Introduction

For large scale distributed systems, designing energy efficient protocols and services has become significant while considering conventional performance criteria like scalability, reliability, fault-tolerance and security.

Due to its extensive applicability in diverse areas, we consider frequent item set discovery problem in this context.

A simulation model is developed for ProFID protocol, which is a distributed protocol is developed to find frequent item set discovery in unstructured networks on Peersim.

Objectives

• Providing users to analyze the effects of the protocol and network parameters on different network topologies such as Barabasi-Albert, Erdos-Renyi etc.

• Providing users to do experiments and analysis on different algorithms: ProFID, adaptive ProFID, hierarchical ProFID and Push-Sum.

ProFID: Protocol for Frequent Item Set Discovery

• Items with global frequencies above a threshold is detected.

• Supports various distributed applications such as cache management, military attack detection, worm detection, DDoS attack detection and topology optimization.

ProFID Toolkit

Network Parameters

We focus on performance metrics:

Convergence time: measures how fast the algorithm converges

Number of messages sent per peer: measures the energy efficiency of the algorithm

Precision / Recall: measures how accurate the actual and estimated frequent items based on true positives, false positives and false negatives.

Experimental Results

• Network parameters and protocol parameters can be easily set from the interface.

• Experiments, completion time and destination folder is shown in the console.

Conclusions

• Provide a toolkit for extensive analysis on large scale P2P networks for different type of frequent item discovery (FID) algorithms.

• Propose a distributed hierarchical gossip-based approach using dominating set algorithm

References


Supported by the COST (European Cooperation in Science and Technology) framework under Action IC0804, and by TUBITAK (The Scientific and Technical Research Council of Turkey) under Grant 109M761.