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Topological two-body bands in a multiband Hubbard model
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In a multiband Hubbard model the self-consistency relations for the two-body bound-state bands are in the
form of a nonlinear eigenvalue problem. Assuming that the resultant eigenvectors form an orthonormal set, e.g.,
in the strong-binding regime, here we reformulate their Berry curvatures and the associated Chern numbers. As
an illustration we solve the two-body problem in a Haldane-Hubbard model with attractive on-site interactions
and analyze its topological phase diagrams from weak to strong couplings, i.e., by keeping track of the gap
closings in between the low-lying two-body bands. The resultant Chern numbers are consistent with the lobe
structure of the phase diagrams in the strong-coupling regime.
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I. INTRODUCTION

Topological classification of Bloch bands provides a fresh
perspective on modern band theory, with important experi-
mental implications [1]. For instance, the Haldane model on
a honeycomb lattice stabilizes the quantum Hall effect by
breaking both time-reversal and inversion symmetries through
complex-valued hoppings and sublattice potential, i.e., with-
out the need for the Landau levels that are induced by an
external magnetic field [2]. The model features topologically
distinct phases of matter with nonzero Chern numbers, mak-
ing it one of the main workhorses for theoretical research on
topological insulators and superconductors. Furthermore its
experimental realization using an optical honeycomb lattice
is a significant breakthrough in the field of topological matter
as the atomic systems offer unprecedented control over the
model parameters [3]. Therefore, a wide range of topological
phases and their associated phenomena are within experimen-
tal reach, including the interplay between interactions and
topology [4].

Exploring and discovering exotic phases of interacting
matter such as fractional Chern and topological Mott insula-
tors remains a primary objective in this field [5,6]. However,
due to the complexity of interacting many-body problems, a
bottom-up approach examining the exactly solvable two-body
problem in a multiband Hubbard model can sometimes be
useful [7]. There are many recent works on various topo-
logical aspects of the two-body problem [8–15]. Among
them, the topological two-boson bound states in the repul-
sive Haldane-Bose-Hubbard model were analyzed using exact
diagonalization in real space [11], and in this paper, we ex-
amine the two-body problem for a multiband Fermi-Hubbard
model in momentum space. The self-consistency relations
for the two-body bound-state bands are in the form of a
nonlinear eigenvalue problem [16–18], and we reformulate
the Berry curvature and the associated Chern number in the
strong-binding regime with the underlying assumption that the
resultant eigenvectors form approximately an orthonormal set.
As an illustration we construct topological phase diagrams for
the attractive Haldane-Hubbard model from weak to strong

couplings, and we show that the lobe structure of the phase
diagram is consistent with the associated Chern numbers in
the strong-coupling regime. We would like to emphasize that
our formulation is also pertinent to various other physical sys-
tems, e.g., in the investigation of flat-band physics in Kagome
metals and twisted bilayer graphene, where recent advances in
the study of strong-correlation physics have already revealed
intriguing connections between topology and electronic prop-
erties [19–22].

The rest of the paper is organized as follows. In Sec. II we
express the exact solution in the form of a nonlinear eigen-
value problem, and we perform its strong-coupling expansion.
In Sec. III we derive an effective Hamiltonian for the strongly
bound pairs in a generic two-band model and benchmark it
with the Haldane, Su-Schrieffer-Heeger, and Hofstadter mod-
els. In Sec. IV we focus on the Haldane-Hubbard model and
analyze its topological phase diagram numerically for the
two-body bands. The paper ends with a brief summary of
our conclusions in Sec. V and three appendices. Appendix A
presents the derivation of the hopping parameters for the
effective Hamiltonian, Appendix B presents the derivation
of the Berry curvature for the eigenvectors of the nonlinear
eigenvalue problem, and Appendix C presents the application
to the isolated flat bands.

II. TWO-BODY BOUND STATES

In this section we consider a generic tight-binding lattice
with multiple sublattices, and we show that the number of
sublattices determines not only the number of Bloch bands
but also the number of so-called two-body bound-state bands
as follows.

A. One-body problem

The one-body problem in a multiband lattice is described
by

hσkfnσk = εnσkfnσk, (1)

where the matrix hσk represents the Bloch Hamiltonian for
the spin-σ particle with momentum k in the sublattice basis
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α = {A, B,C, . . .}, its eigenvectors fnσk = (nAσk, nBσk,

nCσk, . . .)T with nασk = 〈α|nσk〉 represent the periodic part
of the Bloch states |nσk〉, and its eigenvalues εnσk determine
the Bloch bands. Here T is the transpose which is in such
a way that

∑
β hαβ

σknβσk = εnσknασk. In the presence of two
sublattices only, the Bloch Hamiltonian can be written as

hσk = d0
σkτ0 + dσk · τ, (2)

where the k dependencies of d0
σk and dσk = (dx

σk, dy
σk, dz

σk )
are determined by the details of the hopping processes and
on-site energies. Here τ0 is an identity matrix and τ = (τx,

τy, τz ) is a vector of Pauli spin matrices for the sublattice
sector. The Bloch bands are given by εsσk = d0

σk + sdσk,

where s = ± denotes the upper and lower bands, and
dσk =

√
(dx

σk )2 + (dy
σk )2 + (dz

σk )2 is the magnitude of dσk.
The sublattice projections of Bloch states fsσk = (sAσk, sBσk )T

can be written as f+,σk = (uσk, vσkeiϕσk )
T

for the

upper band and f−,σk = ( − vσke−iϕσk , uσk )
T

for the
lower band, where uσk = √

(dσk + dz
σk )/(2dσk ) and

vσk = √
(dσk − dz

σk )/(2dσk ) are the usual amplitudes and
ϕσk = arg(dx

σk + idy
σk ) is the polar angle on the Bloch sphere.

Using the solutions of the one-body problem, next we
construct solutions for the low-lying two-body bound states.

B. Nonlinear eigenvalue problem

The two-body problem in a multiband Hubbard model is
exactly solvable, and the resultant spectrum can be divided
into three distinct set of solutions [16–18]. The first set is
the scattering continua, and these states correspond to two
unbound (noninteracting) particles. There are Mb(Mb + 1)/2
possible continua in total, where Mb is the number of Bloch
bands, i.e., the number of sublattices. The second set is the
so-called off-site bound states, and they lie in between the
scattering continua. For this reason these states remain weakly
bound even in the strongly interacting regime. The third set is
the so-called on-site bound states, and they lie either on top or
at the bottom of the two-body spectrum depending on whether
the on-site Hubbard interaction is repulsive or attractive,
respectively. There are Mb of them for a given center-of-
mass momentum q of the two particles. These states become
strongly bound in the strongly-interacting regime, where they
eventually correspond to strongly localized on-site pairs. In
this paper we focus only on this last set of solutions because
they give rise to the two-body bands as a function of q.

For the two-body problem between an ↑ and a ↓
fermion, the third set can be determined entirely via the self-
consistency relation [16,17]

Nαq = U

Mc

∑
nmkβ

n∗
β↑k+qm∗

β↓−kmα↓−knα↑k+q

εn↑k+q + εm↓−k − ENq
Nβq, (3)

where U � 0 is the strength of the attractive on-site Hubbard
interaction, Mc is the number of unit cells in the lattice,
and ENq is the energy of the bound state. This expression
is also valid for U < 0, in which case −U corresponds to
the strength of the repulsive on-site Hubbard interaction.
One can rewrite it as GNqFNq = 0 and determine ENq
self-consistently through an iterative approach, where

FNq = (NAq, NBq, NCq, . . . )
T

represents the bound state |Nq〉
in the sublattice basis. For a given q, different N values
correspond to a self-consistent solution that is determined by
setting the first, second, third, etc., eigenvalue of the Hermi-
tian matrix GNq to be 0. Note that each ENq solution gives
in return a different GNq matrix once the self-consistency is
achieved.

Equation (3) can also be interpreted as a nonlinear eigen-
value problem,

HNqFNq = ENqFNq, (4)

in such a way that
∑

β Hαβ
Nq Nβq = ENqNαq. This eigenvalue

problem is not in the usual form because the matrix elements

Hαβ
Nq = ENqU

Mc

∑
nmk

n∗
β↑k+qm∗

β↓−kmα↓−knα↑k+q

εn↑k+q + εm↓−k − ENq
(5)

depend explicitly on the eigenvalue ENq, and hence, it cor-
responds to a self-consistency relation for each ENq. For
instance, in the presence of two sublattices only, the relevant
matrix for a given bound-state solution ESq can be written as

HSq = D0
Sqτ0 + DSq · τ, (6)

where D0
Sq = (HAA

Sq + HBB
Sq )/2, Dx

Sq = ReHBA
Sq , Dy

Sq = ImHBA
Sq ,

and Dz
Sq = (HAA

Sq − HBB
Sq )/2.

Here Re and Im denote, respectively, the real and imag-
inary parts. The corresponding eigenvector of HSq that
satisfies the self-consistency relation can be denoted as
FSq = (SAq, SBq)

T
. Note that, for a given self-consistent solu-

tion ESq, the matrix HSq has two eigenvalues, but only one of
those satisfies the self-consistency relation. The other solution
and its eigenvector are irrelevant. Alternatively the self-
consistency relations can be written as ESq = D0

Sq + S′DSq,

where S′ = ± and DSq =
√

(Dx
Sq)2 + (Dy

Sq)2 + (Dz
Sq)2.

For a given q, since each ENq solution is associated
with a different Hermitian matrix HNq, the corresponding
eigenvectors FNq do not necessarily form an orthonormal
set in general. The only exception for this seems to be the
strong-binding regime, where the on-site bound states become
strongly localized on a single lattice site, i.e., on one of the
sublattices, and become approximately orthogonal to each
other at finite |U |. Note that there are as many two-body bands
as the number of sublattices or equivalently as the number of
Bloch bands. Thus, it may be possible to interpret HNq as an
effective Hamiltonian for the on-site bound states as discussed
next.

C. Strong-binding regime

As an illustration here we focus on lattices with a two-
point basis for the simplicity of their presentation. A similar
analysis can be performed for multiband lattices. It turns
out the binding energy is of order |U | in the strong-binding
regime when |U | is much larger than the bandwidth of the
lowest Bloch band. In general, strong binding requires strong
interactions in the case of dispersive Bloch bands. However,
in the particular case when the lowest (highest) Bloch band
is flat and it is separated from the other bands by an energy
gap, even an arbitrarily small U > 0 (U < 0) can be treated
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as a strong-binding regime. In such a case the binding energy
of the lowest bound state is known to be of order |U |/Mb.
Thus, isolated flat bands are also amenable to a similar strong-
binding expansion when the interactions are weak.

In the strong-coupling regime, the matrix elements of
Eq. (6) can be expanded as

D0
Sq = −U

(
1 + λ1q

ESq
+ λ2q

E2
Sq

+ λ3q

E3
Sq

+ · · ·
)

, (7)

Dx
Sq + iDy

Sq = −U

(
κ2q

E2
Sq

+ κ3q

E3
Sq

+ · · ·
)

, (8)

Dz
Sq = −U

(
γ1q

ESq
+ γ2q

E2
Sq

+ γ3q

E3
Sq

+ · · ·
)

, (9)

where λiq and γiq are real numbers but κiq is a complex
number. After some algebra discussed in Appendix A, these
expansion coefficients can be written as

λ1q = 1

Mc

∑
k

(
d0

↑k+q + d0
↓−k

)
, (10)

λ2q = 1

Mc

∑
k

[(
d0

↑k+q + d0
↓−k

)2 + (
dz

↑k+q + dz
↓−k

)2

+ |g↑k+q|2 + |g↓−k|2
]
, (11)

κ2q = 2

Mc

∑
k

g↑k+qg↓−k, (12)

γ1q = 1

Mc

∑
k

(
dz

↑k+q + dz
↓−k

)
, (13)

γ2q = 2

Mc

∑
k

(
d0

↑k+q + d0
↓−k

)(
dz

↑k+q + dz
↓−k

)
, (14)

where gσk = dx
σk + idy

σk = |gσk|eiϕσk is defined for conve-
nience. Typically, λ1q = 0 when the sublattice potentials are
symmetric around 0, and γ1q = 0 = γ2q when the Bloch
Hamiltonian exhibits time-reversal symmetry. See Sec. III for
example models.

When γ1q � 0, the bound-state energies are determined
by the self-consistency relation ESq = D0

Sq + SDSq, where
S = ± corresponds to upper and lower two-body bands,
respectively. On the other hand, S = ± corresponds to
lower and upper two-body bands when γ1q < 0. Up to
first order in 1/U , the self-consistency relations lead
to ESq = −U + εSq + ηSq/U + O(1/U 2), where εSq = λ1q +
S|γ1q|, and ηSq = (λ2

1q − λ2q + S
√

γ 2
2q + |κ2q|2)/U when

γ1q = 0, but ηSq = ε2
Sq − λ2q − Sγ2q|γ1q|/γ1q when γ1q 	= 0.

Up to second order in 1/U , thus, we obtain

D0
Sq = −U + λ1q + λ1qεSq − λ2q

U

+ λ1q
(
ηSq + ε2

Sq

) − 2λ2qεSq + λ3q

U 2
+ · · · , (15)

Dx
Sq + iDy

Sq = −κ2q

U
− 2κ2qεSq − κ3q

U 2
+ · · · , (16)

Dz
Sq = γ1q + γ1qεSq − γ2q

U

+ γ1q
(
ηSq + ε2

Sq

) − 2γ2qεSq + γ3q

U 2
+ · · · . (17)

These expressions can be used to construct an effective Hamil-
tonian Hq for the on-site bound states in the strong-coupling
regime. For instance, when Eqs. (15), (16), and (17) do not
depend on S (e.g., when λ1q = 0 = γ1q), Hq coincides trivially
with H+,q = H−,q up to second order in 1/U . As a nontrivial
illustration, next we derive Hq up to first order in 1/U for a
generic lattice using perturbation theory.

III. EXAMPLE MODELS

Suppose γ1q � 0 without losing generality so that S = ±
corresponds to upper and lower two-body bands, respectively,
and the associated on-site bound states are strongly localized
on sublattices A and B, respectively. This is clearly seen in
the unperturbed (i.e., |U | → ∞) problem, where sublattices
A and B are decoupled from each other [i.e., Eq. (16) → 0)],
and the unperturbed two-body band E (0)

Sq = −U + λ1q + Sγ1q
corresponds to a completely localized state on the relevant
sublattice. Then the finite-U effects can be taken into ac-
count through perturbation theory. For instance, at first order
in 1/U , the matrix elements Hαβ

q of the effective Hamilto-
nian Hq are such that HAA

q ≡ HAA
+,q = D0

+,q + Dz
+,q, HBB

q ≡
HBB

−,q = D0
−,q − Dz

−,q, and HBA
q ≡ HBA

±,q = Dx
±,q + iDy

±,q. This
effective Hamiltonian can be written as Hq = D0

qτ0 + Dq · τ,

where

D0
q = −U + λ1q + λ2

1q + γ 2
1q − λ2q

U
, (18)

Dx
q + iDy

q = −κ2q

U
, (19)

Dz
q = γ1q + 2λ1qγ1q − γ2q

U
(20)

determine its matrix elements. These expressions are readily
applicable to any Bloch Hamiltonian with a two-point basis.
Some important models are discussed next.

A. Haldane-Hubbard model

In the original Haldane model on a honeycomb lat-
tice with a two-point basis, while the nearest-neighbor
(i.e., inter-sublattice) hopping tnn = t is a real parame-
ter, the next-nearest-neighbor (i.e., intra-sublattice) hopping
tnnn = t ′eiφ is a complex parameter [2]. Its Bloch Hamiltonian
hσk ≡ hk is such that d0

k = −2t ′ cos φ
∑3

j=1 cos(k · ν j ), dx
k +

idy
k = −t

∑3
j=1 eik·e j , and dz

k = δ − 2t ′ sin φ
∑3

j=1 sin(k · ν j ),
where δ is the on-site energy difference between sublattices.
Here we define e1 = (0, a), e2 = (−√

3a/2,−a/2), and e3 =
−(e1 + e2) = (

√
3a/2,−a/2) for the nearest-neighbor hop-

pings, and similarly ν1 = (
√

3a, 0), ν2 = (−√
3a/2, 3a/2),

and ν3 = −(ν1 + ν2) = (−√
3a/2,−3a/2) for the next-

nearest-neighbor hoppings, where a is the lattice spacing. Its
Brillouin zone has the shape of a hexagon, and it is such
that the K and K′ valleys are at K = [4π/(3

√
3a), 0] and

K′ = [2π/(3
√

3a), 2π/(3a)] points, respectively.
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After some tedious bookkeeping, one can show
that the expansion coefficients for the two-body
problem are λ1q = 0, λ2q = 6t2 + 12t ′2 + 4δ2 +
4t ′2 cos(2φ)

∑3
j=1 cos(q · ν j ), κ2q = 2t2 ∑3

j=1 eiq·e j , γ1q =
2δ, and γ2q = 4t ′2 sin(2φ)

∑3
j=1 sin(q · ν j ). Thus, the effec-

tive Hamiltonian for the on-site bound states is described by
D0

q = −U − � − 2T ′ cos �
∑3

j=1 cos(q · ν j ), Dx
q + iDy

q =
−T

∑3
j=1 eiq·e j , and Dz

q = � − 2T ′ sin �
∑3

j=1 sin(q · ν j ),
where � = (6t2 + 12t ′2)/U is an on-site energy offset,
T = 2t2/U is the effective nearest-neighbor hopping
parameter, T ′ = 2t ′2/U is the amplitude, � = 2φ is the phase
of the effective next-nearest-neighbor hopping parameter, and
� = 2δ is the effective on-site energy difference between
sublattices. These effective parameters are consistent with the
recent literature [11,23].

Note that � = 2(znnt2 + znnnt ′2)/U , where znn = 3 is the
nearest-neighbor coordination number and znnn = 4 is the
next-nearest-neighbor coordination number. The origin of
such a q-independent on-site energy offset is as follows.
When a bound state breaks up at a cost of binding energy
U in the denominator, one of its constituents can hop to
a neighboring site and then come back to the original site
to recombine, leading to t2

σ = t2 in the numerator. Thus the
center of mass of the pair does not play a role in this process.
The coordination numbers appear because such a process can
happen with all neighboring sites. The factor of 2 accounts for
the spin. On the other hand the effective hopping parameters
are q dependent, because when a bound state breaks up and
one of its constituents hops to a neighboring site, the other par-
ticle follows it and hops to the same site, leading to t↑t↓ = t2

in the numerator. This is the only physical mechanism for
a strongly bound pair of particles to move in the Hubbard
model.

B. Su-Schrieffer-Heeger-Hubbard model

In the Su-Schrieffer-Heeger model on a linear chain
with a two-point basis, while the on-site energy difference
between sublattices and the intra-sublattice hopping param-
eters are set to 0, the inter-sublattice hopping parameters
alternate between tL and tR in the lattice [24]. Its Bloch
Hamiltonian hσk ≡ hk is such that d0

k = 0 = dz
k , dx

k = −tL −
tR cos(ka), and dy

k = −tR sin(ka), where a is the lattice spac-
ing, −π/a � k < π/a defines the Brillouin zone, and tL and
tR are real hopping parameters to the left and right of sub-
lattice A, respectively. The Bloch bands can be written as
εsk = s

√
t2
L + t2

R + 2tLtR cos(ka).
After some simple algebra, one can show that the expan-

sion coefficients for the two-body problem are λ1q = 0 =
γ1q = γ2q due to particle-hole and time-reversal symmetries,
λ2q = 2t2

L + 2t2
R and κ2q = 2t2

L + 2t2
Reiqa. Thus, the effective

Hamiltonian for the on-site bound states is described by
D0

q = −U − �, Dx
q + iDy

q = −TL − TReiqa, and Dz
q = 0,

where � = (2t2
L + 2t2

R )/U is an on-site energy offset,
and TL = 2t2

L/U and TR = 2t2
R/U are the effective

nearest-neighbor hopping parameters. These effective
parameters are consistent with the recent literature
[12,25]. Note that � = 2(zLt2

L + zRt2
R )/U , where zL = 1

and zR = 1 are the corresponding coordination numbers

to the left and to the right, respectively. Thus, similar to
the Bloch bands, the two-body bands can be written as
ESq = −U − � + S

√
T 2

L + T 2
R + 2TLTR cos(qa).

C. Hofstadter-Hubbard model at ασB = 1/2

The Hofstadter model on a square lattice with nearest-
neighbor hoppings t is described by a two-point basis when
the magnetic-flux quanta per unit cell is ασB = B0a2/φ0 =
1/2 [26–28]. Here B0 is the strength of the perpendicu-
lar magnetic field, a is the lattice spacing, and φ0 is the
magnetic-flux quantum. Its Bloch Hamiltonian hσk ≡ hk is
such that d0

k = 0, dx
k = −t − t cos(2kxa), dy

k = −t sin(2kxa),
and dz

k = 2t cos(kya), where −π/(2a) � kx < π/(2a) and
−π/a � ky < π/a define the magnetic Brillouin zone.

After some simple algebra, one can show that the ex-
pansion coefficients for the two-body problem are λ1q =
0 = γ1q = γ2q due to particle-hole and time-reversal sym-
metries, λ2q = 8t2 + 4t2 cos(qya), and κ2q = 2t2 + 2t2ei2qxa.
Thus, the effective Hamiltonian for the on-site bound states
is described by D0

q = −U − � − 2T cos(qya), Dx
q + iDy

q =
−2T cos(qxa)eiqxa, and Dz

q = 0, where � = 8t2/U is an
on-site energy offset and T = 2t2/U is the effective nearest-
neighbor hopping parameter. Note that � = 2znnt2/U , where
znn = 4 is the nearest-neighbor coordination number. Thus,
the two-body bands can be written as ESq = −U − � −
2T [−S cos(qxa) + cos(qya)]. Apart from a constant shift, it is
pleasing to see that they together correspond to a single cosine
band, −2T [cos(qxa) + cos(qya)], in the usual (nonmagnetic)
Brillouin zone of a square lattice. This is physically expected
because the effective magnetic flux seen by the strongly bound
pair of particles is αB = α↑B + α↓B = 1, and the usual Hofs-
tadter’s butterfly is known to be symmetric around ασB = 1/2;
i.e., the spectrum for αB = 1 is equivalent to the nonmagnetic
spectrum at αB = 0. In fact, starting with α↑B = 1/2 = −α↓B,
one can easily verify that the resultant effective Hamiltonian
is identical to the one given above. This is simply because hσk
does not depend on the sign of ασB = ±1/2, and it always
exhibits time-reversal symmetry [29].

IV. TOPOLOGICAL PHASE DIAGRAM

As discussed in the Introduction, topological characteri-
zation of Bloch bands offers a new perspective on modern
band theory. Similarly it may prove useful to construct and
characterize the topological phase diagram of the two-body
bands. As an illustration, next we apply Eq. (3), or equiva-
lently Eq. (4), to the Haldane-Hubbard model from weak to
strong couplings.

A. Haldane-Hubbard model

In the original Haldane model that is introduced in
Sec. III A, the energy gap between the upper and lower Bloch
bands closes at either the K valley or the K′ valley, where
d0

k = 0 = dx
k = dy

k and dz
k = δ ± 3

√
3t ′ sin φ. Here ± refers

to K and K′ points, respectively. It turns out that, while the
system is a topological Chern insulator with Chern number
|Cs| = 1 when |δ| < 3

√
3|t ′ sin φ|, it is a trivial insulator with

|Cs| = 0 when |δ| > 3
√

3|t ′ sin φ|. Thus, a topological transi-
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FIG. 1. Upper and lower two-body bands correspond to E+,q and
E−,q, respectively, for the Haldane-Hubbard model in units of t . The
band gap occurs at at point K or point K′. Here δ = 0, t ′/t = 0.2,
φ = π/4, and U = 10t .

tion occurs at |δ| = 3
√

3|t ′ sin φ|, i.e., when there is a band
crossing in the system [2].

As illustrated in Fig. 1, the two-body bands look very
similar to the underlying Bloch bands. Accordingly, the
topological phase diagram of the two-body bands can also
be traced by keeping track of their gap closings at the K
and K′ valleys. For instance, in the strong-coupling regime
when U/t  1, one finds D0

q = 0 = Dx
q = Dy

q but Dz
q = � ±

3
√

3T ′ sin � at the K and K′ points, respectively. Thus, anal-
ogous to the underlying Bloch bands, while the paired system
is expected to be a topological Chern insulator with |CS| = 1
when |�| < 3

√
3|T ′ sin �|, it is expected to be a trivial insula-

tor with |CS| = 0 when |�| > 3
√

3|T ′ sin �|. The topological
transition is expected to occur at |�| = 3

√
3|T ′ sin �|.

In Fig. 2 we present the local band gap E+,q − E−,q be-
tween the two-body bands as a function of phase φ of the

next-nearest-neighbor hopping t ′ and the on-site energy dif-
ference δ between sublattices. Here δ = 0, we set t ′/t = 0.2
in all figures, where the upper and lower rows correspond to
the local band gaps at points q = K and q = K′, respectively,
and different columns correspond to U/t = {10, 30, 500}. The
local band gaps vanish along the white-dotted contours within
the narrow black strips. Since the global band gap is a min-
imum of the local band gaps, the superposition of white
contours determines the location of the vanishing global band
gap. For a given K or K′, each strip has one primary (i.e.,
larger) and one secondary (i.e., smaller) lobe as a function of
0 � φ < 2π . The secondary lobes are as large as the primary
ones only in the strong-coupling regime, and this is in perfect
agreement with our strong-coupling analysis.

In the case of U = 500t , the period π/2 and the ampli-
tude 3

√
3(0.2)2t/500 ≈ 0.00042t of the oscillation that is

produced by the combined strips (i.e., superposition of the
white-dotted contours that are shown in K and K′) match very
well with our gap-closing condition δ = 3

√
3| sin(2φ)|t ′2/U

derived above. However, in the case of U = 30t , the os-
cillation of the combined strips has a period of 2π , and
the amplitudes of the primary and secondary lobes deviate
substantially from our strong-coupling prediction of 0.0069t .
This deviation shows that the higher-order corrections to the
effective Hamiltonian play a crucial role in determining the
phase boundary. It is pleasing to see that our exact results
coming out of Eq. (3) are in full agreement with the recent
results that are based on exact diagonalization in real space
[11]. There the effective Hamiltonian is derived up to the
third order in 1/U , showing that the two-body bound states
are described by a generalized Haldane model in general
[30]. When U is finite, the amplitudes and phases of the

U = 10t

  0

0.015

0.03

0.045

δ 
/ t

U = 30t

   0

0.004

0.008

0.012

U = 500t

    0

0.0002

0.0004

0.0006

 0  1  2

φ / π

  0

0.015

0.03

0.045

δ 
/ t

 0  0.17  0.34

 0  1  2

φ / π

   0

0.004

0.008

0.012

 0  0.045  0.09

 0  1  2

φ / π

    0

0.0002

0.0004

0.0006

 0  0.0022  0.0044

FIG. 2. The local band gap E+,q − E−,q (in units of t) between the two-body bands as a function of phase φ (in units of π ) of the next-
nearest-neighbor hopping t ′ and the on-site energy difference δ (in units of t) between sublattices. Upper and lower rows correspond to the local
band gaps at points K and K′, respectively, when U/t = {10, 30, 500}. Here t ′/t = 0.2 is fixed in all figures. The local band gaps vanish along
the white-dotted contours within the narrow black strips. For any given U , since the global band gap is the minimum of the two, increasing δ

closes and reopens the band gap at either point K or point K′ depending on φ. Thus, the superposition of white contours determines the critical
boundary for the topological phase transition [11]. When U = 500t and δ = 0, the Chern numbers of the upper and lower two-body bands
change from ±1 in 0 < φ < π/2 to ∓1 in π/2 < φ < π , to ±1 in π < φ < 3π/2, and to ∓1 in 3π/2 < φ < 2π .
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effective next-nearest-neighbor hopping parameter turn out
to be different for different sublattices, i.e., one has to con-
sider Tnnn = T ′

AAei�A and Tnnn = T ′
BBei�B for intra-sublattice

hoppings where T ′
AA 	= T ′

BB and �A 	= �B have much more
complicated dependencies on t , t ′, φ, δ, and U [11].

Furthermore Fig. 2 shows that the secondary lobes al-
ready become small when the interaction is lowered down to
U = 10t . As they start disappearing towards the weakly in-
teracting regime (e.g., when U � 5t not shown), the lobe
structure resembles that of Bloch bands, i.e., the primary lobe
of K extends from φ = 0 to π and that of K′ extends from
π to 2π . This is in such a way that the oscillation of the
combined strips has a period of π . Thus, both the amplitude
and the width of the primary lobes grow in size with decreas-
ing interactions. Next we calculate the Chern number of the
two-body bands in the strong-coupling regime and show that
it is consistent with the resultant lobe structure.

B. Chern number

The Berry curvature �Sq of the two-body eigenvector FSq
is derived in Appendix B. Under the restrictive assumption
that the two-body bound states |Sq〉 are orthonormal to each
other, i.e., when the identity operator I = |+, q〉〈+, q| +
|−, q〉〈−, q| is approximately satisfied, for every q, there we
show that

�Sq = −2Im
〈Sq|∂xHSq| − S, q〉〈−S, q|∂yHSq| − S, q〉

(ESq − E−S,q)2
.

(21)

Here HSq is defined by Eq. (6) and ∂ j stands for ∂/∂q j . Then
the Chern number of the two-body bands is given by the usual
expression CS = 2π

L2

∑
q �Sq, where Lx = Ly = L  a is the

side length of the square-shaped lattice. In the case of the
Haldane model, L and Mc are such that Mc = 2L2/(3

√
3a2);

i.e., dividing the area 8π2/(3
√

3a2) of the hexagon-shaped
Brillouin zone to the area 4π2/L2 per q state gives the number
Mc of q states (per band) in the Brillouin zone. Unlike that
of the Bloch bands, we note that �+,q and −�−,q are not
necessarily equal to each other by construction because H+,q
and H−,q are different.

Our numerical calculations show that the orthonormal-
ity condition is well-satisfied in the strong-coupling regime.
For instance, when δ = 0 and φ = π/4, we find that the
inner product |〈+, q|−, q〉| is bounded approximately by
{3 × 10−8, 10−4, 7 × 10−4, 2 × 10−3} (i.e., for every q in
the Brillouin zone) when U/t = {500, 30, 15, 10}, respec-
tively. The corresponding Chern numbers for the upper (S =
+) and lower (S = −) two-body bands are C+ = 0.994 and
C− = −0.994 for U = 500t , C+ = 1.03 and C− = −1.02
for U = 30t , C+ = 1.15 and C− = −1.09 for U = 15t , and
C+ = 1.42 and C− = −1.21 for U = 10t . When φ = 7π/4,
we confirm that all of these Chern numbers simply change
signs with exactly the same magnitudes. Similarly when
δ = 0 and φ = 3π/4, we find that the inner product
is bounded approximately by {3 × 10−8, 10−4, 10−3, 3 ×
10−3} when U/t = {500, 30, 15, 10}, respectively. The corre-
sponding Chern numbers are C+ = −0.994 and C− = 0.994
for U = 500t , C+ = −1.02 and C− = 1.01 for U = 30t ,
C+ = −1.08 and C− = 1.05 for U = 15t , and C+ = −0.75

and C− = 0.72 for U = 10t . When φ = 5π/4, we again con-
firm that these Chern numbers also change signs with exactly
the same magnitudes.

As long as lowering U/t from 500 to 10 does not open
or close any energy gap, e.g., Fig. 2 shows that this is the
case when δ = 0 and φ = {π/4, 3π/4, 5π/4, 7π/4}, the as-
sociated Chern number CS cannot change and must remain
invariant for a given lobe. This is not the case in our numerical
calculations because the orthonormality condition progres-
sively fails more and more at lower U values. Thus, our
approach is by construction not expected to reproduce the
correct |CS| = 1 in the weak-coupling regime. On the other
hand, we use roughly 2000 mesh points and distribute them
uniformly in the Brillouin zone in our numerical calculations,
and increasing the mesh size may give slightly better results in
the strong-coupling regime, e.g., when U = 500t or U = 30t .
This is because since the Berry curvature �Sq makes a much
larger contribution to CS in the vicinity of K and K′ points,
increasing the mesh size must eventually give |CS| = 1 up to a
very high precision once the effective Hamiltonian discussed
in Sec. III A becomes applicable.

V. CONCLUSION

In summary here we studied the two-body problem in a
Haldane-Hubbard model and constructed its topological phase
diagrams as a function of interaction strength, by keeping
track of the gap closings in between the two-body bands.
For a given center-of-mass momentum, the two-body bands
are determined by a nonlinear eigenvalue problem, and its
self-consistent solutions are obtained numerically through an
iterative approach. We found that while the lobe structure of
the weakly interacting phase diagram resembles that of the
Bloch bands, two additional lobes appear and grow gradu-
ally with increasing interactions. Our strong-coupling analysis
is in perfect agreement with the topological phase diagram,
where an effective Hamiltonian is derived for the two-body
bands through perturbation theory. In addition, assuming that
the eigenvectors of the nonlinear eigenvalue problem form
an orthonormal set, we reformulated the Berry cuvature and
the associated Chern number. This assumption is typically
fulfilled in the strongly interacting regime, where, e.g., the
resultant Chern numbers are again consistent with the lobe
structure in the Haldane-Hubbard model. As an outlook, cal-
culation of the correct Chern numbers in the weak-coupling
regime is indeed an interesting area of investigation. This may
be achieved via an alternative formulation that is based only
on one of eigenvectors of the nonlinear eigenvalue problem
without an explicit reference to the other eigenvectors or to
the orthonormality condition. For instance, Ref. [31] offers
such a promising approach.
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APPENDIX A: EXPANSION COEFFICIENTS
IN SECTION II C

In the strong-coupling regime when the binding energy
is much larger than the single-particle energies, i.e., when
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|x| � 1, with x = (εs↑k+q + εs′↓−k )/ESq, the matrix elements
given in Eq. (5) can be expanded as a geometric series
using 1/(1 − x) = 1 + x + x2 + · · · . For instance, in the
expansion of the diagonal elements HAA

Sq and HBB
Sq , the

zeroth-order terms follow from
∑

ss′ |sA↑k+q|2|s′
A↓−k|2 =

1 = ∑
ss′ |sB↑k+q|2|s′

B↓−k|2, the first-order terms follow from∑
ss′ |sA↑k+q|2|s′

A↓−k|2(εs↑k+q + εs′↓−k ) = d0
↑k+q + dz

↑k+q +
d0

↓−k + dz
↓−k and

∑
ss′ |sB↑k+q|2|s′

B↓−k|2(εs↑k+q + εs′↓−k ) =
d0

↑k+q − dz
↑k+q + d0

↓−k − dz
↓−k, and the second-order terms

follow from
∑

ss′ |sA↑k+q|2|s′
A↓−k|2(εs↑k+q + εs′↓−k )2 =

(d0
↑k+q + d0

↓−k ) + d2
↑k+q + d2

↓−k + 2d0
↑k+q(dz

↑k+q + dz
↓−k ) +

2d0
↓−k(dz

↑k+q + dz
↓−k ) + 2dz

↑k+qdz
↓−k and

∑
ss′ |sB↑k+q|2

|s′
B↓−k|2(εs↑k+q + εs′↓−k )2 = (d0

↑k+q + d0
↓−k )+d2

↑k+q+d2
↓−k

− 2d0
↑k+q(dz

↑k+q + dz
↓−k ) − 2d0

↓−k(dz
↑k+q + dz

↓−k ) + 2dz
↑k+q

dz
↓−k. Here we made frequent use of the normalization

condition u2
σk + v2

σk = 1 for the Bloch eigenvectors.
Similarly, in the expansion of the off-diagonal elements
HAB

Sq = (HBA
Sq )∗, the trivial zeroth-order terms follow from∑

ss′ s∗
A↑k+qs′∗

A↓−ksB↑k+qs′
B↓−k = 0, the trivial first-order

terms follow from
∑

ss′ s∗
A↑k+qs′∗

A↓−ksB↑k+qs′
B↓−k(εs↑k+q +

εs′↓−k ) = 0, and the nontrivial second-order terms follow
from

∑
ss′ s∗

A↑k+qs′∗
A↓−ksB↑k+qs′

B↓−k(εs↑k+q + εs′↓−k )2 =
2g↑k+qg↓−k. Here we note that s∗

A↑k+qs′∗
A↓−ksB↑k+qs′

B↓−k =
−g↑k+qg↓−k(−1)δss′ /(4d↑k+qd↓−k ) in such a way
that

∑
ss′ (−1)δss′ = 0 leads to the zeroth-order result,∑

ss′ (εs↑k+q + εs′↓−k )(−1)δss′ = 0 leads to the first-order
result, and

∑
ss′ (εs↑k+q + εs′↓−k )2(−1)δss′ = −8d↑k+qd↓−k

leads to the second-order result.

APPENDIX B: BERRY CURVATURE IN SECTION IV B

Unlike the one-body problem, the two-body bands ENq and
their corresponding eigenstates |Nq〉 are determined by the
nonlinear eigenvalue problem given in Eq. (4). For this reason
the standard formulation of the Berry curvature is not applica-
ble here. In this Appendix we formulate the Berry curvature
of the two-body bands by following closely the footsteps of
Berry in his seminal paper [32]. However, it is important to
emphasize that the derivation below is not general, and it only
applies when the self-consistent solutions for the eigenvectors
|Nq〉 form an orthonormal set, i.e., when the identity operator
I = ∑

N |Nq〉〈Nq| is satisfied, for every q. Our numerical
calculations suggest that this condition can approximately be
satisfied in the strong-coupling (i.e., |U |/t  1) regime once
the bound states localize strongly on one of the sublattices. In
addition, our numerical calculations show that it is also ap-
proximately satisfied in the weak-coupling (i.e., |U |/t → 0)
limit when the lowest or highest Bloch band is flat. See also
Appendix C below.

The Berry connection of the two-body states is defined
as ANq = i〈Nq|∇Nq〉 = −Im〈Nq|∇Nq〉, where the second
equality follows because the inner product is an imaginary
number due to ∇〈Nq|Nq〉 = 0 for the normalized states.
Then the Berry curvature of the two-body states is �Nq =
∇ × ANq = −Im〈∇Nq| × |∇Nq〉, where the cross product
is between three components of bra and ket vectors. By
acting ∇ on the nonlinear eigenvalue Eq. (4), one obtains
(HNq − ENq)|∇Nq〉 = (∇ENq − ∇HNq)|Nq〉. Assuming no
band crossings, and given that 〈Nq|∇HNq|Nq〉 = ∇ENq,
the right-hand side of the previous expression does not
have any projection onto |Nq〉. Thus, one can safely act
on it with (HNq − ENq)−1 and determine |∇Nq〉. This
leads to �Nq = −Im〈Nq|(∇ENq − ∇HNq)(HNq − ENq)−1 ×
(HNq − ENq)−1(∇ENq − ∇HNq)|Nq〉. Then, by plugging the
identity operator I across the cross product, and noting that
the left and right sides of the cross product do not have any
projections onto 〈Nq| and |Nq〉, respectively, one finds

�Nq = −Im
∑
M 	=N

〈Nq|∇HNq|Mq〉 × 〈Mq|∇HNq|Nq〉
(EMq − ENq)2

,

(B1)

through some simple algebra. In particular, for a two-
dimensional system lying in the xy plane, e.g., in the Haldane-
Hubbard model, �Nq = �Nq

̂k is along the z direction.

APPENDIX C: ISOLATED FLAT BANDS

Here we consider a number of weakly coupled degenerate
dispersionless flat bands that are energetically isolated from
the rest of the Bloch bands in the spectrum [22]. Suppose
εnσk = 0 is the energy of these flat bands, and they are sep-
arated by an energy ε0 from the nearest band. In this case,
Eq. (5) reduces to Hαβ

Nq → Hαβ
q , where

Hαβ
q = − U

Mc

∑
nmk

n∗
β↑k+qm∗

β↓−kmα↓−knα↑k+q. (C1)

This effective Hamiltonian is valid only in the U/ε0 → 0 limit
so that the dispersive bands can be projected out of the system.
In the presence of time-reversal symmetry, i.e., when n∗

α↓−k =
nα↑k ≡ nαk and εn↓−k = εn↑k ≡ εnk, we note that Hαβ

q is pre-
cisely the exact many-body Hamiltonian equation (13) that is
derived in Ref. [22] under the same settings. This coincidence
suggests that the interaction between the resultant two-body
bound states, i.e., Cooper pairs, is negligible. Furthermore,
since Hαβ

q does not depend on ENq in this particular setting,
the orthonormality condition is automatically intact for the
resultant eigenvectors.
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