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We investigate the impacts of the quantum geometry of Bloch states, specifically through the band-resolved
quantum-metric tensor, on Cooper pairing and flat-band superconductivity in a three-dimensional pyrochlore-
Hubbard model. First we analyze the low-lying two-body spectrum exactly, and show that the pairing order
parameter is uniform in this four-band lattice. This allows us to establish direct relations between the superfluid
weight of a multiband superconductor and (i) the effective mass of the lowest-lying two-body branch at zero
temperature, (ii) the kinetic coefficient of the Ginzburg-Landau theory in proximity to the critical temperature,
and (iii) the velocity of the low-energy Goldstone modes at zero temperature. Furthermore, we perform a com-
prehensive numerical analysis of the superfluid weight and Goldstone modes, exploring both their conventional
and geometric components at zero temperature.
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I. INTRODUCTION

The complex quantum geometric tensor serves as a central
and defining concept in modern solid-state and condensed-
matter physics [1–3]. Its imaginary component is in the form
of an antisymmetric tensor known as the Berry curvature,
and the associated Chern number has proven instrumental
in the classification of topological insulators and supercon-
ductors [4–7]. Its real part is in the form of a symmetric
tensor known as the quantum metric, and it quantifies the
quantum distance between adjacent Bloch states. Despite a
long history of interdisciplinary interest in various physical
phenomena governed by the Berry curvature, nature has been
less forthcoming regarding the effects of the quantum metric.
Only in the past decade or so have researchers increasingly
recognized the significance of the quantum metric in various
contexts. Notably, following the pioneering work by Peotta
and Törmä in 2015 on the origins of superfluidity in topolog-
ically nontrivial flat bands [8], a deeper connection between
the transport properties of a multiband superconductor and
the quantum geometry of its Bloch states has emerged as a
surprising revelation in recent years [9–14].

Theoretical interest in flat-band superconductivity dates
back a long time, as materials hosting quasiflat Bloch bands
were envisioned as a potential pathway to achieve room-
temperature superconductivity [15,16]. This anticipation was
grounded in the naive BCS theory, which was suggested by
the relatively elevated single-particle density of states within
narrower Bloch bands. However, it is crucial to emphasize
that the microscopic mechanism underpinning the emergence
of flat-band superconductivity was completely absent in these
earlier studies. It remained unclear whether superconductivity
could thrive within an isolated flat band, given that the infi-
nite effective band mass hampers the potential for localized
particles on the lattice to attain superconductivity, thus act-
ing as an inhibiting factor. As a result, it was believed that

superconductivity was strictly prohibited when the permissi-
ble Bloch states originated solely from a single flat band [17].

Recent studies illuminated these two perplexing arguments
and unveiled a physical mechanism that theoretically permits
the existence of flat-band superconductors [9–11]. It has been
demonstrated that multiband lattices (such as in moiré materi-
als) contribute differently to the superfluid weight. The real
intraband processes were associated with the conventional
contribution, while the virtual interband processes were linked
to the geometric aspect. Unlike the conventional contribution
[18,19], which is solely determined by the derivatives of the
Bloch bands, the geometric contribution is also influenced by
the derivatives of the associated Bloch states. Consequently,
unless the geometric contribution is nullified, superconductiv-
ity can manifest within a flat band, thanks to the involvement
of other flat or dispersive bands through interband processes.
There are also alternative proposals involving two-band sys-
tems as a potential means to achieve high-critical temperatures
in the BCS-BEC crossover. [20,21].

These findings highlight the necessity of considering
not only the dispersion of the Bloch bands, but also the
geometry of the Bloch states in the pursuit of high-critical-
temperature superconductivity. It is only by incorporating
both factors that we can fully exploit their potential. A
nontrivial quantum geometry is indispensable, as the mere
presence of a flat band does not guarantee superconductiv-
ity if its geometry is trivial. Thus, the emerging field of
quantum geometry within multiband superconductors holds
substantial potential for advancing our understanding of flat-
band superconductors, assuming Hubbard-type tight-binding
Hamiltonians mimic their underlying low-energy physics.
Despite the significant progress made with one-dimensional
and two-dimensional lattices that feature flat bands [9,10,22–
33], there has been limited exploration of more realistic
three-dimensional lattices due to the technical complexities
and challenges associated with their analysis. Our aim is to
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fill this gap by investigating quantum-geometric effects in
a pyrochlore-Hubbard model, where the pyrochlore lattice
consists of a three-dimensional arrangement of tetrahedra
sharing corners, possesses cubic symmetry, and is commonly
encountered in transition-metal and rare-earth oxide materi-
als, especially in oxide compounds [34]. Given the recent
demonstrations of three-dimensional flat bands and supercon-
ductivity in a pyrochlore metal CaNi2 [35] and pyrochlore
superconductor CeRu2 [36], these structures present a com-
pelling lattice platform for exploring the interplay between
quantum geometry and strong correlations.

The rest of the paper is organized as follows. In Sec. II,
we introduce the pyrochlore lattice and discuss its one-body
spectrum. In Sec. III, we calculate the low-lying two-body
spectrum for the pyrochlore-Hubbard model and derive the ef-
fective mass tensor of the lowest-lying branch. In Sec. IV, we
analyze the superfluid weight at zero and finite temperatures,
relate it to the velocity of the low-energy Goldstone modes
at zero temperature, and present their thorough numerical
exploration in Sec. V. The paper ends with a summary and an
outlook in Sec. VI, and the Gaussian fluctuations and numer-
ical implementations are discussed in Appendixes A and B.

II. ONE-BODY PROBLEM

The pyrochlore lattice is one of the simplest three-
dimensional tight-binding models that feature a flat band
in the Bloch spectrum [37,38]. It has an underlying face-
centered-cubic Bravais lattice that can be defined by the
primitive unit vectors a1 = (0, a/2, a/2), a2 = (a/2, 0, a/2),
and a3 = (a/2, a/2, 0), where a is the side length of the
conventional simple-cubic cell. Its basis consists of NS = 4
sublattice sites that are located at rA = (0, 0, 0), rB = a1/2,
rC = a2/2, and rD = a3/2. The corresponding first Brillouin
zone (BZ) has the shape of a truncated octahedron with a side
length

√
2π/a. The associated reciprocal space is such that∑

k∈BZ 1 = Nc, where k = (kx, ky, kz ) is the crystal momen-
tum in units of h̄ → 1 and Nc is the number of unit cells in the
system. That is, the total volume of the system is V = Nca3/4,
where 32π3/a3 is the volume of the BZ in reciprocal space,
a3/4 is the volume of the primitive cell in real space, and
N = 4Nc is the total number of lattice sites in the system.

Having a spin-1/2 system in mind with σ = {↑,↓}
labeling the spin projections, the Bloch Hamiltonian for
such a lattice can be written as H0 = ∑

SS′σk hk
SS′c†

Skσ cS′kσ ,

where cSkσ annihilates a spin-σ particle on the sublattice
S ≡ {A, B,C, D} with momentum k. The elements hk

SS′ = hk
S′S

of the Hamiltonian matrix hk are real such that hk
SS =

0, hk
AB = −2t̄ cos ( ky+kz

4 a),hk
AC = −2t̄ cos ( kx+kz

4 a), hk
AD =

−2t̄ cos ( kx+ky

4 a),hk
BC = −2t̄ cos ( kx−ky

4 a), hk
BD =

−2t̄ cos ( kx−kz

4 a), and hk
CD = −2t̄ cos ( ky−kz

4 a), where t̄ is
the hopping parameter between the nearest-neighbor sites.
Thus, hk

SS′ = (h−k
SS′ )∗ respects time-reversal symmetry. The

resultant eigenvalue problem, i.e.,∑
S′

hk
SS′nS′k = εnknSk, (1)

leads to four Bloch bands in the one-body spectrum, where
ε1k = −2t̄ (1 + √

1 + �k ) and ε2k = −2t̄ (1 − √
1 + �k ) are

FIG. 1. (a) Bloch bands are shown along the high-symmetry
points in the first BZ where � ≡ (0, 0, 0), X ≡ (0, 0, 2π/a),
W ≡ (π/a, 0, 2π/a), K ≡ (π/2a, π/2a, 2π/a), and L ≡ (π/a,

π/a, π/a). (b) Density of states per unit cell per spin as a function
of energy.

the dispersive bands with �k = cos(kxa/2) cos(kya/2) +
cos(kya/2) cos(kza/2) + cos(kxa/2) cos(kza/2), and ε3k =
ε4k = 2t̄ are the flat bands. These bands are sketched in
Fig. 1(a) along the high-symmetry points. In this paper, since
we prefer the flat bands to appear at the bottom of the spec-
trum, we set t̄ → −t and choose t > 0 as the unit of energy.

In Fig. 1(b), we also show the single-particle density of
states per unit cell per spin, DOS(ε) = 1

Nc

∑
nk δ(ε − εnk ),

where the Dirac δ function is represented via a Lorentzian
distribution δ(x) = 1

π
limη→0

η

x2+η2 with η = 0.001t . This is
the origin of the energy broadening around ε = −2t . The van
Hove singularities are clearly visible at ε = {0, 4t}, and the
density of states vanishes linearly at ε = 2t with logarithmic
corrections in its vicinity. The total bandwidth is 8t .

III. TWO-BODY PROBLEM

In this paper, we consider the simplest Hubbard model with
an on-site attractive interaction between an ↑ and a ↓ particle,

H = H0 − U

Nc

∑
Skk′q

c†
Sk↑c†

S,−k+q,↓cS,−k′+q,↓cSk′↑, (2)

where U � 0. The two-body problem can be solved exactly
through a variational approach [39], leading to a number of
spin-singlet bound states for a given center-of-mass momen-
tum q. It turns out the low-lying two-body spectrum E	q can
be determined by Gqβ	q = 0, where Gq is a 4 × 4 Hermitian
matrix with the following elements:

Gq
SS′ = δSS′ − U

Nc

∑
nmk

m∗
S,k−qnSkn∗

S′kmS′,k−q

εnk + εm,k−q − E	q
. (3)

Here, δi j is a Kronecker delta and we assumed time-
reversal symmetry εn,−k↓ = εnk↑ = εnk and n∗

S,−k↓ = nSk↑ =
nSk, where nSk is the sublattice projection 〈S|nk〉 of the peri-
odic part |nk〉 of the Bloch state that is associated with εnk
through Eq. (1). This yields a self-consistency relation for
a given E	q, and its solutions can be found by setting the
eigenvalues of Gq to 0 one at a time. The corresponding
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FIG. 2. (a) Spectrum E	q of the low-lying bound states for
U = 3t as a function of qx , when qy = 0. The quadratic expansion
E1q = Eb + q2

x/(2Mb) is an excellent fit for the lowest branch in the
small-qx region. (b) Energy offset E10 as a function of U . (c) Ef-
fective isotropic mass 1/Mb = 1/M intra

b + 1/M inter
b as a function of U

along with its intraband and interband contributions. The low-U fit
1/(a2tMb) ≈ 0.028(U/t ) − 0.013(U/t )1.45 is discussed in the text.

eigenvectors β	q = (βA	q, βB	q, βC	q, βD	q)T can be used to
characterize some physical properties of the bound states,
where T is the transpose. Thus, for a given q, there are
four bound states below the threshold −4t of the lowest
two-body continuum, and we label them with 	 = {1, 2, 3, 4},
starting with the lowest branch. These solutions are illus-
trated in Fig. 2(a) for U = 3t , where the degenerate branches
E3q = E4q appear almost flat in the shown scale since their
bandwidths are roughly 0.002t . The overall structure of the
two-body spectrum is reminiscent of the underlying Bloch
spectrum, but with the opposite sign of energy. Compare with
the � - X portion in Fig. 1(a). This can be best understood in
the U/t → ∞, where the effective nearest-neighbor hopping
parameter tp = 2t2/U > 0 for a strongly bound pair of ↑ and
↓ particles has the opposite sign compared to t̄ < 0 of its
unpaired constituents. This is because when a bound state
breaks up at a cost of binding energy U in the denominator
and its ↑ constituent hops to a neighboring site, the ↓ partner
follows it and hops to the same site, leading to t̄↑t̄↓ = t2 in
the numerator. The prefactor accounts for the possibility of

change in the order of spins. Such a virtual dissociation is
the only physical mechanism for a strongly bound pair of
particles to move in the Hubbard model with nearest-neighbor
hoppings.

Our numerical calculations also reveal that the so-called
uniform-pairing condition [39], i.e., β1q ∝ (1, 1, 1, 1)T, is sat-
isfied at all U �= 0 for the lowest-lying 	 = 1 branch in the
q → 0 limit. This finding suggests that the sublattice sites
of a pyrochlore lattice in a unit cell must be equivalent by
symmetry and make equal contribution to pairing. Thus, sim-
ilar to the well-known two-dimensional toy models such as
the Mielke-checkerboard and kagome lattices that exhibit uni-
form pairing, the pyrochlore lattice offers an ideal playground
for theoretical studies on flat-band superconductivity in three
dimensions. For instance, when the uniform-pairing condition
is met together with the underlying time-reversal symmetry,
the energy E1q of the corresponding small-q bound states can
be extracted simply from

∑
SS′ Gq

SS′ = 0. In particular, it is
possible to show that

E1q = Eb + 1

2

∑
i j

(M−1
b )i jqiq j, (4)

where the q = 0 energy offset Eb is determined by the self-
consistency relation [39]

1 = U

N

∑
nk

1

2εnk − Eb
. (5)

Furthermore, we split the elements of the inverse effective-
mass tensor as (M−1

b )i j = (M−1
intra )i j + (M−1

inter )i j, depending on
whether the intraband or interband processes are involved,
leading to [39]

(
M−1

intra

)
i j =

∑
nk

ε̈
i j
nk

(2εnk−Eb)2

2
∑

nk
1

(2εnk−Eb)2

, (6)

(
M−1

inter

)
i j =

∑
nk

gnk
i j

2εnk−Eb
− ∑

n,m �=n,k
gnmk

i j

εnk+εmk−Eb∑
nk

1
(2εnk−Eb)2

. (7)

Here the intraband contribution depends only on the deriva-
tives of the Bloch spectrum, ε̈

i j
nk = ∂2εnk

∂ki∂k j
, but the interband

contribution also depends on the derivatives of the associated
Bloch states through the elements of the so-called band-
resolved quantum-metric tensor,

gnmk
i j = 2Re

〈
ṅi

k

∣∣mk
〉〈

mk
∣∣ṅ j

k

〉
, (8)

where Re denotes the real part and |ṅi
k〉 = ∂|nk〉/∂ki. As the

naming suggests, the elements of the quantum-metric tensor
of the nth Bloch band [3] can be written as gnk

i j = ∑
m �=n gnmk

i j .

Their origin can be traced back to the power-series expansion
of

|〈nk|mk−q〉|2 = δnm − 1

2

∑
i j

[
gnk

i j δnm + gnmk
i j (δnm − 1)

]
qiq j

(9)

in the small-q limit.
In Figs. 2(b) and 2(c), we present the self-consistent

solutions of Eqs. (5)–(7) for the pyrochlore lattice, where
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the effective mass is isotropic in space. As an illustra-
tion, we show in Fig. 2(a) that the resultant Eb ≈ −5.8481t
and Mb ≈ 37.3026/(a2t ) provide a perfect fit when U =
3t . Furthermore, in the U/t → 0 limit when Eb = −4t −
U/2, one can make analytical arguments that are based on
some controlled approximations that 1/(a2tMb) ≈ Ã1(U/t ) −
Ã2(U/t )Ã3 � 1/(a2tM intra

b ) to the leading order, where Ã1 and
Ã2 are numerical factors and Ã3 = 3/2. Our numerical fit
for U/t � 0.1 shows that Ã1 ≈ 0.028, Ã2 ≈ 0.013, and Ã3 ≈
1.45. This fit is shown in Fig. 2(c) and it works quite well up
to U � t . Similarly, in the U/t → ∞ limit when Eb = −U ,
one can show that Mb = 4/(a2tp), where tp = 2t2/U is the
effective hopping parameter for a strongly bound pair, as
discussed above. This is consistent with our numerical finding
1/(a2tMb) ≈ 0.0048 when U = 100t . It is pleasing to note
that this finding is also aligned with the effective-mass ten-
sor of the highest Bloch band where (m−1

1 )i j = a2ε̈
i j
1k|k=0 =

(a2t̄/4)δi j .

IV. MANY-BODY PROBLEM

It turns out the complex parameter βS	q plays precisely the
role of an order parameter for spin-singlet pairing on sublat-
tice S in the two-body problem [39]. In more general terms,
the correspondence between the analogous parameters for the
spin-singlet and -triplet two-body bound states and that of the
spin-singlet and -triplet BCS order parameters can be found
in Ref. [40] in the context of the extended-Hubbard model.
Thus, given that the uniform-pairing condition is satisfied
for the lowest-lying two-body bound states when q → 0, the
analogous Cooper pairing and its many-body BCS mean-field
extension (i.e., assuming stationary Cooper pairs with zero
center-of-mass momentum) are also described by a uniform
order parameter in a unit cell. We emphasize that the uniform-
pairing condition is satisfied exactly in the two-body problem
without any phase difference between the sublattices. This is
in fact the underlying reason for the perfect agreement be-
tween Eqs. (4)–(7) and that of the numerics shown in Fig. 2(a).

A. BCS-BEC crossover

For this reason, we take �S ≡ �0 as the uniform order pa-
rameter for superconductivity in all four sublattices and set it
to a real positive number. Following the standard prescription,
we obtain the mean-field self-consistency relations [24],

1 = U

N

∑
nk

Xnk

2Enk
, (10)

F = 1 − 1

N

∑
nk

Xnk

Enk
ξnk, (11)

where Xnk = tanh ( Enk
2T ) is a thermal factor, with kB → 1 the

Boltzmann constant and T the temperature, ξnk = εnk − μ is
the shifted dispersion with μ the chemical potential, Enk =√

ξ 2
nk + �2

0 is the intraband quasiparticle spectrum, and the
particle filling 0 � F = N /N � 2 corresponds to the total
number of particles per site. Note that there is no interband
pairing since the underlying time-reversal symmetry guaran-
tees the presence of a ↓ particle in Bloch state |n−k〉 for every
↑ particle in |nk〉, as the energetically most favorable BCS

scenario for the stationary pairs. Self-consistent solutions of
Eqs. (10) and (11) for �0 and μ are the starting point of the
BCS-BEC crossover theories, and they are known to produce
qualitatively correct results at sufficiently low T including the
U/t → ∞ limit. In addition, the mean-field expression for the
filling of condensed particles [24,41],

Fc = �2
0

N

∑
nk

X 2
nk

2E2
nk

, (12)

plays an important role in our discussion below and it also
produces qualitatively correct results at all U �= 0 as long as
T is sufficiently low.

B. Superfluid weight

When the uniform-pairing condition is met together with
the time-reversal symmetry, the superfluid phase-stiffness ten-
sor, often called the superfluid weight, can be written as
Di j = Dintra

i j + Dinter
i j , depending on whether the intraband or

interband processes are involved. Using a linear-response the-
ory and Kubo formalism or by simply imposing a phase twist
in the order parameter [23,24,42], it can be shown that

Dintra
i j = �2

0

V
∑
nk

(Xnk

E3
nk

− Ynk

2T E2
nk

)
ξ̇ i

nkξ̇
j

nk, (13)

Dinter
i j = �2

0

V
∑

n,m �=n,k

(Xnk

Enk
− Xnk − Xmk

Enk − Emk

)

× (ξnk − ξmk )2

Emk(Enk + Emk )
gnmk

i j , (14)

where Ynk = sech2( Enk
2T ) is another thermal factor. Thus,

similar to the inverse effective-mass tensor of the lowest-
lying two-body branch, the intraband contribution depends
only on the derivatives of the Bloch spectrum, but the
interband contribution also depends on the band-resolved
quantum-metric tensor. For this reason, the former (latter)
is also referred to as the conventional (geometric) contribu-
tion [8,23]. This is partly because Eq. (13) can be written
in a more familiar form, i.e., through some integration by

parts and algebra, Dintra
i j = �2

0
V

∑
nk[ξ̈ i j

nk(1 − Xnkξnk/Enk ) −
Ynkξ̇

i
nkξ̇

j
nk/(2T )], which is simply a sum over the the well-

known single-band expression [19]. Next we show that the
geometric origin of the superfluid weight, i.e., Eq. (14), can be
traced all the way back to the effective mass of the superfluid
carriers.

1. T → 0 limit

Let us first analyze Eqs. (13) and (14) at T = 0. Assuming
�0 �= 0, we may set Xnk = 1 and Ynk = 0, leading to

Di j = 2�2
0

V
∑
nmk

Re
[〈

nk
∣∣ḣi

k

∣∣mk
〉〈

mk
∣∣ḣ j

k

∣∣nk
〉]

Emk(Enk + Emk )
(15)

for the total superfluid weight, where ḣi
k = ∂hk/∂ki is

the derivative of the Hamiltonian matrix. Here we con-
centrate on two physically transparent limits. The first
one is the U/t → ∞ limit, where �0 = U

2

√
F (2 − F )
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and μ = −U
2 (1 − F ) such that

√
μ2 + �2

0 = U/2. For this

reason, we may set Enk →
√

μ2 + �2
0 in Eq. (15), and

calculate
∑

nmk [〈 nk| ḣi
k |mk 〉〈mk|ḣ j

k|nk〉] = ∑
k Tr[ḣi

kḣ j
k] =

Nca2t2δi j, leading eventually to Di j = D0δi j where D0 =
8F (2 − F )t2/(aU ). This result can be understood as fol-
lows. In the case of a continuum model with a single
parabolic dispersion εk = k2/(2m0) and an attractive s-wave
contact interaction between particles, it can be shown that
D0 = ρ0/m0, where ρ0 is the superfluid density. When these
particles form strongly bound, weakly interacting pairs in
the BEC limit, we may set ρp = ρ0/2 as the superfluid
density of pairs and Mp = 2m0 as their mass, leading to
D0 = 4ρp/Mp in terms of the pair properties [24,25]. Fur-
thermore, given that all of the particles participate in the
superfluid flow at T = 0 for any interaction strength in
a continuum model [43], i.e., ρ0 = N /V = 16F/a3 where
F is the filling of superfluid particles in the correspond-
ing lattice model, we expect ρp = 16Fp/a3 where Fp is the
filling of superfluid pairs. Moreover, substituting Fc/2 =
F (2 − F )/4 as Fp in the U/t → ∞ limit, we identify Mp =
2U/(a2t2) as the effective mass of the superfluid pairs in
a pyrochlore lattice. It is pleasing to see that this analysis
is in full agreement with Mb = 2U/(a2t2) of the effective
band mass of the lowest-lying two-body branch presented
in Sec. III.

The second limit is the extremely low particle-filling F →
0 case and its extremely high particle-filling F → 2 counter-
part (which is equivalently to the extremely low hole filling),
where μ � −2t and ξnk � 0 in the former and μ � 6t and
ξnk � 0 in the latter, with |ξnk| � �0 for any U �= 0. For this
reason, we may set Enk → |ξnk| and obtain

Dintra
i j = �2

0

V
∑
nk

ξ̇ i
nkξ̇

j
nk

|ξnk|3 = �2
0

2V
∑
nk

∣∣ξ̈ i j
nk

∣∣
ξ 2

nk

, (16)

Dinter
i j = 2�2

0

V
∑
nk

gnk
i j

|ξnk| − 4�2
0

V
∑

n,m �=n,k

gnmk
i j

|ξnk| + |ξmk| , (17)

where we used integration by parts in Eq. (16), and gnmk
i j =

gmnk
ji and gnk

i j = gnk
ji in the evaluation of Eq. (17). In addition,

using the density of superfluid pairs ρp = NFp/V along with

Fp = Fc/2 = �2
0

4N

∑
nk

1
ξ 2

nk
, we eventually find

Di j = 4ρp
(
M−1

b

)
i j (18)

for the F → 0 limit, where (M−1
b )i j = (M−1

intra )i j + (M−1
inter )i j

is precisely determined as the inverse effective-mass tensor of
the lowest-lying two-particle bound states. This can be seen
by setting μ = Eb/2 and ξ̈

i j
nk = ε̈

i j
nk in Eqs. (6) and (7). Note

that the F → 2 limit is similar, but with the appearance of
the inverse effective-mass tensor of the highest-lying two-hole
branch.

2. T → Tc limit

Let us also analyze Eqs. (13) and (14) in the vicinity of
the critical superconducting transition temperature Tc. Since

�0/t → 0+ in the T → Tc limit from below, we may set
Enk → |ξnk| and obtain

Dintra
i j = �2

0

V
∑
nk

[(
Xnk

2ξ 2
nk

− Ynk

4T ξnk

)
ξ̈

i j
nk + XnkYnk

4T 2ξnk
ξ̇ i

nkξ̇
j

nk

]
,

(19)

Dinter
i j = 2�2

0

V
∑
nk

Xnk

ξnk
gnk

i j − 2�2
0

V
∑

n,m �=n,k

Xnk + Xmk

ξnk + ξmk
gnmk

i j ,

(20)

where Xnk = tanh ( ξnk
2T ) and Ynk = sech2( ξnk

2T ). Here we

used integration by parts,
∑

k Xnkξ̇
i
nkξ̇

j
nk/ξ

3
nk = ∑

k Ynk

ξ̇ i
nk ξ̇

j
nk / (4T ξ 2

nk ) + ∑
k Xnkξ̈

i j
nk/(2ξ 2

nk ), that is followed
by another integration by parts,

∑
k Ynkξ̇

i
nkξ̇

j
nk/ξ

2
nk =

−∑
k XnkYnkξ̇

i
nkξ̇

j
nk/(T ξnk ) + ∑

k Ynkξ̈
i j
nk/ξnk in Eq. (19),

and gnmk
i j = gmnk

ji and gnk
i j = gnk

ji in the evaluation of Eq. (20).
Note that Eqs. (19) and (20) reproduce, respectively, Eqs. (16)
and (17) in the limit when |ξnk| � Tc, e.g., in the U/t → ∞
where Tc/t ∝ t/U → 0. It is also pleasing to see that

Di j = 4Nc�
2
0

V Ci j, (21)

where Ci j = C intra
i j + C inter

i j is precisely the kinetic coefficient
that appears in the Ginzburg-Landau theory near Tc [44],
determining not only the superfluid density and effective mass
of the superfluid carriers, but also the coherence length, mag-
netic penetration depth, upper critical magnetic field, etc.
Notably, certain among these quantities have already been
measured to characterize geometric effects in twisted bilayer
graphene [45].

We note in passing that it is desirable to have an analytic
expression for Ci j in the U/t → 0 limit. However, due to the
complex nature of the pyrochlore lattice, which features four
Bloch bands with nonisolated flat bands touching dispersive
bands, and dispersive bands exhibiting highly anisotropic mo-
mentum dependence within a nontrivial BZ that is in the shape
of a truncated octahedron, evaluating Ci j poses a significant
challenge. Moreover, numerically computing Ci j necessitates
a self-consistent determination of Tc and μ, which, in princi-
ple, can be achieved by extending the Nozieres-Schmitt-Rink
approach to the multiband case [46,47]. Unfortunately, this
extension is also highly nontrivial and its numerical imple-
mentation may encounter challenging convergence issues.
Therefore, we primarily focus on the T = 0 case in this paper,
which is comparatively more manageable.

C. Low-lying Goldstone modes at T = 0

Similar to the superfluid weight, next we show that the
low-energy collective modes also have a quantum-geometric
origin [48]. As discussed in Appendix A, the dispersion ωq
for the collective Goldstone modes is determined by the
poles of the fluctuation propagator, M−1

q , i.e., by setting
det Mq = 0, after an analytic continuation iνn → ω + i0+
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to the real axis. At T = 0, the matrix elements of Mq

reduce to

Mq,E
11 = 4

U
+ 1

Nc

∑
nmk

(ξξ ′ + EE ′)(E + E ′)|〈nk|mk−q〉|2
2EE ′[ω2 − (E + E ′)2]

,

(22)

Mq,O
11 = 1

Nc

∑
nmk

(ξE ′ + Eξ ′)ω|〈nk|mk−q〉|2
2EE ′[ω2 − (E + E ′)2]

, (23)

Mq
12 = − 1

Nc

∑
nmk

�2
0(E + E ′)|〈nk|mk−q〉|2

2EE ′[ω2 − (E + E ′)2]
, (24)

where we denote ξnk by ξ , ξm,k−q by ξ ′, Enk by E , and Em,k−q
by E ′. To determine the lowest-energy Goldstone modes, it
is sufficient to retain terms up to quadratic order in their
small-q and ω expansions, leading to Mq,E

11 + Mq
12 = A +∑

i j Ci jqiq j − Dω2,Mq,E
11 − Mq

12 = ∑
i j Qi jqiq j − Rω2 and

Mq,O
11 = −Bω. In the expansion of Mq,E

11 − Mq
12, the

zeroth-order term vanishes due to the saddle-point con-
dition given in Eq. (10). The nonkinetic expansion coef-
ficients A = 1

Nc

∑
nk �2

0/(2E3
nk ), B = 1

Nc

∑
nk ξnk/(4E3

nk ),D =
1

Nc

∑
nk ξ 2

nk/(8E5
nk ), and R = 1

Nc

∑
nk 1/(8E3

nk ) are simply
given by a sum of their single-band counterparts [49]. When
B2 � AR, it is clearly seen that the phase and amplitude
modes are decoupled, and this is known to be the case only
in the strict BCS limit [49].

Similar to the superfluid weight, the kinetic coefficients can
be written as Qi j = Qintra

i j + Qinter
i j and Ci j = Cintra

i j + Cinter
i j ,

depending on whether the intraband or interband processes
are involved, leading to

Qintra
i j = 1

Nc

∑
nk

1

8E3
nk

ξ̇ i
nkξ̇

j
nk, (25)

Qinter
i j = 1

Nc

∑
n,m �=n,k

(ξnk − ξmk )2

8EnkEmk(Enk + Emk )
gnmk

i j , (26)

Cintra
i j = 1

Nc

∑
nk

1

8E3
nk

(
1 − 5�2

0ξ
2
nk

E4
nk

)
ξ̇ i

nkξ̇
j

nk, (27)

Cinter
i j = − 1

Nc

∑
nk

�2
0

4Enk
gnk

i j

+ 1

Nc

∑
n,m �=n,k

(ξnk − ξmk )2 + 4�2
0

8EnkEmk(Enk + Emk )
gnmk

i j . (28)

Here the geometric contributions follow from the small-q
expansion given in Eq. (9) [50]. Furthermore, the intraband
coefficients can also be put in the more familiar forms,
i.e., again through some integration by parts and algebra,
Qintra

i j = 1
Nc

∑
nk[ξnkξ̈

i j
nk − ξ̇ i

nkξ̇
j

nk(1 − 3�2
0/E2

nk )]/(8E3
nk )

and Cintra
i j = 1

Nc

∑
nk[ξnk(1 − 3�2

0/E2
nk )ξ̈ i j

nk − ξ̇ i
nkξ̇

j
nk(1 −

10�2
0ξ

2
nk/E4

nk )]/(8E3
nk ), which are simply sums of their

well-known single-band expressions [48,49]. By setting
det Mq = 0, we obtain

ω2
q =

∑
i j

Qi j

R + B2/A
qiq j, (29)

which is the dispersion for the low-momentum and low-
frequency Goldstone modes. Thus, we are pleased to verify
that the low-energy collective excitations have a linear disper-
sion whose finite velocity is characterized by the superfluid
weight, i.e.,

Di j = 8Nc�
2
0

V Qi j, (30)

at zero temperature.
We note in passing that the stability of the Goldstone

modes is ensured by the stability of the superconducting state,
as follows. In the long-wavelength limit, the effective action
associated with the phase fluctuations of the order param-
eter can be expressed as Sθ = 1

8

∫ 1/T
0 dτ

∫
d3r

∑
i j Di j θ̇

iθ̇ j,

where r = (x, y, z) denotes the position in real space and
θ̇ i = ∂θ (r, τ )/∂ri controls the spatial variations of the phase
[23,51]. By definition, this implies that Di j determines the
response of the superconducting system to a phase twist of
the order parameter, i.e., the response of the thermodynamic
potential to an infinitesimal superfluid flow [52]. Therefore,
the stability of a spatially uniform superfluid necessitates a
positive definite Di j , as a negative eigenvalue indicates that
the superconducting state is unstable towards a spontaneously
generated phase gradient, i.e., towards a spatially nonuni-
form superfluid. Moreover, a positive definite Di j ensures a
positive speed for the Goldstone modes through Eq. (30),
which is in accordance with the Landau’s criterion for
superfluidity.

V. NUMERICAL RESULTS

In this section, we exclusively set T = 0 and determine
�0 and μ self-consistently from Eqs. (10) and (11), and then
plug them into Eqs. (13) and (14) as a function of U . Typical
solutions are shown in Fig. 3. When particle filling lies within
the flat bands, i.e., when μ = −2t or, equivalently, 0 � F � 1
at U = 0, it can be shown that [53] �0 = U

2

√
F (1 − F ), μ =

−2t − U
2 ( 1

2 − F ), and Fc = F (1 − F ) in the U/t → 0 limit.
Note that these expressions are quite similar to those of the
U/t → ∞ limit’s results because, given that U/W � 1 with
W → 0 being the bandwidth of a flat band, even an arbi-
trarily small but finite U �= 0 corresponds effectively to a
strong-coupling limit. Accordingly, when μ = −2t coincides
perfectly with a flat band at U = 0 (or, equivalently, corre-
sponds to F = 0.5, i.e., to half-filled flat bands), �0 grows
linearly with U , as shown in Fig. 3(a). In this case, our numer-
ical fit aD0/t = B̃1(U/t ) − B̃2(U/t )B̃3 for U/t � 0.1 shows
that B̃1 ≈ 0.225, B̃2 ≈ 0.0544, and B̃3 ≈ 1.44, and this fit
works very well up to U � 2t . This finding is in sharp contrast
with the recent results on two-dimensional lattices, where a
band touching with a flat band causes logarithmic corrections
to the linear-in-U term that is expected for an energetically
isolated flat band in any dimension [25,26]. It is pleasing to
see that this fit is quite similar in structure to that of 1/Mb of
the two-body problem discussed in Sec. III, where B̃3 ≈ Ã3.
The ratios B̃1/B̃2 and Ã1/Ã2 are not expected to be similar
unless F → 0.

It can also be shown that while the BCS order parame-
ter �0 grows exponentially e−1/[UDOS(μ)] slow when −2t <

μ < 2t and 2t < μ < 6t lies within any of the dispersive
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FIG. 3. (a) Order parameter �0, (b) isotropic superfluid weight
D0, (c) isotropic sound speed c0, and (d) filling of condensed particles
Fc as a function of U at T = 0. Note that the disappearance of
superconductivity is signalled by both �0 → 0 and D0 → 0 below
the critical semimetal point Uc ≈ 3.48t when μ = 2t .

Bloch bands, it grows linearly U − Uc fast from the critical
semimetal point with Uc ≈ 3.48t when μ = 2t or, equiva-
lently, F = 3/2, and with a square root

√
U − Uc from the

particle and hole vacuums when μ < −2t or μ > 6t . For
instance, Uc ≈ 5.79t when μ = −4t . These are illustrated in
Fig. 3(a). Thus, the semimetal state persists even at finite
U and superconductivity does not appear until a critical in-
teraction threshold Uc. The corresponding D0 are shown in
Fig. 3(b), where it saturates at sufficiently small U/t when μ

lies within any of the dispersive Bloch bands, and vanishes
otherwise. The latter finding again signals the disappearance
of superconductivity at a finite interval U < Uc.

In Fig. 4, we present maps of the superfluid weight D0

together with its Dintra
0 and Dinter

0 contributions as a function
of U , μ, and F . Due to technical difficulties, i.e., the accuracy
of the numerical integration becomes unreliable when the
exponential growth of �0 is not accurately captured by the
nonlinear solver due to the convergence problems, we choose
to present the data in the parameter regime where �0 � 0.01t .
See Appendix B for more details. This is why Fig. 4 has white
regions, e.g., in the lower panels, even though F corresponds
to a partially filled dispersive Bloch band in the U/t → 0

limit where D0 is known to saturate. This drawback offers the
advantage that the single-particle density of states DOS(μ),
shown in Fig. 1(b), appears on the periphery of the white
regions, including the flat bands at μ = −2t , van Hove sin-
gularities at μ = {0, 4t} or, equivalently, at F ≈ {1.19, 1.81},
and the critical semimetal point at μ = 2t or, equivalently,
at F = 3/2. On the other hand, the peripheries of the par-
ticle and hole vacuums and the critical semimetal point are
determined quite accurately in the upper panels since �0 van-
ishes very rapidly in their vicinity when U → Uc �= 0; e.g.,
see Fig. 3(a). This is also indicated by the nearly invisible
white regions at the edges of the lower panels when F → 0
or F → 2.

In the small-U/t regime, Fig. 4 clearly shows that while
Dinter

0 is the dominant contributor in the flat-band supercon-
ductivity, i.e., when 0 < F � 1, Dintra

0 dominates the usual
superconductivity in general when μ lies within a disper-
sive band. However, both contributions are equally important
in the large-U/t regime, including the U/t → ∞ limit (not
shown). In fact, Dinter

0 ∼ 2.6Dintra
0 even at U = 100t . We

checked that the total superfluid weight approaches D0 =
8F (2 − F )t2/(aU ) in the U/t → ∞ limit, which is in per-
fect agreement with the analysis given in Sec. IV B 1. Since
the filling of condensed particles Fc plays a critical role in
connecting D0 to the effective mass of the superfluid carriers,
we also present its map in Fig. 5 as a function of U , μ, and
F . This figure verifies that Fc = F (1 − F ) (derived above)
saturates when 0 � F � 1 in the U/t → 0 limit as soon as
U �= 0, and that all of the particles are entirely condensed in
a dilute flat-band superconductor, i.e., Fc = F when F → 0
in Fig. 5. Such a perfect condensation may occur only if the
repulsive interaction between small Cooper pairs is negligible,
which may be the underlying reason behind our finding in
Sec. IV B 1 that Di j = 4ρp(M−1

b )i j is determined entirely by
the effective mass of the lowest-lying two-body branch when
F → 0. This is in sharp contrast to the usual superconductors
where Fc corresponds to a negligible fraction of particles in the
small-U/t regime [41], which can also be seen in the F > 1
region in Fig. 5. We again checked that Fc = F (2 − F ) in
the U/t → ∞ limit, which is in perfect agreement with the
analysis given in Sec. IV B 1.

In Fig. 6, we present maps of the square s0 = Q0/(R +
B2/A) of the isotropic sound speed c0, together with its sintra

0
and sinter

0 contributions, as a function of U , μ, and F . First of
all, both sintra

0 and s0 saturate in the U/t → 0 limit when μ

lies within a dispersive band and sinter
0 is small and negligible.

These are expected from the well-known single-band results
[54]. In addition, for a fixed U/t in the small-U/t regime, both
sintra

0 and s0 exhibit faint but visible dips around the van Hove
singularities, which are also consistent with the well-known
single-band results [54]. On the other hand, when μ = −2t
coincides perfectly with a flat band at U = 0, both sinter

0 and s0

grow from 0 with a power law (approximately quadratically)
in U , but sintra

0 remain small and negligible. Thus, c0 vanishes
linearly with U in a flat-band superconductor in the U/t → 0
limit, which is in sharp contrast to the usual dispersive case
where it saturates. In order to characterize and understand
this particular limit, we set Enk →

√
(−2t − μ)2 + �2

0 for the
flat n = {3, 4} bands and take only their contributions into
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FIG. 4. Isotropic superfluid weight D0 together with its intraband and interband contributions as a function of U , μ, and F at T = 0. Since
our numerical implementation becomes unreliable in the region where �0 is small, we choose to present those data that have �0 � 0.01t ,
which reveals the underlying DOS(μ) at the periphery of the white regions.

account, leading to A = 16F (1 − F )/U , B = 8(1 − 2F )/U 2,
and R = 16/U 3, where 0 � F � 1. Furthermore, using the
relation D0 = 8U 2F (1 − F )Q0/a3, we find s0 = UD0a3/32,
which is in perfect agreement with the numerics. In addition,
at the semimetal critical point when μ = 2t and U → Uc,
both sintra

0 and sinter
0 exhibit comparable jumps from 0. Be-

cause of this, the resultant s0 exhibits a much larger jump
right at the tip of the critical region, since sinter

0 is typically
small and negligible in its vicinity. Lastly we consider the
U/t → ∞ limit and set Enk →

√
μ2 + �2

0 for all bands, lead-
ing to A = 4F (2 − F )/U , B = 4(1 − F )/U 2, R = 4/U 3, and

FIG. 5. The filling of condensed particles Fc as a function of U ,
μ, and F at T = 0.

Q0 = a2t2/U 3. The resultant s0 = a2t2F (2 − F )/4 depends
only on F as in the case of single-band case [54], and it is
in perfect agreement with the numerics. It can be written in a
form s0 = UD0a3/32 that is identical to the flat-band expres-
sion above. We also find it instructive to reinterpret the sound
speed c0 = √

2UFp/Mp in terms of the filling Fp and effective
mass Mp of the pairs. Then, by making a comparison with
the Bogoliubov expression cB = √

UBFB/MB that is valid for a
weakly interacting Bose gas on a tight-binding lattice [55], we
identify Up = 2U as the parameter that characterizes the inter-
action between pairs in the U/t → ∞ limit. Such a strong and
repulsive on-site interaction between pairs of fermions can
be attributed to the underlying Pauli exclusion principle [54].
On a similar footing, using the results of Sec. IV B 1, where
D0 = 4ρp/Mb for a dilute (F → 0) flat-band superconductor
when U/t → 0, we also reach the conclusion that Up = 2U .
This suggests that the interaction between pairs tends to zero
in a flat-band superconductor.

VI. CONCLUSION

To summarize, we studied the impact of the quantum ge-
ometry of Bloch states, specifically through the band-resolved
quantum-metric tensor, on Cooper pairing and flat-band
superconductivity within a three-dimensional pyrochlore-
Hubbard model. For this purpose, first we showed that the
pairing order parameter is uniform in this four-band lattice
through an exact calculation of the low-lying two-body spec-
trum. This simplification enabled us to reveal direct relations
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FIG. 6. Square s0 = Q0/(R + B2/A) of the isotropic sound speed together with its intraband and interband contributions as a function of
U , μ, and F at T = 0.

between the superfluid weight of a multiband superconductor
and (i) the effective mass of the lowest-lying two-body branch
at T = 0 through Di j = 4ρp(M−1

b )i j, (ii) the kinetic coeffi-
cient of the Ginzburg-Landau theory near Tc through Di j =
4Nc�

2
0

V Ci j, and (iii) the velocity of the low-energy Goldstone

modes at T = 0 through Di j = 8Nc�
2
0

V Qi j . The underlying
physics behind these relations is that a bound state with a
finite center-of-mass momentum is a collective mode of the
superfluid ground state. Then we presented a thorough numer-
ical analysis of the superfluid weight and Goldstone modes
together with their intraband (conventional) and interband
(geometric) contributions at zero temperature. For instance,
one of our important observations is that in sharp contrast
to the recent results on two-dimensional lattices where a
band touching with a flat band causes logarithmic corrections
C̃1U ln(C̃2/U ) to the superfluid weight in the U/t → 0 limit,
the analogous correction is a power law in three dimensions
which may be approximated by C̃1U − C̃2U 3/2. Another one
is the relation c0 =

√
UD0a3/32 between the sound speed

and the superfluid weight in a flat-band superconductor when
U/t → 0, which further suggests that the interaction between
pairs tends to zero.

Much like the well-explored two-dimensional toy models
such as Mielke-checkerboard and kagome lattices, which
display uniform pairing, we believe the pyrochlore lattice
presents an excellent setting for conducting theoretical

research on three-dimensional flat-band superconductivity.
As an outlook, we are planning to develop a Ginzburg-Landau
theory for the pyrochlore-Hubbard model and explore how
quantum geometry affects not only the superfluid density
and effective mass of the superfluid carriers, but also the
coherence length, magnetic penetration depth, upper critical
magnetic field, etc. in the BCS-BEC crossover [44].
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APPENDIX A: GAUSSIAN FLUCTUATIONS

In order to go beyond the saddle-point (mean-field) ap-
proximation, we use imaginary-time functional path-integral
formalism [48,49] and derive a quadratic effective action
in the fluctuations of the order parameter for a multi-
band Hubbard model with on-site attraction. It turns out
that this formalism is drastically simpler and transparent
when the system manifests both time-reversal symmetry and
the uniform-pairing condition as in the pyrochlore lattice
of interest. In this case, the bosonic Hubbard-Stratonovich
field (which plays the role of the order parameter) can be
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split as

�Sq = �0δq0 + �q (A1)

for all sublattice sites in a unit cell, where the complex
field �q corresponds to the fluctuations around the stationary
saddle-point parameter �0 (which is taken as real here and
in the main text), and q ≡ (q, iν	) is a collective index, with
ν	 = 2	πT the bosonic Matsubara frequency. Given our in-
terest in the low-energy in-phase (i.e., Goldstone) collective
modes only, we also set �q to be uniform together with �0,
making higher-energy out-of-phase (i.e., Leggett) collective
modes inaccessible. In the case of a pyrochlore lattice, we
expect three distinct Leggett branches to appear. In principle,
they can be studied through an S-dependent �Sq, but this is
beyond the scope of this paper. See [48] for a similar analysis
in two-band lattices, showing that the speed of the Leggett
modes also has an interband contribution that is controlled by
the quantum metric.

First we express the mean-field Hamiltonian Hmf in the
Bloch-band representation, whose Hamiltonian matrix can be
expressed as [23]

Hmf
k =

∑
n

(ξnkτz + �0τx ) ⊗ |nk〉〈nk|, (A2)

where τx and τz are Pauli matrices describing the particle-
hole degrees of freedom. Then the saddle-point propagator
can be written as G0(k) = ∑

sn
|�s

nk〉〈�s
nk|

iω	−Es
nk

, where k ≡ (k, iω	)
is a combined index with ω	 = (2	 + 1)πT the fermionic
Matsubara frequency. Here, Hmf

k |�s
nk〉 = Es

nk|�s
nk〉 defines

the quasiparticle-quasihole spectra Es
nk = sEnk with s = ±,

where the associated eigenvectors are |�+
nk〉 = (unk

vnk
) ⊗ |nk〉 for

the quasiparticles and |�−
nk〉 = (−vnk

unk
) ⊗ |nk〉 for the quasi-

holes. The coherence factors unk = √
1
2 + ξnk

Enk
and vnk =√

1
2 − ξnk

Enk
coincide with the usual intraband expressions due

to the absence of interband pairing.
Following the standard procedure, the quadratic ef-

fective action can be written as S2 = NS
TU

∑
q |�q|2 +

1
2Nc

Tr
∑

kq G0(k)�(q)G0(k − q)�(−q), where Tr denotes a
trace over the band and particle-hole sectors, and �(q) =
(�qτ+ + �∗

−qτ−) ⊗ INS is controlled purely by the fluctuation
fields. Here, NS is the number of sublattices in a unit cell
(which is four for the pyrochlore lattice), τ± = (τx ± iτy)/2,
and INS is an NS × NS unit matrix in the band space. Upon
evaluation of the trace and sum over the fermionic frequen-
cies, we eventually obtain

S2 = 1

2T

∑
q

(�∗
q �−q)

(
M11

q M12
q

M21
q M22

q

)(
�q

�∗
−q

)
, (A3)

where the fluctuation matrix Mq plays the role of inverse
propagator of amplitude and phase fluctuations. In order to
express its matrix elements in a compact form, we denote
ξnk by ξ , ξm,k−q by ξ ′, Enk by E , Em,k−q by E ′, and denote
their functions as u2 = (1 + ξ/E )/2, u′2 = (1 + ξ ′/E ′)/2,
v2 = (1 − ξ/E )/2, v′2 = (1 − ξ ′/E ′)/2, f = 1/(eE/T + 1),

and f ′ = 1/(eE ′/T + 1), leading to

Mq
11 =M−q

22 = NS

U
+ 1

Nc

∑
nmk

|〈nk|mk−q〉|2

×
[

(1 − f − f ′)
(

u2u′2

iν	 − E − E ′ − v2v′2

iν	 + E + E ′

)

+ ( f − f ′)
(

v2u′2

iν	 + E − E ′ − u2v′2

iν	 − E + E ′

)]
,

(A4)

Mq
12 =Mq

21 = 1

Nc

∑
nmk

|〈nk|mk−q〉|2

×
[

(1 − f − f ′)
(

uvu′v′

iν	 + E + E ′ − uvu′v′

iν	 − E − E ′

)

+ ( f − f ′)
(

uvu′v′

iν	 + E − E ′ − uvu′v′

iν	 − E + E ′

)]
.

(A5)

Note that while Mq
12 is even both under q → −q and iν	 →

−iν	, Mq
11 is even only under q → −q. In the presence of

a single band, these expressions recover the usual results
[48,49].

Next we introduce a unitary transformation �q = (λq +
iθq)/

√
2, and associate λq and θq with the amplitude and

phase degrees of freedom, respectively. Assuming these are
real functions in real space and time, we set λ−q = λ∗

q and
θ−q = θ∗

q , and express the effective action in the form

∑
q

(λ∗
q θ∗

q )

(
Mq,E

11 + Mq
12 iMq,O

11

−iMq,O
11 Mq,E

11 − Mq
12

)(
λq

θq

)
, (A6)

where Mq,E
11 = (Mq

11 + Mq
22)/2 is an even function of iνn

and Mq,O
11 = (Mq

11 − Mq
22)/2 is an odd one. In particular,

when q → q0 = (0, 0), since the off-diagonal terms Mq0,O
11 =

0 necessarily vanish, we observe that the amplitude and phase
modes are always decoupled in the low-momentum and low-
frequency limit. Furthermore, the fact that Mq0,E

11 − Mq0
12 = 0

vanish due to the saddle-point condition [i.e., the order pa-
rameter Eq. (10)] suggests that the low-frequency phase mode
is always gapless, and we identify it as the Goldstone mode.
Similarly, when q → qI = (0, 2�0), the fact that MqI ,E

11 +
MqI

12 = 0 vanish, due again to the saddle-point condition,
suggests that the amplitude mode is gapped with 2�0, and
we identify it as the Higgs mode. Note that since MqI ,O

11 does
not vanish in general, the latter statement is strictly valid only
in the BCS limit where MqI ,O

11 is small and negligible.
Given that the terms with the prefactor ( f − f ′) have the

usual Landau singularity for the q → (0, 0) limit and causes
the collective modes to decay, a small-q expansion is well
defined only in two cases: (i) just below Tc, as discussed
in Ref. [44], and (ii) at T = 0, which is discussed in the
main text.
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APPENDIX B: NUMERICAL IMPLEMENTATION

To verify the accuracy of our numerical results, we
conducted calculations using two independent numerical im-
plementations. In the first approach, we computed k-space
sums by dividing the BZ into approximately 106 unit cells. In
the second method, we converted k-space sums into k-space
integrals through

∑
k → V

8π3

∫
d3k and evaluated them using

the adaptive CUBPACK integration library [56]. Although both
implementations yielded identical results, the second method
significantly speeds up the calculations. Additionally, for any
given values of F and U , we obtained self-consistent so-
lutions for Eqs. (10) and (11) numerically by iterating �0

and μ through a hybrid root-finding algorithm of MINPACK

that combines the bisection and secant methods. In partic-
ular, for generating the colored maps of various physical

observables in the main text, we scanned the (F,U ) plane
using a 400 × 400 mesh, resulting in approximately 160 000
repetitions of the iterative approach. Such a dense mesh was
necessary to reveal the density of states (DOS) features on
the periphery of the white regions including the flat bands
at μ = −2t , van Hove singularities at μ = {0, 4t} or, equiv-
alently, at F ≈ {1.19, 1.81}, and the critical semimetal point
at μ = 2t or, equivalently, at F = 3/2. While the iterative
approach efficiently converged over a wide range of param-
eters, we encountered convergence issues only in the BCS
regime when �0/t � 1. We emphasize that it is possible to
address such convergence problems on demand, i.e., for any
desired F value, by providing more accurate input parameters
for �0 and μ for the initial iteration. However, automating
such fine-tuning operations proved to be difficult for the entire
regime of interest in this paper.
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