the Hurst parameter H and the coefficient fc  of the
spectrum of the data stream are estimated through a
weighted linear regression of

jjj gy −= )(log2 µ

over 21 ,, jjj �= , where 1j  and 2j are the scales
relevant for long-range dependence. The constant

)(log)12())((log 22 CcHjEg fjj −−−= µ
is introduced to ensure that the fundamental hypothesis of
regression holds (with C  a constant that depends on H ).
Then, the slope α  of the regression line is )12( −H  and

its intercept β  is B2log , where CcB f= . Veitch and

Abry [15] devise unbiased estimators for )12( −H  and

Cc f  under mild assumptions, which effectively hold for
FBM. The estimate of H  is given by

2

1ˆ +
=

α
H

which is unbiased and consistent. The estimator of
CcB f=  is given by β2ˆ ⋅= pB , where p is a constant to

ensure unbiasedness of B̂ . We now set 
C

B
c f ˆ

ˆ
ˆ = , where

Ĉ  is computed using Ĥ . Using the relationship of fc  to
the variance of the traffic counts for larger scales, we
obtain the estimate of the peakedness parameter a  by
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where m̂  is the estimate of the mean of the traffic counts.
This estimate is a complicated function of fĉ  and Ĥ , and
its behavior is not known.

4.2 Dimensioning Calculations for FBM Traffic
Model

The problem is to determine the number of independent
and identical FBM sources, each defined by the
parameters ),,( Ham , that can be supported on a link with
capacity L  and buffer-size B, for a specified bound ε  on
the loss-rate, and a specified bound D on the mean delay.
The multiplexing of n independent, homogeneous FBM
sources, each described by the parameters ),,( Ham ,
produces an FBM source with the parameters ),,( Hanm
[13]. Owing to the multiplexing gain inherent in the
statistical multiplexing of independent sources, the
bandwidth requirement is a non-linear function of the
number of sources. Using the scaling results presented in
[10] and in [7], one can determine the bandwidth required
to carry the traffic of n independent sources while meeting
the more stringent of the above two requirements on the
loss-rate and the mean delay. This calculation helps
determine the number of sources that can be supported on
the given link with capacity L and buffer-size B.

For the calculations in this paper, we assume a loss rate
of 0.0001 and a mean delay of 10 msec as the service
criteria, with a 500-byte buffer. We assumed a peak
source-rate equal to twice the mean rate. Although there is
no finite ‘peak rate’ in the FBM traffic model, the actual
traffic sources that we approximate by the FBM model do
have finite peak rates. The engineering algorithm that is
used in [10] does take account of the fact that the effective
bandwidth for a source cannot exceed its peak rate.

5. Bootstrap Results

The results in this section are presented in two parts. In
Section 5.1, we compare the two methods used for the
estimation of the FBM traffic parameters, by looking at
the properties of their estimators for a and H, both for 1-
second and 1-minute time-resolutions of measurement. In
Section 5.2, which is our main result, we turn to the
variable of interest in capacity engineering, viz., the
number of sources that a link can support, and consider
the error that is incurred as a result of less frequent
measurements, for either method of estimation of FBM
parameters.



19-6

Table 2: Estimators and their properties for one-second traffic stream

Actual values of (a,H) (505,0.67)
Data Set 1

(12.7,0.81)
Data Set 2

Parameter a H a H
Estimator 2094 0.64 63.4 0.75

V-T Method Bias 1589 -0.03 50.7 -0.06
Standard Deviation 3590 0.06 79.1 0.05

Estimator 620 0.68 18.6 0.81
Wavelet Method Bias 115 0.01 5.9 -0.005

Standard Deviation 529 0.04 12.7 0.04

Table 3: Estimators and their properties for one-minute traffic stream

Actual values of (a,H) (505,0.67)
Data Set 1

(12.7,0.81)
Data Set 2

Parameter a H a H
Estimator 2357 0.57 176 0.65

V-T Method Bias 1852 -0.10 163 -0.16
Standard Deviation 40114 0.13 2254 0.12

Estimator 1.5E+08 0.61 3.2E+07 0.69
Wavelet Method Bias 1.5E+08 -0.06 3.2E+07 -0.12

Standard Deviation 3.9E+09 0.25 6E+08 0.23

5.1. Estimation of FBM parameters
For each set of parameters ),,( Ham  obtained from the
two data sets described earlier, we generate 1000=R
replicates of an FBM traffic stream defined by those
parameters, using the method described in [2]. Each
stream is an hour-long data-sequence with samples at one-
second intervals, i.e., there are 3600 sample points. Then,
the parameter estimates )ˆ,ˆ,ˆ( rrr Ham , 1000,,2,1 �=r
are obtained by both the variance-time and wavelet
estimation methods. The relative performances of these
two methods are well known for estimation of H . For
example, the estimator Ĥ is unbiased for the wavelet
method, whereas it is biased for V-T method. For â , on
the other hand, our empirical results are especially useful.
They give information about the bias as well as about the
standard deviation, which may, in turn, be used for
constructing confidence intervals for a. Table 2
summarizes the estimation results for the fine-resolution

data sets, i.e., the traffic streams generated at one-second
intervals. The estimators are found as the mean of

1000,,2,1),ˆ,ˆ( �=rHa rr , for each method.

The bias is given by the difference

                                  H
Hr −

�

1000

ˆ

for H , and by an analogous difference for a . The
standard deviation is the sample standard deviation
of 10001

ˆ,,ˆ HH �  for H and is obtained similarly for a . It
can be seen that the wavelet estimator of H is essentially
unbiased with a small standard deviation as suggested by
theory. In comparison, the V-T estimator of H  has a
slight bias, with a somewhat larger standard deviation.
The estimator of a  is biased with both methods, but less
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Table 4: Estimators of number of sources and their properties

Parameters (m,a,H) (800,505,0.67)
Data Set 1

(3188,12.7,0.81)
Data Set 2

Number of Sources N 190 53

Sampling Interval 1-sec 1-min 1-sec 1-min

N̂ 195 240 51 59

V-T Method 95% CI [145,286] [167,371] [42,64] [48,76]

Bias 5
(2.6%)

50
(26%)

-2
(-3.8%)

6
(11.3%)

N̂ 195 204 52 49

Wavelet Method 95% CI [145,286] [145,308] [43,65] [34,66]

Bias 5
(2.6%)

14
(7.4%)

-1
(-1.9%)

-4
(-7.5%)

so with the wavelet method. Also, its standard deviation is
lower with the wavelet method. This is basically because
the wavelet estimator is a function of fĉ  defined in
Section 4.1, which has good properties as an estimator.

Table 3 summarizes the estimators and their properties
obtained from the 1000 data streams when aggregated at
one-minute intervals. As a result, each stream now has
only 60 sample points. In this case, the wavelet estimator
is less biased but has larger standard deviation than the V-
T estimator for H. When it comes to estimation of a, the
V-T estimator performs much better, as the wavelet
estimators are too big to make any sense. This is basically
because, with 60 sample points there are very few octaves
that can be used for the regression analysis in the wavelet
estimation method. Indeed, for some values of r, we were
not able to get an estimator with 0<H<1, for any possible
choices of the octaves for regression. We had to delete
these samples from our analysis.

We note also that the bias and standard deviation
increase for all estimators when the traffic stream is
sampled at the coarser intervals of one-minute, as
expected. For long enough streams of data traffic, the
wavelet method performs better in obtaining )ˆ,ˆ( Ha , but
with short streams, the V-T method performs better
ultimately, in that, at least, it produces meaningful
estimators. Besides, it may not even be possible to obtain
a wavelet estimator in some cases, as explained above,
with sampling at one-minute intervals in an hour.

5.2. Estimation of Number of Sources

Next, we estimate the number of sources N  that can be
supported on a T1 link (1544 kbits/sec), by calculating rN̂

from the parameter set )ˆ,ˆ,ˆ( rrr Ham , for 1000,,2,1 �=r ,
by both estimation methods. The results are given in Table
4.

The bias (error in capacity engineering) increases in all
cases when the sampling interval is increased from
seconds to minutes, taking values in the 7-26% range in
the latter case; this size of engineering error can have
significant cost penalties. When the two methods of
estimation are compared, one cannot really distinguish
them in terms of bias and the width of the confidence
intervals for N  for the fine analysis, i.e., one-second
intervals. In particular, for the parameters of Data Set 1,
both the wavelet and V-T methods produce exactly the
same sequence 100021

ˆ,,ˆ,ˆ NNN �  for the fine analysis. In
the one-minute interval case, wavelet estimation performs
slightly better. This is notable, as the wavelet estimators of
the model parameters are, in fact, very poor with the
coarse samples. Besides, for some replicates r (about 5-
10% of the cases), we were not able to estimate ),( Ha
and, hence N, due to the small number of scales available.
As far as the analysis of the fine-resolution one-second
data is concerned, the estimation of the number of sources
is robust to the method of estimation.

We now quantify the statistically significant
differences in one-minute and one-second analysis. We
employ the two-sample test for paired data [5], as the 1-
sec. and 1-min. calculations occur in pairs for each data
stream. The test statistic for the mean difference between
1-sec. and 1-min. sources is given by Z , where

ns

D
Z

/
=
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Table 5: Difference in N̂ between 1-sec. and 1-min. measurements

Parameters (m,a,H) (800,505,0.67)
Data Set 1

(3188,12.7,0.81)
Data Set 2

Number of Sources N 190 53
Observed difference 45 8

V-T
Method

Significant difference δ 43
(22.6%)

8
(15.1%)

P-value 0.0007 < 0.0002

Observed difference 9 -3
Wavelet
Method

Significant difference δ 7
(3.7%)

-2
(3.8%)

P-value < 0.0002 0.0004

and D  is the mean of the differences
sec)1(ˆmin)1(ˆ

rr NN − , nr ,,1 �= , and s is the standard
deviation of these differences. Note that

 Rn 1000    ==  for the variance-time method, and is
less than 1000 (about 5-10% less) for the wavelet method
because this method cannot produce estimates for some of
the replicates in the one-minute case due to too few
octaves being available. Since the traffic streams are
independent from one another, and n is large, Z is
approximately a standard normal random variable. The
statistical test results are listed in Table 5, where the P-
values are reported along with the greatest significant
difference between fine and coarse measurements. This is
the largest positive difference when 0>D  and it is the
smallest negative difference when 0<D . Explicitly, we
test the null hypothesis that the fine and coarse
measurements produce a mean difference δ , against the
alternative hypothesis that the difference is greater
(smaller) than δ when 0>D  ( 0<D ). In such a test, the
P-value, being the probability of the test statistic
exceeding the observed value, can be considered as the
strength of the alternative hypothesis: the smaller the P-
value, the stronger the rejection of the null hypothesis in
favor of the alternative. In Table 5, we report those values
of δ  that produce a P-value less than or equal to 0.01,
which is small enough to be considered significant in
statistical applications. We can see that the δ  values
reported in Table 5 are very close to observed values,
which are rounded up to the nearest integer and reported
here for reference. For example, for V-T method and Data
Set 1, the observed difference is (240-195) = 45 in our
experiments; equivalently, it is the difference in the
biases: (50-5) = 45. After the statistical test, we say that 1-
min. measurements will significantly overestimate the
number of sources by at least 43 units compared to 1-sec.
measurements.

The bias resulting from coarse measurements alone
and the corresponding engineering impact have been
discussed above. We now use Table 5 to compare the fine
and coarse measurements relative to one another. The
wavelet method again performs slightly better in respect of
the increase in bias of one-minute samples when compared
to one-second samples. However, this method may not be
useful in short traffic traces, in which case, the variance-
time estimation should be used.

6. Conclusion

We have applied the ‘parametric bootstrap’ approach to
carry out a thorough analysis of the effect of sampling
interval of traffic measurements in high-speed data
networks on capacity engineering, going beyond the
results of earlier analysis [3]. The fitted model is a
parametric one, the so-called FBM traffic model. We find
that the error made in link engineering is statistically
significant (in the range 7-26%) when the measurements
are taken at one-minute, instead of one-second, intervals.
This range of error could produce unacceptable cost
penalties. This qualitative result is robust in terms of the
two well-known methods of estimation used: the variance-
time and the wavelet methods.

This study also confirms that wavelet estimation is
more accurate in determining the Hurst and peakedness
parameters in FBM traffic model when the data stream is
sufficiently long to provide a significant number of
octaves for regression analysis. However, when the data
stream has few sample points, as with coarse
measurements over a limited duration, the variance-time
method is the more reliable method of estimation of the
FBM parameters. This fact is important if the value of the
performance measure that is being estimated as a function
of those parameters can change abruptly when those
parameters are perturbed.
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The results in this paper suggest that, for capacity
engineering of acceptable accuracy for IP traffic, traffic
measurements should be collected at a finer time-
resolution than one-minute intervals. Our results also
indicate that measurements at one-second intervals lead to
acceptable accuracy.

References
[1] J. Beran, R. Sherman, M. Taqqu, and W. Willinger, Long-
Range Dependence in Variable-Bit-Rate Video Traffic, IEEE
Transactions on Communications, 43, pp. 1566-1579, 1995.
[2] M. Caglar, Simulation of Fractional Brownian Motion with
Micropulses, Advances in Performance Analysis, Vol. 3, 2000.
[3] M. Caglar, K. R. Krishnan, and I. Saniee, Estimation of
Traffic Parameters in High-Speed Data Networks, 16th
International Teletraffic Congress, Edinburgh, U.K., pp. 867-
876, June 1999.
[4] A. C. Davison and Hinkley, Bootstrap Methods and their
Application, Cambridge University Press, 1997.
[5] J.L. Devore, Probability and Statistics for Engineering and
the Sciences, Fourth Edition, Wadsworth, Inc., 1995.
[6] B. Efron, Bootstrap Methods: another look at the jacknife,
Annals of Statistics 7, 1-26, 1979.
[7] A. Erramilli and J. L. Wang, A connection admission control
algorithm for self-similar traffic, Globecom’98, Sydney,
November 1998.
[8] A. Feldmann, A.C. Gilbert, W. Willinger and T. G. Kurtz,
The changing nature of network traffic: Scaling phenomena,

ACM SIGCOMM Computer Communication Review, April
1998.
[9] J.L. Jerkins, A.L. Neidhardt, J.L. Wang, A. Erramilli,
Operations measurements for engineering support of high-speed
networks with self-similar traffic, Proc. 16th International
Teletraffic Congress, Edinburgh, UK, pp. 895-906, 1999.
[10] K. R. Krishnan, A. L. Neidhardt, and A. Erramilli, Scaling
Analysis in Traffic Management of Self-Similar Processes, Proc.
15th International Teletraffic Congress, Washington, D.C., pp.
1087-1096, 1997.
[11] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V.
Wilson, On the Self-Similar Nature of Ethernet Traffic
(Extended Version), IEEE/ACM Trans. On Networking, 2, pp.
1-15, 1994.
[12] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V.
Wilson, Self-Similarity in High-Speed Packet Traffic: Analysis
and Modeling of Ethernet Traffic Measurements, Statistical
Science, 10, pp. 67-85, 1995.
[13] I. Norros, A Storage Model with Self-Similar Input,
Queueing Systems, 16, pp. 387-396, 1994.
[14] Eric van den Berg, Parameter Estimation For Long Range
Dependent Data: Single Fine vs. Multiple Coarse Measurements,
ITC Specialist Seminar on IP Traffic Modeling, Measurements,
and Management, September 2000.
[15] D. Veitch and P. Abry, A Wavelet Based Joint Estimator of
the Parameters of Long-Range Dependence, submitted to special
issue of IEEE Trans. Information Theory, on Multiscale
Statistical Signal Analysis and its Applications, 45, pp. 878-897,
April 1999.


	Introduction
	2.	Traffic Measurements
	Traffic Model and Resampling
	FBM Traffic Model
	Resampling Traffic Measurements
	The Bootstrap Procedure
	Nature of Results Available from Bootstrap Procedure


	Estimation of FBM Parameters and Dimensioning
	Estimation of FBM Parameters
	a) Estimate of a and H in Variance-Time Method
	b) Estimate of a and H in Wavelet Method

	4.2 Dimensioning Calculations for FBM Traffic Model

	Bootstrap Results
	Estimation of FBM parameters
	Estimation of Number of Sources

	Conclusion

