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Chern numbers for the two-body Hofstadter-Hubbard butterfly
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We analyze the two-body spectrum within the Hofstadter-Hubbard model on a square lattice through an
exact variational ansatz and study the topological properties of its low-lying two-body bound-state branches.
In particular, we discuss how the Hofstadter-Hubbard butterfly of the two-body branches evolves as a function
of onsite interactions and how to efficiently calculate their Chern numbers using the Fukui-Hatsugai-Suzuki
approach. Our numerical results are fully consistent with the simple picture that appears in the strong-coupling
limit, where the attraction between fermions forms a composite boson characterized by an effective hopping
parameter and an effective magnetic-flux ratio.
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I. INTRODUCTION

The Hofstadter model has made a profound impact on
condensed-matter physics [1,2]. Despite its simplicity, the
intricate interplay of Aharonov-Bohm phase and lattice pe-
riodicity not only provides crucial insights into the behavior
of electrons moving across a solid-state crystal in the pres-
ence of an external magnetic field but also shines a spotlight
on one of its most intriguing aspects, i.e., the first Chern
number. As long as a Bloch band remains isolated in the
one-body spectrum, i.e., separated by finite energy gaps from
the other bands, its associated Chern number remains con-
stant or “protected” upon alterations in the magnetic field
strength or the lattice potential. More importantly, the Chern
number Cn of the nth Bloch band determines the contribu-
tion of this band to the Hall conductivity [3]. This is in
such a way that, when the Fermi energy εF lies within an
energy gap labeled by j, the Hall conductivity is given pre-
cisely by σxy = σ je2/h, where σ j = ∑

n Cn is a sum over
the filled Bloch bands. Since the integer σ j cannot change
continuously, this result reveals that the Hall conductivity is
a topological invariant of the system, providing insight into
the observed robustness of the integer quantum Hall effect.
In a broader context, Chern numbers have become central to
our exploration of topological phases of matter, illuminating
phenomena as diverse as the quantum Hall effect, topolog-
ical insulators, topological superconductors, and some other
behavior of exotic materials under extreme conditions [4,5].
On the other hand, the Hubbard model is often used for
probing the effects of strong electron-electron interactions
on material properties, ranging from emergent phenomena
such as Mott insulators, high-temperature superconductivity,
charge-density waves, and magnetic ordering [6]. It allows us
to study how complex and unexpected properties emerge from
the collective behavior of strongly-correlated electrons.

To explore how topology influences the behavior of
strongly-correlated electrons and vice versa, here we merge
the Hofstadter and Hubbard models [7–14]. In particular,
we analyze the two-body problem and formulate a two-
body Chern number for the low-lying bound-state branches

of the Hofstadter-Hubbard model by drawing an analogy
with the Fukui-Hatsugai-Suzuki method [15]. It is gratify-
ing to observe that our approach successfully reproduces not
only the anticipated butterfly spectrum but also the Chern
numbers associated with a strongly bound composite boson
in the strong-coupling limit, where the composite boson is
characterized by an effective hopping parameter and an ef-
fective magnetic-flux ratio. This correspondence arises from
the fundamental principle that the topological properties of
a two-body branch remain unchanged as long as the energy
spectrum remains gapped, which holds true all the way from
the infinitely strong-coupling limit down to a finite critical
interaction threshold. Below this threshold, a two-body con-
tinuum begins to overlap, marking a transition in the system’s
behavior. We note that there are many recent works on topo-
logical aspects of the two-body problem in various multiband
lattices [16–26]. They mostly rely on mapping the problem
to an effective Hamiltonian for the composite bosons in the
strong-coupling limit. In addition there are some past works
on the interacting butterflies in the Harper model [27–29]. Our
formulation has a minor overlap with the existing literature,
and it offers a fresh perspective on this long-standing problem.

The rest of the paper is organized as follows. In Sec. II we
introduce the usual Hofstadter model, and its one-body spec-
trum. In Sec. III we introduce the Hofstadter-Hubbard model,
and discuss its two-body spectrum. There we construct the
two-body butterflies in Sec. III A, and calculate their Chern
numbers in Sec. III B. The paper ends with a brief summary
of our conclusions and an outlook in Sec. IV.

II. HOFSTADTER MODEL

Within the tight-binding approximation, the single-particle
Hamiltonian for a generic lattice can be written as Hσ =
−∑

Si;S′i′ tσ
Si;S′i′c

†
Siσ cS′i′σ , where the hopping parameter tσ

Si;S′i′
describes tunneling of a spin σ ∈ {↑,↓} fermion from the sub-
lattice site S′ in the unit cell i′ to the sublattice site S in the unit
cell i. In this paper we consider a square lattice lying in the
xy plane, and set t↑

Si;S′i′ = t↓
Si;S′i′ = −t for the nearest-neighbor

hoppings and 0 otherwise. The presence of an external
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FIG. 1. Magnetic unit cell is highlighted in yellow together with
its intraunit cell (Vk) and interunit cell (Yk and Z j

k) hoppings. Sub-
lattice sites are labeled as S ∈ {1, 2, . . . , j, . . . q}. Here the particle
picks up ± jα phases from upward and downward hoppings, respec-
tively, leading to Z j

k .

magnetic field B(r) = ∇ × A(r) is taken into account through
the Peierls substitution t → tei2πφSi;S′ i′ with t > 0, where the
phase factor φSi;S′i′ = 1

ϕ0

∫ rSi

rS′ i′
A(r) · dr takes into account

the corresponding vector gauge field [30]. Here ϕ0 is the
magnetic-flux quantum and rSi is the position of the site S ∈ i.
We are interested in the original Hofstadter model [1], where a
uniform magnetic field B(r) = Bẑ is perpendicular to a square
lattice, and use the Landau gauge A(r) = (0, Bx). This is
such that the particle accumulates

∑
� φSi;S′i′ = Ba2/ϕ0 = α

uniformly after traversing around any one of the cells in the
counter-clockwise direction, where a is the lattice spacing and
α corresponds to the number of magnetic-flux quanta per cell.
We assume α ≡ p/q corresponds precisely to a ratio of two
relatively prime numbers p and q. In this case the presence
of such a B field leads to a (magnetic) unit cell that has q
sites in the x direction, and we label its sublattice sites as
S ∈ {1, 2, . . . , q}. The unit cell is illustrated in Fig. 1.

Next we use the canonical transformation c†
Siσ =

1√
Nc

∑
k e−ik·ri c†

Skσ , where Nc is the number of unit cells
in the system and ri is the position of unit cell i, and express
Hσ in the reciprocal space. Here k = (kx, ky) is the crystal
momentum (in units of h̄ → 1, the Plack constant) in the
first magnetic Brillouin zone (MBZ), where 0 � kx < 2π

qa and

0 � ky < 2π
a are such that

∑
k 1 = Nc. Note that the total

number of cells (or equivalently total number of lattice sites)
in the system is N = qNc. This leads to the Bloch Hamiltonian
for the Hofstadter model Hσ = ∑

SS′k hSS′
k c†

Skσ cS′kσ written in
the sublattice basis, where the Hamiltonian matrix

hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Z1
k Vk 0 . 0 Y ∗

k
V ∗

k Z2
k Vk 0 . 0

0 . . .
. . .

. . . 0 .

. 0 V ∗
k Z j

k Vk 0

0 . 0 . . .
. . .

. . .

Yk 0 . 0 V ∗
k Zq

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)

is q × q. Here Z j
k = 2t cos(2π jα − kya) describes interunit

cell hoppings in the y direction, and Vk = t and Yk = teikxqa

describe, respectively, the intraunit cell and interunit cell hop-
pings in the x direction with the periodic boundary conditions.
These processes are illustrated in Fig. 1. The resultant eigen-

FIG. 2. One-body Hofstadter butterfly for the Bloch bands,
where α = p/q is the number of magnetic-flux quantum per cell.
Here p and q are relatively prime numbers, and qmax = 30 with all
possible p/q ratios. Different Bloch bands are shown in different
colors for better visibility, where the total bandwidths of the Bloch
bands are 8t in the α → {0, 1} limits.

value problem

∑
S′

hSS′
k nS′k = εnknSk (2)

leads to q Bloch bands in the one-body spectrum, which can
be labeled as n ∈ {1, 2, . . . , q}, starting with the lowest band.
Here nSk is the projection of the Bloch state onto sublattice
S. The spectrum preserves inversion symmetry εnk = εn,−k as
a direct manifestation of the gauge invariance in a uniform
flux; it has εnk = −εq−n,−k symmetry due to the particle-hole
symmetry on a bipartite lattice, and it is mirror symmetric
εnk(α) = εnk(1 − α) around α = 1/2 for 0 � α � 1 [1,31].
When q is an even denominator, these symmetries imply
εq/2,k = −εq/2+1,k, so that the centrally symmetric n = q/2
and n = q/2 + 1 bands touch q times with each other at zero
energy leading to q Dirac cones in the MBZ. Some of these
features are visible in Fig. 2.

Furthermore, one of the elegant aspects of the Hofstadter
model is that the competition between the magnetic length
scale (i.e., the magnetic cyclotron radius) and the periodicity
of the square lattice is known to produce a fractal pattern when
bandwidths of the Bloch bands are plotted against α [1,32]. As
shown in Fig. 2, since the shape of this pattern looks like the
wings of a butterfly, it is usually referred to as the Hofstadter
butterfly in the literature. Having introduced the underlying
one-body problem, next we analyze the two-body problem.

III. HOFSTADTER-HUBBARD MODEL

Assuming a spin-1/2 system, the Hamiltonian for the
Hofstadter-Hubbard model can be written as H = H0 +
H↑↓, where H0 = ∑

σ Hσ is the hopping part, and H↑↓ =
−U

∑
Si c†

Si↑c†
Si↓cSi↓cSi↑ takes the onsite interactions between

↑ and ↓ fermions into account with U � 0 the strength of
the attraction [33]. Using the canonical transformation given
above, and upon transformation c†

nkσ = ∑
S nSkc†

Skσ to the
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band basis, H can be written as [34]

H =
∑
nk

εnkc†
nkσ cnkσ − U

Nc

∑
nmn′m′
Skk′Q

n∗
Skm∗

S,Q−k

× m′
S,Q−k′n′

Sk′c†
nk↑c†

m,Q−k,↓cm′,Q−k′,↓cn′k′↑. (3)

We emphasize that this is the exact analog of the Hofstadter-
Hubbard model in reciprocal lattice, and it is a convenient
starting point for the analysis of the two-body spectrum as
it explicitly conserves the center-of-mass momentum Q of the
incoming and outgoing particles.

A. Two-body Hofstadter-Hubbard butterfly

Noting that the onsite interactions allow solely a spin-
singlet state, and explicitly conserving the center-of-mass
momentum K of the particles, the two-body spectrum EK can
be obtained exactly through the following ansatz [35]

|ψK〉 =
∑
nmk

αk
nm(K)c†

nk↑c†
m,K−k,↓|0〉, (4)

where the variational parameters satisfy αk
nm(K) = αK−k

mn (K),
and |0〉 refers to the vacuum of particles. Through the func-
tional minimization of 〈ψK|H − EK|ψK〉 with respect to
αk

nm(K), we obtain a set of linear equations given by [35]

(εnk + εm,K−k − EK )αk
nm(K)

= U

Nc

∑
n′m′k′S

n∗
Skm∗

S,K−km′
S,K−k′n′

Sk′α
k′
n′m′ (K). (5)

Thus, for any given K, EK can be determined by recasting
Eq. (5) as an eigenvalue problem in the form of a q2Nc × q2Nc

matrix. It turns out a typical two-body spectrum has three
different sets of solutions [34]. For a given K, there are
(i) q(q + 1)/2 two-body scattering continua, (ii) a number
of weakly-bound two-body bound states that always lie in
between the scattering continua even in the U/t → ∞ limit,
and (iii) q two-body bound states at the bottom of the spectrum
which are allowed to become strongly bound in the U/t → ∞
limit. In this paper we are interested in formulating the Chern
numbers of the low-lying two-body branches that appear at
the bottom of the spectrum with a finite energy gap. As an
illustration, we set Ky = 0, α = 1/3, and U = 10t in Fig. 3,
and present the resultant EK as a function of Kx. The col-
ored pair of lines are determined by max(εnk + εm,K−k ) and
min(εnk + εm,K−k ) for a given (n, m) combination, and six
different pairs correspond to upper and lower edges of six
possible two-body continua when q = 3. In addition, there are
three low-lying two-body bound-state branches with energies
EK ∼ −U when q = 3.

A more powerful yet efficient way of finding the low-lying
two-body branches of interest is as follows. By defining a new
set of variational parameters βSK = ∑

nmk αk
nm(K)nSkmS,K−k,

we recast Eq. (5) as a nonlinear-eigenvalue problem [26]

GKβK = 0, (6)

FIG. 3. Full two-body spectrum EK as a function of Kx ∈ MBZ
when Ky = 0 and N = 8100. Gray data corresponds to solutions of
Eq. (5) for α = 1/3 when U = 10t . Six pairs of colored lines are
guides to the eye for the six different possible sets of two-body
continua discussed in the text. In this paper we are interested in the
Chern numbers of the low-lying two-body branches that appear at
the bottom of the spectrum.

where GK is a q × q Hermitian matrix in the sublattice basis
with elements

GSS′
K = δSS′ − U

Nc

∑
nmk

n∗
S′km∗

S′,K−kmS,K−knSk

εnk + εm,K−k − EK
. (7)

Then we classify and distinguish solutions of Eq. (6) by set-
ting the eigenvalues of GK to 0 one at a time. For a given K,
this is equivalent to q uncoupled nonlinear self-consistency
equations for EK, and we keep only the lowest converging
EK solution from each equation. This leads to q bound states
for a given K, and we label them as E�K where the index
� = {1, 2, . . . , q} starts with the lowest two-body branch. It
turns out a particular two-body branch is associated with a
particular eigenvalue of GK for every K ∈ MBZ, e.g., setting
its third eigenvalue to zero may produce fifth branch. This
approach works very well as long as the two-body branch
of interest does not overlap with a two-body continuum. As
an illustration, we set α = {1/3, 1/4, 1/5} and U = 10t in
Fig. 4, and present the resultant E�K as a function of K.
These results are best understood in the U/t → ∞, where
tb = 2t2/U and αb = 2α ≡ pb/qb are, respectively, the effec-
tive nearest-neighbor hopping parameter and effective number
of magnetic-flux quantum per cell for a strongly bound pair
of ↑ and ↓ particles. Note that, when a bound state breaks
up, incurring a cost of binding energy U in the denominator,
and its ↑ constituent hops to a neighboring site, the ↓ partner
follows suit and also hops to the same site. This results in a
contribution of t2 in the numerator, where the prefactor 2 takes
into consideration of the possibility of change in the order
of spins. Here pb and qb are again relatively prime numbers,
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FIG. 4. Low-lying two-body branches E�K as a function of K ∈ MBZ, where the index � = {1, 2, . . . , q} starts with the lowest-lying
branch. These are self-consistent solutions of Eq. (6) for (a) α = 1/3, (b) α = 1/4, and (c) α = 1/5 when U = 10t . Note that (a) is identical
to the bottom of the spectrum shown in Fig. 3.

i.e., pb = p and qb = q/2 when q is even. For this reason,
Figs. 4(a), 4(b)–4(c) are reminiscent of the effective Bloch
bands for a composite boson with αb = {2/3, 1/2, 2/5}, be-
low some energy offset (of order −U ) determined by the
binding energy. However, note that since the MBZ of the
composite boson is twice the MBZ of its constituent fermions
when q is an even denominator, E�K would appear folded
when plotted in the MBZ of the fermions. This explains the
strange-looking structure of Fig. 4(b).

Enchanted by the intricacies of the one-body Hofstadter
butterfly, we construct and present the analogous Hofstadter-
Hubbard butterfly for the low-lying two-body branches in
Fig. 5, where different two-body branches are shown in dif-
ferent colors for better visibility. For instance, when U = 10t ,
one can extract the bandwidths for the αb = {2/3, 1/2, 2/5}
ratios from either Figs. 4 or 5(a). While all of the p/q ratios
up to qmax = 20 are considered in these butterflies, in cases
when different p/q ratios are equivalent to the same pb/qb, we
show the bandwidths of the Bloch bands for the ratio with the
lowest q value. This is why αb = 1/3 has three Bloch bands
in Fig. 5 even though it can come from either α = 2/3 or
1/6. In addition, Fig. 4(b) shows that the bandwidths of the
nonisolated bands overlap in energy in the even q case, and
our coloring scheme does not distinguish these overlapping
regions as they can be included in the upper or the lower
band. It is pleasing to see that the two-body butterfly shown in
Fig. 5(c) bears resemblance to the usual Hofstadter butterfly
in the U/t � 1 limit, where the total bandwidths of the Bloch
bands are approximately 8tb = 16t2/U when αb → {0+, 1−}.
The two-body butterflies are centered around −U − 8t2/U ,
because, when a bound state breaks up at a cost of U , one of its
constituents can hop to a neighboring site and then come back
to the original site to recombine. This leads to an effective
onsite energy 2znnt2/U for the pair, where the prefactor 2
accounts for the possible hopping of the other constituent, and
znn = 4 is the number of nearest neighbors on a square lattice
[26]. Having discussed the low-lying two-body branches, next
we analyze their Chern numbers.

B. Two-body Chern number

As discussed in Sec. III A, the low-lying two-body spec-
trum E�K can be determined by setting the eigenvalues of GK

to zero one at a time. Here we show that the associated eigen-
vectors of Eq. (6), i.e., β�K = (β1�K, β2�K, . . . , βq�K )T in the
sublattice basis with T the transpose, can be used to character-
ize the topology of the low-lying two-body branches [26,36].
For this purpose, we follow closely the Fukui-Hatsugai-
Suzuki approach that is developed for the usual Hofstadter
model [15], and define the so-called link variable as

Uμ
�K j

=
∑

S β∗
S�K j

βS�,K j+μ̂∣∣∑
S β∗

S�K j
βS�,K j+μ̂

∣∣ (8)

for the �th branch, where K j = ( 2π
qbNxa jx,

2π
Nya jy) with jx =

{0, 1, 2, . . . , Nx − 1}, and jy = {0, 1, 2, . . . , Ny − 1} denotes
the position of a lattice point in the effective MBZ. Further-
more, μ̂ ∈ {x̂, ŷ} is a vector pointing along the Kx or Ky axis
in the effective MBZ, where x̂ = ( 2π

qbNxa , 0) and ŷ = (0, 2π
Nya ).

Note that Nc = NxNy is the number of primitive unit cells,
and we choose qbNx = Ny. In addition, the eigenvectors β�K
are periodic in the reciprocal space by construction, where
βS�K j = βS�,K j+Nx x̂ = βS�,K j+Ny ŷ. Then we define the so-called
field strength by

F�K j = ln
[
Ux

�K j
Uy

�,K j+x̂

(
Ux

�,K j+ŷ

)−1(Uy
�K j

)−1]
(9)

for the �th branch, within the principal branch of the logarithm
where −π < 1

i F�K j � π counts the accumulated phase after
traversing the cell around the point K j (which corresponds
to the left-lower corner of the cell) in the counter-clockwise
direction. This leads to the Chern number of the �th low-lying
two-body branch as [15]

C� = 1

2π i

∑
jx jy

F�K j , (10)

where the summation covers the effective MBZ. Note that
C� can only be defined when the �th branch is well sepa-
rated from other states, i.e., when it satisfies the gap-opening
condition |E�K − E�±1,K| �= 0 for all K ∈ MBZ states in the
sufficiently large U/t regime.

Our approach works very well and reproduces the antici-
pated C� above a critical U threshold (which is approximately
of the order of the total bandwidth Wα of the Bloch bands
for a given α) as long as the two-body branch of interest
does not overlap with another two-body branch or a two-
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FIG. 5. Two-body Hofstadter-Hubbard butterfly for the low-
lying two-body branches, where αb ≡ pb/qb is the effective number
of magnetic-flux quantum per cell for the bound states. Here pb and
qb are relatively prime numbers where qmax = 20 with all possible
p/q ratios. Interaction strength U/t is set to 10 in (a), 20 in (b),
and 100 in (c). Different two-body branches are shown in different
colors for better visibility, where their total bandwidths scale as
8tb = 16t2/U in the αb → {0, 1} limits, and they are centered around
−U − 8t2/U .

body continuum. For instance, when α = p/q in the usual
Hofstadter model, the Chern number of the jth energy gap
in the Bloch spectrum is known to satisfy the Diophantine
equation σ j ≡ s j in mod q, where s is the modular inverse of
p, i.e., sp ≡ 1 in mod q [3,37]. Thus, σ j = ∑

n� j Cn, where

Cn is the Chern number of the nth Bloch band with the index
n = {1, 2, . . . , q} starting from the lowest-lying one. The Dio-
phantine equation leaves a mod q ambiguity in σ j , except for
the 0th and qth gap in which case σ0 = σq = 0 corresponds,
respectively, to a trivial particle vacuum and a trivial band in-
sulator. This ambiguity was resolved for the Hofstadter model
on the rectangular lattice [3,37], leading to the constraint σ j ∈
[1 − q

2 ,
q
2 − 1] when q is an even denominator, and to the con-

straint σ j ∈ [− q−1
2 ,

q−1
2 ] when q is an odd denominator. For

example, since s = 1 when α = 1/3, we find σ j = {0, 1, 2, 0}
from the Diophantine equation, leading to σ j → {0, 1,−1, 0}
for the jth gap in the constraining interval and to Cn →
{+1,−2,+1} for the Bloch bands. Similarly, since s = 2
when α = 2/3, we find σ j = {0, 2, 1, 0} from the Diophantine
equation, leading to σ j → {0,−1,+1, 0} in the constrain-
ing interval, and to Cn → {−1,+2,−1} for the Bloch
bands. Similarly, since s = 3 when α = 2/5, we find σ j =
{0, 3, 1, 4, 2, 0} from the Diophantine equation, leading to
σ j → {0,−2,+1,−1,+2, 0} in the constraining interval and
to Cn → {−2,+3,−2,+3,−2} for the Bloch bands. These
are in perfect agreement with our numerical C� values, where
the effective flux ratios are αb = {1/3, 2/3, 2/5} for the bound
states when α = {2/3, 1/3, 1/5}. We also checked many other
flux ratios, e.g., C� = {−3,+4,−3,+4,−3,+4,−3} when
α = 1/7, and C� = {−1,−1, 2, 2,−1,−1} when α↑ = 1/2 is
different from α↓ = 1/3 [38]. Note that the middle branches
� = {3, 4} are not energetically isolated and touch each other
in the latter case since αb = α↑ + α↓ = 5/6 has an even de-
nominator, i.e., C3 and C4 are not well defined.

IV. CONCLUSION

In summary, here we analyzed the two-body problem
within the Hofstadter-Hubbard model, with a particular focus
on its low-lying two-body bound-state branches. In particular
we studied evolution of their two-body Hofstadter-Hubbard
butterfly as a function of the interaction strength U , and for-
mulated their Chern numbers C� in an efficient way by making
an analogy with the Fukui-Hatsugai-Suzuki method [15]. Our
numerical results at finite U are in perfect agreement with the
expected Chern numbers associated with a composite boson
in the U/t → ∞ limit, where tb = 2t2/U and αb = 2α are,
respectively, the effective hopping parameter and effective
magnetic-flux ratio. This is because the topological nature
of a two-body branch cannot change as long as its spectrum
remains gapped, which turns out to be the case down to a
critical threshold U ∼ Wα determined by the total bandwidth
Wα of the Bloch bands for a given α, below which the low-
lying two-body branches start overlapping with a two-body
continuum.

Recent studies have highlighted the significance of the
Chern number of a Bloch band within topological band theory
[4], where it serves as a powerful tool for characterizing and
comprehending the topological characteristics of electronic
band structures in various materials. For instance it plays
a pivotal role in classifying topological phases, elucidating
the quantization of the Hall conductance, and predicting the
emergence of novel electronic states [5]. Similarly, the Chern
number of a two-body bound-state branch may find some
potential applications and utility in certain physical phenom-
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ena, and its fate will be determined in time. It is worth
emphasizing that our formalism is quite generic and valid
not only for attractive (U > 0) and repulsive (U < 0) onsite
interactions, but also it is readily applicable to all sorts of
lattice geometries. As an outlook we expect the single-particle
bulk-boundary correspondence to apply to the two-body topo-
logical phase as well. For instance, similar to the recent results
on the interacting Haldane model [19,26], one can verify that
the two-body Chern numbers of the interacting Hofstadter
model are also in agreement with the chirality of the edge

states through an exact diagonalization with open boundary
conditions [39]. In addition we expect the two-body analog
of the conventional Hall conductance to be σ̄xy = σ̄ j

ē2

h , where
σ̄ j = ∑

� C� and ē = 2e is the effective charge of the pairs.
Finally, it is possible to extend our approach to finite-range
interactions, which is underway.
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