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Abstract. This study addresses the problem of discovering frequent
items in unstructured P2P networks. We propose a fully distributed Pro-
tocol for Frequent Item set Discovery (ProFID) where the result is pro-
duced at every peer. We also propose a practical rule for convergence of
the algorithm. Finally, we evaluate the efficiency of our approach through
an extensive simulation study on PeerSim.

1 Introduction

Peer-to-Peer (P2P) systems are very dynamic and scalable, hence centralized ap-
proaches are not as functional, reliable, and robust as decentralized approaches.
Peers may need a system-wide information such as network size, query/event
counts, or mostly contacted peers for specific files in order to perform various
tasks such as load-balancing or topology optimization [1]. Database applications
[2], wireless sensor networks [3], and security applications can also make use of
frequent item discovery protocol, as well as P2P applications [1, 4]. Hence, ef-
ficient discovery of frequent items would be a valuable service for distributed
systems.

We propose a fully distributed gossip-based approach named ProFID using
pairwise averaging function and convergence rule which is novel in frequent item
discovery problem. Our approach for data aggregation in ProFID is inspired by
[3] and the main differences are that it works for multiple items and utilizes ag-
gregation for frequent item set discovery. The work of [3] presents a distributed
way of calculating aggregates such as averages, sums, and extremal values. They
use topology information while determining the termination time, which is not
practical since it may not be available at all peers. Another related study [5]
proposes a push-synopses protocol using uniform gossip for aggregate compu-
tation and analyzes the scalability, reliability and efficiency of their approach.
Algorithm converges to true average only if all peers have a knowledge about
all items in the system, which might be an inconvenient requirement for large
networks without centralized agents. In [4], gossip protocol is used for the first
time in frequent item discovery problem. In order to identify frequent elements,
a threshold mechanism is used, and by using sampling, the communication load
is decreased. However, a uniform gossip is performed, which is not a realistic
assumption for large networks.
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2 ProFID: Protocol for Frequent Item Set Discovery

We consider a network consisting of N peers denoted as P={P1, P2, . . . , PN} and
M item types denoted as D={D1, D2, . . . , Dj , . . . , DM}, where Dj has a global
frequency gDj

. Parameters N, M, and g are system-wide information, hence they
are unknown to all peers a priori. Each peer (Pi) has a local set of items Si ⊆ D
and each local item (Dj) has a local frequency fi,Dj

such that

gDj
=

N∑

i=1

fi,Dj
, Dj 6∈ Si =⇒ fi,Dj

= 0

Peers form an unstructured network and communicate in rounds with a fixed
duration. A peer may leave or join the network at any time. Furthermore, peers’
local clocks do not need to be synchronized because peers use clocks just to
perform periodic operations.

We provide a gossip-based fully distributed approach with pairwise averag-
ing function in ProFID, utilizing pairwise averaging function with gossip-based
aggregation and a practical convergence rule (Fig. 1). Our pairwise averaging
function uses push-pull scheme meaning that a peer sends its state (in a push
message) to a target peer and the target peer performs averaging operation using
its own state and incoming state, then replies the average of incoming items (in
a pull message) back to the sender. Then, sender updates its state. By this way,
a single push-pull based pairwise averaging operation is completed. In order to
prevent misleading calculations, this operation must be performed atomically.
For this purpose, we used buffering and timeout mechanisms. Since we aim to
find frequent items, knowing averages of items is not enough, we also need to
calculate the system size N at each peer. In order to calculate system size, an
initiator peer adds a unique item named ui in its local item set. The local fre-
quency of this item is set to 1. Since only one peer has that unique item, average
frequency of that item would converge to 1

N from which N can be extracted
by each peer. Using both estimated average frequency of items and the network
size, each peer can calculate the frequencies of items. Due to page limitation, we
refer interested reader to [6] for details of our study.

3 Simulation Results

We used PeerSim [7] simulator to build the model for ProFID. We evaluated the
behavior and performance of ProFID through extensive large-scale distributed
scenarios. Random graphs with average degree 10 is used in the experiments and
items are distributed randomly to all peers. Moreover, all the simulation data
points are the average of 50 experiments. We evaluate the effects of convergence
parameters (ε and convLimit) on the accuracy and efficiency of ProFID, as well
as the performance of pairwise averaging function.

Fig. 2a depicts the scalability of ProFID in terms of time complexity. Our
results (for number of rounds to converge) agree with the O(logN) time com-
plexity of epidemic dissemination [8]. Fig. 2b illustrates that even though the
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Fig. 1: ProFID Algorithms: Active thread, passive thread, and convergence check

link drop probability is around 5%, convergence error of the pairwise averag-
ing is almost negligible. In this simulation, the message loss probability of each
link is independent and identically distributed. As depicted in Fig. 2c, algorithm
converges faster for larger values of fanout since a peer exchanges its state with
more neighbors and its state is disseminated faster to the network.
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Fig. 2: (a) Number of gossip rounds needed for all peers to converge. (b)The
effect of link drop probability on the accuracy of pairwise averaging. (c) The
effect of fanout on convergence time

Fig. 3a shows that increasing ε, decreases both average number of messages
sent per peer and number of rounds to converge because convergence rule in-
crements convCounter value with more probability, which results in faster con-
vergence. Since algorithm converges faster, peers communicate less and average
number of messages sent per peer decreases. In contrast to ε parameter, increas-



ing convLimit increases both the average number of messages sent per peer and
number of rounds to converge because convCounter needs to be incremented
more to reach convLimit. Fig. 3c illustrates the effects of convergence param-

0 20 40 60
15

20

25

30

35

40

45

ε(%)
 

 

Number of rounds
Avg. num. of messages

(a)

0 10 20 30 40 50

20

40

60

80

100

convLimit

 

 

Number of rounds 
Avg. num. of messages

(b)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

ε (%)

R
el

at
iv

e 
er

ro
r 

(%
)

 

 

convLimit=4
convLimit=8
convLimit=10
convLimit=15

(c)

Fig. 3: The effects of ε (a) and convLimit (b) on convergence time and average
number of messages sent per peer. (c) The effects of convergence parameters on
relative error.

eters on converge time. The fastest convergence occurs whenever ε parameter
takes its largest value and convLimit takes its smallest value, which agrees with
the convergence rule. However, there is a tradeoff between convergence time and
accuracy as depicted in Fig. 3c.

In conclusion, our results confirm the practical nature, ease of deployment
and efficiency ProFID. As future directions, we aim to evaluate ProFID in peer
churn scenarios, and investigate the effect of limited gossip message sizes. For
comparison, we are developing the well-known push-synopses protocol [5] by
adapting it to the problem of frequent item discovery and practical P2P net-
work settings. Furthermore, we aim to conduct network tests of ProFID on the
PlanetLab.
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