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We consider a weakly interacting Bose-Einstein condensate that is loaded into an optical lattice with a two-
point basis and described by a two-band Bose-Hubbard model with generic one-body and two-body terms.
By first projecting the system onto the lower Bloch band and then applying the Bogoliubov approximation
to the resultant Hamiltonian, we show that the inverse effective-mass tensor of the superfluid carriers in the
Bogoliubov spectrum has two physically distinct contributions. In addition to the usual inverse band-mass tensor
that is originating from the intraband processes within the lower Bloch band, there is also a quantum-geometric
contribution that is induced by the two-body interactions through the interband processes. We also discuss the
conditions under which the latter contribution is expressed in terms of the quantum-metric tensor of the Bloch
states, i.e., the natural Fubini-Study metric on the Bloch sphere.
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I. INTRODUCTION

Recent theoretical efforts have firmly established that the
quantum geometry of the underlying Bloch states lies at the
heart of some multiband Fermi superfluids, e.g., Refs. [1–5]
and the references therein. This is because, by controlling
the effective-mass tensor of the superfluid carriers through
the interband transitions [3,4,6], the quantum geometry can
affect those superfluid properties that have explicit depen-
dence on the carrier mass, e.g., superfluid weight and density,
Berezinskii-Kosterlitz-Thouless transition temperature, and
low-energy collective excitations [1–7]. While these predic-
tions are based heavily on the multiband extension of the BCS
formulation of superconductivity, their physical origins root
deep into the two-body problem which is exactly tractable
[8,9]. For instance, a pair of particles can still acquire a fi-
nite effective mass from the quantum geometry in the case
when its unpaired constituents are completely localized and
immobile, e.g., due to their diverging band mass in a flat band
[8–10]. Thus the quantum-geometric interband mechanism
resolves how superfluidity of Cooper pairs can prevail in a
flat band [1].

Despite all this progress with Fermi superfluids, the
defining effect of quantum geometry on multiband Bose su-
perfluids is still in its infancy. For instance, in the case
of a weakly interacting Bose-Einstein condensate (BEC) in
a flat Bloch band, there are several multiband Bogoliubov
analyses revealing that the quantum geometry dictates the
speed of sound, quantum depletion, density-density correla-
tions, and superfluid weight in fundamentally different ways
[11–13]. In addition, there is a similar analysis for the spin-
orbit-coupled Bose superfluids highlighting that the quantum
geometry of the helicity states in such a two-band continuum
model plays an analogous role [14], which is in accordance

with the recent works on the spin-orbit-coupled Fermi
superfluids [6,15].

Motivated by these recent works, and given that a crystal
structure with a two-point basis is the minimal model to study
quantum geometry of the Bloch states, here we consider a
two-band Bose-Hubbard model with a generic single-particle
spectrum and two-body interactions. By deriving the Bogoli-
ubov spectrum for the low-energy quasiparticle excitations,
we show that the interband processes that are induced by the
two-body interactions give rise to a quantum-geometric con-
tribution and dress the effective-mass tensor of the superfluid
carriers. In the particular case when the BEC occurs uniformly
within a unit cell, we also relate the geometric contribution to
the quantum-metric tensor of the Bloch states. Similar to the
Bogoliubov spectrum and superfluid weight and density, it is
conceivable that all of the superfluid properties that depend
on the carrier mass also have analogous quantum-geometric
contributions. In fact, the energetic stability of a weakly in-
teracting Bose superfluid relies solely on these contributions
when the BEC occurs in a flat Bloch band [11–13].

The remaining text is organized as follows. In Sec. II we
introduce the two-band Bose-Hubbard Hamiltonian in mo-
mentum space and project it to the lower Bloch band. Then
in Sec. III we apply the Bogoliubov approximation to the
projected Hamiltonian and extract the low-energy Bogoliubov
modes. There we also relate the effective-mass tensor of the
superfluid carriers to the quantum-metric tensor of the Bloch
states and compare their relation with that of the Fermi su-
perfluids. In Sec. IV we end the paper with a brief summary
of our findings and an outlook. Benchmark with the extended
Bose-Hubbard model is briefly discussed in Appendix A, and
some example models with nontrivial geometry are presented
in Appendix B.
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II. BOSE-HUBBARD MODEL

In the presence of multiple sublattices, a generic Hamilto-
nian for the Bose-Hubbard model can be written as

H = −
∑
Si;S′i′

tSi;S′i′c
†
SicS′i′ + 1

2

∑
Si

USc†
Sic

†
SicSicSi

+
∑

〈Si,S′i′〉
VSi,S′i′c

†
Sic

†
S′i′cS′i′cSi − μ

∑
Si

c†
SicSi, (1)

where the operator c†
Si (cSi) creates (annihilates) a particle at

the sublattice site S in the unit cell i, the hopping parameter
tSi;S′i′ characterizes the tunneling between any pair of sites,
the two-body terms US and VSi,S′i′ describe, respectively, the
on-site and off-site density-density interactions, and μ is the
chemical potential. It is only the on-site interaction that is
considered in the previous works [11–13]. The number of S
sites determines the number of Bloch bands in the single-
particle spectrum, and a lattice with a two-point basis (i.e.,
S ∈ {A, B}) is the minimal model to study the quantum ge-
ometry of underlying Bloch states. For the sake of clarity and
for its simplicity, here we restrict our analysis to a two-band
Bose-Hubbard model with generic single-particle spectrum
and two-body interactions.

A. Two-band model in momentum space

To express the Bose-Hubbard Hamiltonian in momen-
tum space, we Fourier expand the operators via c†

Si =
1√
Nc

∑
k e−ik·rSi c†

Sk, where Nc is the number of unit cells in
the lattice, k is the crystal momentum in the first Brillouin
zone, and rSi is the position of the site Si. Then a com-
pact way to express the single-particle (hopping) term in
general is

H0 =
∑

k

(c†
Ak c†

Bk )

(
d0

k + dz
k dx

k − idy
k

dx
k + idy

k d0
k − dz

k

)(
cAk
cBk

)
, (2)

where the field vector dk = (dx
k, dy

k, dz
k ) that is coupled to a

vector of Pauli matrices σ = (σx, σy, σz ) governs the sublat-
tice degrees of freedom. Here d0

k , dx
k , dy

k, and dz
k all depend

on the specific details of the hopping parameters for a given
lattice, and we do not make any assumption on their k
dependence. Thus the Bloch bands are determined by the
eigenvalues of the Hamiltonian matrix shown in Eq. (2),
leading to εsk = d0

k + sdk, where s = ± labels the upper and
lower bands, and dk = |dk| is the magnitude of the sublattice
field. The corresponding Bloch states |sk〉 can be represented
as |+, k〉 = (uk, vkeiϕk )T and |−, k〉 = (−vke−iϕk , uk )T,
where

uk/vk =
√

1

2
± dz

k

2dk
, (3)

ϕk = arg
(
dx

k + idy
k

)
, (4)

and T denotes a transpose.
Similarly a compact way to express the interaction terms

in general is

HI = 1

2Nc

∑
SS′kk′q

USS′ (q)c†
S,k+qc†

S′,k′−qcS′k′cSk, (5)

where q is the exchanged momentum between particles,
and USS′ (q) = U ∗

SS′ (−q) = US′S (−q) by definition. Note that
USS (q) depends not only on the on-site interaction US

but also on VSi,Si′ . Thus while the intra-sublattice interac-
tions UAA(q) and UBB(q) are real and even functions of
q in general, the inter-sublattice interaction UAB(q) can
be complex. For instance, in the case of an extended
Bose-Hubbard model with only nearest-neighbor hopping
t , on-site repulsion U , and nearest-neighbor repulsion V ,
they can be written as UAA(q) = UBB(q) = U and UAB(q) =
V

∑
δnn

eiq·δnn = −(V/t )(dx
q − idy

q ), where δnn denotes the
nearest neighbors of the A sublattice. Therefore, in this
particular case, dx

q = dx
−q is necessarily an even function

of q while dy
q = −dy

−q is an odd one. For example, δnn ∈
{(±a, 0), (0,±a)} and UAB(q) = 2V [cos(qxa) + cos(qya)]
in a square lattice, but δnn ∈ {(a, 0), (−a/2,±a

√
3/2)}

and UAB(q) = V [cos(qxa) + 2 cos(qxa/2) cos(
√

3qya/2)] −
iV [sin(qxa) − 2 sin(qxa/2) cos(

√
3qya/2)] in a honeycomb

lattice.
The Bogoliubov spectrum for the total Hamiltonian H =

H0 + HI can be obtained numerically through a straight-
forward application of the Bogoliubov approximation. Since
the resultant Bogoliubov Hamiltonian matrix is 4×4, the
spectrum has four branches; i.e., there are two quasipar-
ticle and two quasihole bands that are related to each
other through quasiparticle-quasihole symmetry. However,
our main task here is to reveal a direct connection between
the low-energy Bogoliubov modes and the quantum geometry
of the Bloch states. Such a task can be achieved analyti-
cally by first projecting H onto the lower Bloch band and
then applying the Bogoliubov approximation to the projected
Hamiltonian.

B. Projection onto the lower Bloch band

Suppose BEC takes place at the Bloch state |−, kc〉. Next
we assume that the energy gap 2dkc between the lower and
upper Bloch bands near this ground state is much larger than
the interaction energy, and we project H to the lower band.
Thus we first express H in the Bloch band basis, i.e., cSk =∑

s〈S|sk〉csk, and then we discard those terms that involve the
upper band, i.e., we set cSk → 〈S|−, k〉c−,k or more explicitly
cAk → −vke−iϕk c−,k and cBk → ukc−,k. Here csk annihilates
a particle from the Bloch state |sk〉. This procedure leads to
the projected Hamiltonian

HP =
∑

k

(ε−,k − μ)c†
−,kc−,k

+ 1

2Nc

∑
kk′q

f k′,k
k+q,k′−qc†

−,k+qc†
−,k′−qc−,k′c−,k, (6)

where the second term describes the dressed
density-density interactions in the lower Bloch band
with the effective interaction amplitude f k′,k

k+q,k′−q =∑
SS′ USS′ (q)〈−, k+q|S〉〈−, k′ − q|S′〉〈S′|−, k′〉〈S|−, k〉. In

terms of the Bloch factors, this effective interaction
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becomes

f k′,k
k+q,k′−q = UAA(q)vk+qvk′−qvk′vkei(ϕk+q+ϕk′−q−ϕk′ −ϕk )

+ UBB(q)uk+quk′−quk′uk

+ UAB(q)vk+quk′−quk′vkei(ϕk′+q−ϕk )

+ UBA(q)uk+qvk′−qvk′ukei(ϕk′−q−ϕk′ ). (7)

Note that the q dependence of f k′,k
k+q,k′−q remains there even in

the absence of the off-site interaction term VSi,S′i′ in Eq. (1).
Equation (6) is expected to be quantitatively accurate in

describing the low-energy physics when the occupation of the
upper band is negligible, e.g., in the weakly interacting limit.
For instance, in the case of spin-orbit-coupled Bose gases,
the corresponding HP works surprisingly well as it perfectly
reproduces the Bogoliubov spectrum not only at low momenta
but also near the band touchings [14]. See also Appendix A.

III. BOGOLIUBOV THEORY

In the Bogoliubov approximation, we first replace the cre-
ation and annihilation operators in accordance with c−,k =√

N0δkkc + c̃−,k, where N0 is the number of condensed par-
ticles at the Bloch state |−, kc〉, δkkc is a Kronecker delta, and
the operator c̃−,k denotes the fluctuations on top of the many-
body ground state. Then we set the first-order fluctuations to
zero and discard the third- and fourth-order fluctuations. The

former condition gives μ = ε−,kc + n0 f kckc
kckc

, leading to

μ = ε−,kc + n0
[
UAA(0)v4

kc
+ UBB(0)u4

kc

+ 2UAB(0)u2
kc

v2
kc

]
, (8)

where UAB(0) = UBA(0) is real by definition and n0 = N0/Nc

is the condensate filling per unit cell. Note that the condensate
filling within a unit cell (i.e., on sublattices A and B) is not
necessarily uniform unless ukc = vkc = 1/

√
2 (i.e., dz

kc
= 0)

is favored by the interactions.

A. Bogoliubov Hamiltonian

The second-order fluctuations are described by the Bogoli-
ubov Hamiltonian

HB = 1

2

′∑
q

(c̃†
−,kc+q c̃−,kc−q)

(
hpp

q hph
q

hhp
q hhh

q

)(
c̃−,kc+q

c̃†
−,kc−q

)
, (9)

where the diagonal elements hhh
q = hpp

−q are given by hpp
q =

ε−,kc+q − μ + n0
2 ( f kc,kc+q

kc,kc+q + f kc+q,kc
kc+q,kc

+ f kc,kc+q
kc+q,kc

+ f kc+q,kc
kc,kc+q ),

and the off-diagonal elements hhp
q = (hph

q )∗ are given by
hph

q = n0
2 ( f kc,kc

kc+q,kc−q + f kc,kc
kc−q,kc+q). The prime symbol in

Eq. (9) indicates that the summation excludes the condensed
state. In terms of the Bloch factors, the matrix elements
become

hpp
q = ε−,kc+q − μ + n0

{
[UAA(q) + UAA(0)]v2

kc
v2

kc+q + [UBB(q) + UBB(0)]u2
kc

u2
kc+q + UAB(0)

(
u2

kc
v2

kc+q + v2
kc

u2
kc+q

)
+ 2Re[UAB(q)ei(ϕkc+q−ϕkc )]ukcvkc ukc+qvkc+q

}
, (10)

hph
q = n0

[
UAA(q)ei(ϕkc+q+ϕkc−q−2ϕkc )v2

kc
vkc+qvkc−q + UBB(q)u2

kc
ukc+qukc−q + UAB(q)ei(ϕkc+q−ϕkc )ukcvkc ukc−qvkc+q

+ UAB(−q)ei(ϕkc−q−ϕkc )ukcvkc ukc+qvkc−q
]
, (11)

for the particle-particle and particle-hole sectors, where Re
denotes the real part.

The Bogoliubov spectrum Esq for Eq. (9) is determined by
the eigenvalues of τzhq so that the bosonic commutation rules
are properly taken into account, where τz is the third Pauli
matrix in the particle-hole space and hq is the Hamiltonian
matrix shown in Eq. (9). Thus the spectrum has two modes
for a given q, i.e.,

Esq = Aq + s
√

B2
q − ∣∣hph

q

∣∣2
, (12)

Aq/Bq = hpp
q ∓ hhh

q

2
, (13)

where s = ± denotes, respectively, the quasiparticle and
quasihole branches in the first line. Here Aq is odd in q, and
Bq and hph

q are even in q, so that the quasiparticle-quasihole
symmetry E+,q = −E−,−q manifests in the spectrum.

B. Low-energy Bogoliubov excitations

Since our primary objective is to derive an analytical
expression for the low-energy Bogoliubov modes, next we
calculate Esq accurately up to first order in q. For this purpose

we first recall that UAB(q) = U ∗
AB(−q), and therefore UAB(0)

is always real. Furthermore, given that the zeroth-order con-
tribution from the imaginary part Im[hph

0 ] = 0 vanishes, its
second-order contribution (which contributes to the square-
root term in Esq at quartic order in q) is not needed for the
determination of the effective-mass tensor of the superfluid
carriers. Thus we may simply substitute |hph

q |2 → C2
q for the

low-q modes, where

Cq = n0
{
v2

kc
vkc+qvkc−qUAA(q) + u2

kc
ukc+qukc−qUBB(q)

+ ukcvkc ukc−qvkc+qRe[UAB(q)ei(ϕkc+q−ϕkc )]

+ ukcvkc ukc+qvkc−qRe[UAB(−q)ei(ϕkc−q−ϕkc )]
}

(14)

is taken as real up to second-order in q. Note here that,
since ϕkc+q + ϕkc−q − 2ϕkc is even in q and vanishes at the
zeroth order, the q dependence coming from its cosine is
at least quartic order, and therefore it is dropped from the
first term as well. Then we only need the expansion of Aq =∑

� A�q� + O(q3), up to first order in q, and the expansions
of Bq = B0 + (1/2)

∑
��′ B��′q�q�′ + O(q4) and Cq = C0 +

(1/2)
∑

��′ C��′q�q�′ + O(q4), up to second orders in q. Here
q� refers to the �th component of the q = (qx, qy, qz ) vector,
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A� = (∂Aq/∂q�)q=0, B��′ = (∂2Bq/∂q�∂q�′ )q=0, and similarly
C��′ = (∂2Cq/∂q�∂q�′ )q=0.

The zeroth-order coefficients B0 = εkc − μ +
2n0[v4

kc
UAA(0) + u4

kc
UBB(0) + u2

kc
v2

kc
UAB(0)] and C0 =

n0[v4
kc

UAA(0) + u4
kc

UBB(0) + 2u2
kc

v2
kc

UAB(0)] are equal to
each other due to Eq. (8), which guarantees that the q = 0
mode is gapless, i.e., Es0 = 0. Thus we find

Esq =
∑

�

A�q� + s

√
B0

∑
��′

(B��′ − C��′ )q�q�′ + O(q2) (15)

for the low-energy quasiparticle and quasihole excitations,
where

A� = ε̇�
kc

+ n0
[
4UAA(0)v3

kc
v̇�

kc
+ 4UBB(0)u3

kc
u̇�

kc

+ U̇ �
AA(0)v4

kc
+ U̇ �

BB(0)u4
kc

+ 2U̇ �
AB(0)u2

kc
v2

kc

+ 4UAB(0)ukcvkc

(
ukc v̇

�
kc

+ vkc u̇
�
kc

)]
(16)

is the coefficient of the linear term, and

B��′ − C��′ = (M−1)��′ + n0
{
2UAA(0)v2

kc

(
vkc v̈

��′
kc

+ 3v̇�
kc

v̇�′
kc

) + 2UBB(0)u2
kc

(
ukc ü

��′
kc

+ 3u̇�
kc

u̇�′
kc

)
+ 2

[
U̇ �

AA(0)v̇�′
kc

+ U̇ �′
AA(0)v̇�

kc

]
v3

kc
+ 2

[
U̇ �

BB(0)u̇�′
kc

+ U̇ �′
BB(0)u̇�

kc

]
u3

kc

+ 2UAB(0)
[
u2

kc

(
vkc v̈

��′
kc

+ v̇�
kc

v̇�′
kc

) + v2
kc

(
ukc ü

��′
kc

+ u̇�
kc

u̇�′
kc

) + 2ukcvkc

(
u̇�

kc
v̇�′

kc
+ v̇�

kc
u̇�′

kc

)]
+ 4Re

[
U̇ �

AB(0)u̇�′
kc

+ U̇ �′
AB(0)u̇�

kc

]
ukcv

2
kc

}
(17)

is the coefficient of the quadratic term inside the square
root. Here (M−1)��′ = (∂2ε−,kc+q/∂q�∂q�′ )q=0 is the matrix
element of the inverse band-mass tensor M−1 for a particle
in the lower Bloch band, u̇�

kc
= (∂ukc+q/∂q�)q=0, ü��′

kc
=

(∂2ukc+q/∂q�∂q�′ )q=0, and U̇ �
SS′ (0) = [∂USS′ (q)/∂q�]q=0.

Note that Eq. (17) can be interpreted as the inverse
effective-mass tensor for the superfluid carriers dressed
by the presence of an upper Bloch band [14].

Equations (16) and (17) can be simplified considerably
as follows. Since UAB(q) = U ∗

AB(−q), we first note that
Re[UAB(q)] = Re[U ∗

AB(−q)] is an even function of q, and
therefore we take Re[U̇ �

AB(0)] = 0. Similarly USS (q) is also an
even function of q, and therefore we take U̇ �

SS (0) = 0. Further-
more we suppose UAA(0) = UBB(0) = U are equal for both
sublattices, UAB(0) = V , and ε̇�

kc
= 0. It is also convenient to

substitute uq = cos(θq/2) and vq = sin(θq/2) without loss of
generality as they satisfy u2

q + v2
q = 1. Note that θq and ϕq

correspond, respectively, to the azimuthal and polar angles on
the Bloch sphere. With these simplifications, we find that

A� = −n0

2
U sin(2θkc )θ̇ �

kc
, (18)

B0 = n0U + n0

2
(V − U ) sin2 θkc , (19)

B��′ − C��′ = (M−1)��′ + n0

4
(V − U )

× [
sin(2θkc )θ̈ ��′

kc
+ 2 cos(2θkc )θ̇ �

kc
θ̇ �′

kc

]
(20)

are the desired expansion coefficients in general, where θ̇ �
kc

=
(∂θkc+q/∂q�)q=0 and θ̈ ��′

kc
= (∂2θkc+q/∂q�∂q�′ )q=0. Equa-

tion (20) reveals that the dressing of the effective-mass tensor
is caused by the presence of a second band in the Bloch spec-
trum and that it has a peculiar dependence on the geometry
of the Bloch sphere. Note that Eqs. (18), (19), and (20) do
not depend on ϕq. See also a related discussion at the end of
Sec. III in Ref. [13].

It is important to emphasize that these generic expres-
sions are valid and applicable to a broad range of two-band

Bose-Hubbard models. In the particular case when θkc = π/2,
i.e., when dz

kc
= 0, Eq. (15) can be written as

Esq = s

√
n0

U + V
2

∑
��′

(
M−1

eff

)
��′q�q�′ + O(q2), (21)

(
M−1

eff

)
��′ = (M−1)��′ + n0

U − V
2

θ̇ �
kc

θ̇ �′
kc

, (22)

where (M−1
eff )��′ is the matrix element of the inverse effective-

mass tensor M−1
eff for the superfluid carriers. This case

corresponds to a uniform condensate filling on sublattices A
and B since ukc = vkc = 1/

√
2. Given that both sublattices

are equally populated, n0/2 corresponds to the condensate
filling per lattice site in the system and hence to the proper
prefactor for the effective mass. For instance, when U > V ,
the ground state of a flat-band BEC is expected to be uniform
over the unit cell as this configuration minimizes the repulsive
interactions [16]. We note in passing that, since θ̇ �

q is trivially
zero when dz

q = 0 for every q in the entire Brilluoin zone, the
presence of a finite geometric contribution relies on a non-
trivial dz

q to begin with. For instance, in the case of bipartite
lattices, next-nearest-neighbor hopping processes may give
rise to such an intra-sublattice term in the Bloch Hamiltonian.
See Appendix B for example models. Unless dz

q is coupled
with a dx

q and/or dy
q term in the Bloch Hamiltonian, θq =

{0, π} for every q in the entire Brilluoin zone, and therefore,
θ̇ �

kc
= 0 becomes trivial. Furthermore the geometric dressing

is also trivial when U = V , whose physical significance is not
obvious.

On the other hand when θkc = {0, π}, i.e., when
dx

kc
= 0 = dy

kc
and dz

kc
≷ 0, Eq. (15) reduces to Esq =

s
√

n0U
∑

��′ [(M−1)��′ + n0
V−U

2 θ̇ �
kc

θ̇ �′
kc

]q�q�′ + O(q2). While
the θkc = 0 case with ukc = 1 and vkc = 0 corresponds to a
condensate filling that is entirely on sublattice B, θkc = π

case with ukc = 0 and vkc = 1 corresponds to a condensate
filling that is entirely on sublattice A. Given that one of the
sublattices is empty, n0 corresponds to the condensate filling
per site for the occupied sublattice, which explains the differ-
ence between the prefactor of the effective mass here and in
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Eq. (21). Thus, since the condensate filling has the structure
of a charge-density-wave pattern in both of these extreme
cases, the inter-sublattice interaction V must disappear from
the Bogoliubov spectrum because one of the sublattices is
not macroscopically occupied. In fact, it can be shown that
θ̇ �

kc
= 2v̇�

kc
/ukc = 0 in general for both of these extreme cases,

which makes their geometric dressing trivial. For instance,
in the case of the extended Bose-Hubbard model that is dis-
cussed in Appendix A, such a density-wave superfluid (i.e., a
supersolid) may occur when the nearest-neighbor repulsion V
is sufficiently larger than the on-site one on a bipartite lattice,
and the asymmetric occupation of the sublattices can become
as dramatic only in the V 
 U limit [17,18].

We emphasize that the bare band-mass tensor in Eq. (22)
and its dressing terms have completely different physical ori-
gins. While the usual term (M−1)��′ is associated with the
intraband processes within the lower Bloch band in which the
BEC occurs, the dressing terms are related to the interband
processes that are induced by the interactions. That is why
they have an overall factor of U and/or V in the front. The in-
terband terms are quite peculiar because they depend not only
on the Bloch bands but also on the Bloch states themselves,
i.e., on the geometry of the Bloch sphere. For this reason
they are claimed to have a quantum-geometric origin [11–14].
Their critical roles in Eqs. (20) and (21) are to renormalize
and dress the inverse effective-mass tensor of the superfluid
carriers. Next we show that the geometric contribution of
Eq. (22) can be related to the quantum-metric tensor of the
underlying Bloch states under some specific conditions.

C. Connection to the quantum-metric tensor

The quantum-metric tensor corresponds to the real part of
the quantum-geometric tensor [19]. For instance, in the case
of a multiband Bloch Hamiltonian, it can be expressed in
general as gsk

��′ = Re[(∂〈sk|/∂k�)(I − |sk〉〈sk|)(∂|sk〉/∂k�′ )],
where |sk〉 corresponds to the Bloch state for band s at mo-
mentum k, and I = ∑

s |sk〉〈sk| denotes the identity operator
for a given k. In the case of two-band lattices where s = ±, it
can be shown that g+,k

��′ = g−,k
��′ = gk

��′ is given by

gk
��′ = 1

4
θ̇ �

k θ̇ �′
k + sin2 θk

4
ϕ̇�

kϕ̇
�′
k , (23)

where ϕ̇�
k = ∂ϕk/∂k�. Thus the so-called quantum distance

ds2 = ∑
��′ gk

��′dk�dk�′ ∼ dθkdθk + sin2 θkdϕkdϕk clearly il-
lustrates that gk

��′ corresponds to nothing but to the natural
Fubini-Study metric on the Bloch sphere with radius r =
1/2 [20]. When θk ∈ {0, π} or ϕ̇�

k = 0, Eq. (23) reduces to
θ̇ �

k θ̇ �′
k /4, which gives precisely the interband contribution to

the effective-mass tensor in Eq. (22) up to a prefactor, i.e.,

(
M−1

eff

)
��′ = (M−1)��′ + 2n0(U − V )gkc

��′ . (24)

However, since the former two cases have trivial geometry,
here we concentrate only on the latter case (i.e., ϕ̇�

kc
= 0) re-

quiring that either (i) dx
kc

= 0 = ḋx,�
kc

or (ii) dy
kc

= 0 = ḋy,�
kc

, but

not both simultaneously, where ḋ i,�
kc

= (∂di
k/∂k�)k=kc . Note

that Eq. (21) is derived for a uniformly condensed Bose gas;
i.e., it assumes dz

kc
= 0 as well. Thus the latter possibility (ii)

is in complete agreement with the previous works [11–14]: the
quantum-metric tensor appears in the Bogoliubov spectrum of
a uniformly condensed Bose gas when all of the k states for
the lowest-lying Bloch band |−, k〉 admit real representation
in the Brillouin zone, i.e., when dy

k = 0 for every k. When this
condition holds, it automatically guarantees that ḋy,�

k = 0 for
every k as well, leading eventually to gkc

��′ = ḋ z,�
kc

ḋ z,�′
kc

/(2dx
kc

)2

for case (ii). Similarly we find gkc
��′ = ḋ z,�

kc
ḋ z,�′

kc
/(2dy

kc
)2 for the

former possibility (i) when dx
k = 0 for every k.

In the particular case when the Bloch Hamiltonian exhibits
time-reversal symmetry [i.e., when the Hamiltonian matrix
given in Eq. (2) satisfies h0k = h∗

0,−k or simply dx
k = dx

−k,
dy

k = −dy
−k, and dz

k = dz
−k], a uniformly condensed Bose gas

at the zero-momentum Bloch state (i.e., when kc = 0 and θ0 =
π/2) has a trivial geometric contribution to the effective-mass
tensor of the superfluid carriers. This is because θ̇ �

0 = 0 when
dz

0 = 0 = ḋ z,�
0 . See also Appendix A. Thus, when the time-

reversal symmetry manifests, a uniformly condensed Bose gas
must occur at a finite momentum Bloch state (i.e., kc �= 0 and
θkc = π/2) in order for a nontrivial geometric contribution to
appear. Such a situation can only be realized if there exists
a degeneracy in the single-particle ground state, e.g., in the
presence of a spin-orbit coupling or in a flat Bloch band.
The former possibility has recently been addressed in full
detail [14]. However, in the latter possibility [16], since the
bare inverse band-mass tensor (M−1)��′ necessarily vanishes
in Eq. (24), the low-energy Bogoliubov modes are deter-
mined entirely by a particular value of the quantum-metric
tensor, i.e., by gkc

��′ [11–13]. Example models are given in
Appendix B.

D. Comparison with the Fermi superfluids

Typically the building blocks for the many-body problem
in Fermi superfluids can be found in the two-body problem,
and it turns out the quantum-geometric effects are already ap-
parent in this exactly solvable limit [8,9]. For instance, in the
presence of time-reversal symmetry and under the condition
of uniform pairing on all sublattices within a unit cell, the
inverse effective-mass tensor for the lowest-lying two-body
bound-state band has a quantum-geometric contribution that
is controlled precisely by the quantum-metric tensor of the
underlying Bloch states. The exact relation is in fact a k-space
sum over a few terms that can be associated with either the
intraband or the interband processes, where the band-resolved
quantum-metric tensor appears in the latter with some addi-
tional energy factors [8,9]. It turns out the many-body problem
is quite similar to the two-body one: the inverse effective-mass
tensor of the superfluid carriers (i.e., the Cooper pairs) also has
a quantum-geometric contribution originating from the inter-
band processes [3,4,6]. This finding further suggests that all
of the superfluid properties that depend on the pair mass must
have some quantum-geometric contribution, including but not
limited to the superfluid weight/density (i.e., superfluid stiff-
ness) and low-energy collective excitations (i.e., Goldstone
modes) [1–7].
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IV. CONCLUSION

In summary here we considered a weakly interacting Bose
gas that is described by a generic two-band Bose-Hubbard
model, and we derived its Bogoliubov spectrum for the low-
energy quasiparticle excitations. We showed that the interband
processes that are induced by the interactions give rise to a
quantum-geometric contribution and dress the effective-mass
tensor of the superfluid carriers. When the BEC occurs uni-
formly within a unit cell (i.e., equal condensate filling on both
sublattices), we also related the geometric contribution to the
quantum-metric tensor of the Bloch states, which is nothing
but the natural Fubini-Study metric on the Bloch sphere. Thus,
in the particular case when the bare band-mass tensor vanishes
(e.g., in a flat Bloch band), the energetic stability of the Bo-
goliubov modes, and therefore the BEC itself, is guaranteed
by a finite quantum-geometric contribution. This shows that
the previous results are immune to the presence of nonlocal
interactions [11–13].

Similar to the Bogoliubov spectrum and superfluid weight
and density, we expect that all of the superfluid properties
that depend on the effective carrier mass to have analogous
quantum-geometric contributions. These contributions can be
distinguished by their linear dependence on the interactions
and are well-worthy of further research and exploration. In
particular, since our formalism is based on the Bogoliubov
approximation, our analytical expressions are not valid away
from the weakly interacting limit. As the interactions become
stronger, we expect the intraband contribution coming from
the upper Bloch band to affect the effective-mass tensor, espe-
cially when the interaction energy becomes comparable to the
total bandwidth of the single-particle spectrum. Note that such
a contribution plays a negligible role in the weakly interacting
limit, thanks to the band gap that is protecting the ground
state.

Note added. Recently, Ref. [13] appeared in the preprint
server, where the speed of Bogoliubov sound is calculated up
to second-order in the interactions for a flat-band BEC.
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APPENDIX A: BENCHMARK WITH THE EXTENDED
BOSE-HUBBARD MODEL

Here we specifically consider the extended Bose-Hubbard
model with only nearest-neighbor hopping t > 0, on-site re-
pulsion U , and nearest-neighbor repulsion V , and we assume
time-reversal symmetry. In addition we also suppose that the
BEC occurs at the zero-momentum Bloch state, and it is
uniform in a unit cell, i.e., dz

kc=0 = 0. Under these conditions,
there is no geometric contribution to the low-energy Bogoli-
ubov modes as discussed in Sec. III C. As an illustration, we
calculate the Bogoliubov spectrum given in Eq. (12) and find

Esq = s
√

(ε−,q − ε−,0)(ε−,q − ε−,0 + n0U + Iq), (A1)

Iq = −2n0uqvqRe[UAB(q)eiϕq ], (A2)

where we use the chemical potential μ = ε−,0 + n0(U + V )/2
and ϕ−q = −ϕq. Here U = U , V = zV , and z is the coor-
dination number, e.g., z = {3, 4, 6} for honeycomb, square,
and triangular lattices. Note that the contribution from the
nearest-neighbor interactions can also be written as Iq =
n0(V/t )[(dx

q )2 + (dy
q )2]/dq, and Eq. (A1) reproduces the usual

result when V = 0.
As a nontrivial example, let us consider a square lat-

tice with lattice spacing a and describe it with a unit cell
that contains a two-point basis, i.e., treat it like a bipartite
checkerboard lattice. Then its single-particle spectrum is char-
acterized by dx

k = −2t[cos(kxa) + cos(kya)] and dy
k = dz

k =
d0

k = 0. In this case Eq. (A1) reproduces the known result
[17] in the reduced Brillouin zone, i.e., in a square region
bounded by |kx| + |ky| = π/a since the lattice period is dou-
bled in both the x and y directions, in which ϕk = π for
every k. Note that their condensate filling is defined per lattice
site, i.e., n0 = 2ν. Thus our projected Hamiltonian and its
Bogoliubov theory are quantitatively accurate in describing
the low-energy physics. Furthermore it can be shown (for
sufficiently large V ) that Eq. (A1) develops a roton minimum
at the edges of the reduced Brillouin zone. Then by setting,
e.g., (∂2E−,q/∂q2

x )q=(0,π/a) � 0 at one of the corners, we find
that the roton minimum occurs if n0(V − U ) � 8t . This con-
dition coincides precisely with the threshold for the dynamical
instability which signals the superfluid-to-supersolid phase
transition [17].

APPENDIX B: EXAMPLE MODELS
WITH NONTRIVIAL GEOMETRY

The Mielke checkerboard model is one of the sim-
plest two-band lattice models that exhibit a flat band
in two dimensions. See the Supplemental material of
Ref. [21] for a realistic proposal of its implementation using
optical-lattice potentials. Within our reciprocal-space con-
vention, the single-particle spectrum in such a lattice is
described by d0

k = 2t cos(kxa) cos(kya), dx
k = 2t cos(kxa) +

2t cos(kya), and dz
k = 2t sin(kxa) sin(kya), leading to a flat

lower band ε−,k = −2t and a dispersive upper band ε+,k =
2t + 4t cos(kxa) cos(kya). Thus the resultant Bloch bands
touch at the four corners of the Brillouin zone, i.e., at k =
{(±π/a, 0), (0,±π/a)}. Setting dz

k = 0 shows that there ex-
ists a continuous subset of flat-band states that favor uniform
condensation on sublattices A and B and, hence, is expected to
minimize the condensation energy. Since its flat-band states
also admit real representation for every k, Eqs. (22) and
(24) directly apply to this model. In addition, the model also
exhibits time-reversal symmetry, and therefore a finite kc
guarantees a nontrivial geometric contribution.

Other two-band models that feature a flat band
in two dimensions include checkerboard I, II, and
III lattices [22]. For instance, the latter model is
described by d0

k = 7t/2 + t cos(kxa) + 2t cos(kya),
dx

k = −2t − 2t cos(kxa) − t cos(kya) − 2t cos(kxa + kya),
dy

k = −2t sin(kxa) − t sin(kya) − 2t sin(kxa + kya), and
dz

k = 3t/2 − t cos(kxa) + 2t cos(kya), and it leads to a flat
lower band ε−,k = 0 that is gapped from the dispersive upper
band. The minimum band gap occurs at the four corners of the
Brillouin zone, i.e., at k = {(±π/a, 0), (0,±π/a)}. Setting
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again dz
k = 0 shows that there exists a continuous subset of

flat-band states that favor uniform condensation on sublattices
A and B and, hence, minimize the condensation energy [12].
While this model also exhibits time-reversal symmetry, its

flat-band states do not admit real representation for every k.
Thus only Eq. (22) applies to this model. See Ref. [12] for
a detailed analysis of this particular model and its numerical
illustration.
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