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Abstract. The energy costs constitute a significant portion of the total
cost of cloud providers. The major cloud data centers are often geograph-
ically distributed, and this brings an opportunity to minimize their en-
ergy cost. In this work, we model a geographically distributed data center
network that is specialized to run batch jobs. Taking into account the
spatio-temporal variation in the electricity prices and the outside weather
temperature, we model the problem of minimizing the energy cost as a
linear programming problem. We propose various heuristic solutions for
the problem. Our simulations using real-life workload traces and elec-
tricity prices demonstrate that the proposed heuristics can considerably
decrease the total energy cost of geographically distributed cloud data
centers, compared to a baseline technique.

1 Introduction

Cloud data centers provide massive computing power to serve a large amount of
tasks generated by the Internet services as well as IT industries. While processing
incoming computational tasks, cloud service providers also need to satisfy certain
service level agreements (SLAs). In order to meet the requirements of their SLAs,
cloud providers geographically distribute their data centers around the world.
The data centers’ high computing power requires significant energy for both
running the computing resources and also cooling them. The cost of energy
constitutes an important fraction of the total operational costs of distributed
data centers [1]. Therefore, service providers constantly chase novel methods to
reduce their energy cost.

Reducing the energy consumption of large-scale distributed systems has re-
cently been a hot research topic [1]. Some studies [2, 4, 9] focus on server consol-
idation by moving virtual machines across data centers and also consider SLA
penalties if the deadline of a certain job is not satisfied [2, 9]. Le et al. [8] and Gao
et al. [3] concentrate on the greenness aspect of data centers and allow service
providers to trade off between the electricity cost and the carbon footprint. Cer-
tain studies investigate the data center cooling problem and propose solutions
based on workload placement [11, 17] and thermal storage [5, 18]. In recent years,
researchers have also investigated the impact of spatio-temporal electricity price
variations on financial cost savings [6, 7, 10, 12–16, 19, 20] All these works either
do not consider the SLA requirements or ignore cooling related costs. In this



Table 1. System parameters

Description Symbol

Total energy cost of servers in DC i ($) EIT
i

Total energy cost of DC i ($) Etotal
i

Total penalty paid in DC i Peni

Length of a unit time slot u
Electricity price of DC i in time slot [t, t+u) Ei(t)
Number of DC N
Number of different type of servers K
Set of servers in DC i si
Set of type k servers in DC i si,k
Number of CPU cores that a type k server has ck
CPU frequency of a type k server fk
Power consumption of a type k server when idle (Watt/u) P idle

k

Power consumption of a type k server at peak (Watt/u) P peak
k

Power consumption of a type k server s in time slot [t, t+u) Pk,s,t

Number of jobs J
Number of CPUs job j requires cj
Total number of timeslots job j requires lj
CPU frequency job j requires fj
Submission time of job j Tsj
Deadline of job j Tdj
Penalty of late delivery of job j Penj

Percentage of time that SLA of job j is violated σ(j)
Number of time slots required to process job j in server s Tj,s

paper, we propose electricity-cost-aware request dispatching algorithms which
also consider SLA related penalties.

2 Problem Specification

In this section, we formally state our linear optimization problem. Table 1 lists
the parameters and system variables used in the formulation.

We calculate the performance coefficient (CoP) of a data center according
to its outside weather temperature. We set the CoP of the hottest data center
(26 ◦C) as 2.0 (this means 1W energy is needed to cool down the data center
for each 1W of IT job), and for the coldest data center (−9 ◦C) as 1.2, which is
similar to the CoP of the currently existing energy-efficient cloud data centers [1].

The performance coefficient of DC i with temperature Ti:

CoP (Ti) = 1.2 + 0.128 ×
√
Ti + 9 (1)

The decision variable indicating whether server s is busy operating in time
slot [t, t+u):

xs,t =

{
1, if server s is busy operating

0, otherwise.
(2)



Power consumption of a type k server [14]:

Pk,s,t = P idle
k + (P peak

k − P idle
k ) × xs,t (3)

EIT
i =

K∑
k=1

∑
s∈si,k

bT/uc∑
t=0

Pk,s,t × Ei(t) (4)

Total cost of data center i:

Etotal
i = EIT

i × CoP (Ti) (5)

Decision variable indicating whether job j is dispatched to server s:

rj,s =

{
1, if job j is assigned to server s

0, otherwise.
(6)

Tj,s =
cj × fj × lj
ck × fk

,where s is a type k server (7)

Percentage of time that SLA of job j is violated [4]

σ(j, s, t) = (Ts+ Tj,s − Tdj)/Tj,s (8)

Penj,s,t = Pk,s,t × Ei(t) ×
Gom(σ(j, s, t)))

100
(9)

Peni =

J∑
j=1

∑
s∈si

bT/uc∑
t=0

rj,s,t × Penj,s,t (10)

Our objective is to minimize:

N∑
i=1

Etotal
i + Peni, (11)

subject to

si =

K∑
k=1

si,k (12)

In other words, our goal is to minimize the cost of a provider during the given
time period while respecting QoS requirements (this includes financial penalties
if SLA is violated).



3 Proposed Algorithms

We have a central scheduler that receives the incoming jobs and then forwards
each job to one of the idle servers. Our proposed algorithms take advantage of
three important factors:

– Spatial electricity price variation.
– Temporal electricity price variation.
– Reduced cooling cost in cooler places due to evaporation.

Considering these factors, we propose two types of request dispatching algo-
rithms. In the first type of algorithms, each incoming job request is immediately
scheduled to an available server. The algorithms of the second type can schedule
jobs ahead of time within a time window if they “forecast” that the electricity
price will be lower in the future.

3.1 Immediate Scheduling Algorithms

The jobs are immediately scheduled in FCFS order. The following two algorithms
differ in the way they decide on which server to assign a job.

Cheapest data center (CheapestDC): The current electricity prices of all
data centers are checked and a random server is selected from the cheapest data
center. If all servers in the cheapest data center are busy, then a server from
the second cheapest data center is selected. The procedure continues until the
job is scheduled. If all servers are busy operating at that time then the job is
put in the queue again to be scheduled in the next time slot. Only the spatial
electricity price change is exploited in this simple greedy heuristic.

Cheapest server (CheapestS): Different than the CheapestDC algorithm,
this algorithm takes advantage of the outside weather temperature associated
with the data centers. The assumption is that the total cost of running a job in
a server in cooler locations can be cheaper even if the server is not located in the
cheapest data center. The algorithm runs the job on the server with the lowest
expected total cost.

3.2 Delayed Scheduling Algorithms

CheapestDC and CheapestS aim at scheduling the jobs in the current time slot.
However, it is possible to postpone the execution of a job to future time slots if
we can somehow identify that the current electricity is expensive. To this end,
we can use historical electricity prices to determine whether to schedule the job
immediately or delay its execution to a later time slot. As in the CheapestS

algorithm, we examine every server for all time slots within a predefined time
window and select the best server and time slot combination in terms of the
electricity cost. In this case, we utilize all three variations including spatial and
temporal electricity price fluctuations as well as the reduced cooling cost of the
servers located in colder climates.



In addition to the novel time window approach, we also implemented an
internal ordering of the jobs in this algorithm and observed the effect of the
ordering on the final performance. These orderings are first come first serve
(FCFS), longest job first (LJF), and shortest job first (SJF). Variations of these
algorithm are named as WindowFCFS, WindowLJF, and WindowSJF.

Note that, in this algorithm, the scheduled time slots are fixed, i.e., we do not
reschedule any job even if it is assigned to a future time slot. As a future work,
we will also implement an algorithm with periodic rescheduling and compare its
performance with the other solutions.

4 Simulation Setup

We simulated a geographically distributed data center network to evaluate the
performance of the proposed algorithms. The simulator and the algorithms are
implemented in Java. We only consider delay-tolerant batch jobs and use the
Grid5000 logs for incoming job requests.3 The job requests contain job specifi-
cations including submission time, runtime, required number of CPU cores, and
similar information. Our problem formulation is generalizable to heterogeneous
data centers. However, for the initial results we present here, we consider only
the homogeneous data center scenario. We simulated six homogeneous data cen-
ters that are located in San Diego, California; Chicago, Illinois; Santiago, Chile;
Helsinki, Finland; Dublin, Ireland and Singapore, Singapore. Each data center
is given 100 servers with Xeon architecture and four core CPUs running at 2.66
GHZ [4]. We used real electricity price traces for San Diego and Chicago from
FERC (Federal Energy Regulatory Commission of the USA),4 and scaled the
prices for other countries according to the country-wide average prices.5 Aver-
age temperatures values are gathered from Wunderground.6

We simulated the network under three different loads: light, medium, and
heavy. The Grid5000 data spans three years of job requests; however, we run
our simulations on a weekly basis. The original log corresponds to the light

workload. Thus, we scaled down the submission times of the jobs that belong
to future weeks to construct the medium and heavy workloads. Moreover, our
delayed scheduling algorithm is run under different time window values, that are
6, 12, and 24 hours to determine the best fit of the time window.

At this stage of our work, we have not yet introduced the penalty concept
for the jobs and the results presented in Section 5 do not include any penalty-
related cost. As a baseline, we also implemented a random request dispatcher

3 Grid5000, http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.

Gwa-t-2.
4 FERC: Electric Power Markets, http://www.ferc.gov/market-oversight/

mkt-electric/overview.asp.
5 Wikipedia-Electricity Pricing, http://en.wikipedia.org/wiki/Electricity_

pricing.
6 Wunderground, http://www.wunderground.com/history.



Table 2. Performance of immediate scheduling techniques (I% denotes the relative
percent improvement w.r.t the random scheduling baseline while CP, CC, and CT

denote the processing, cooling, and total financial cost per job, respectively)

Random CheapestDC CheapestS

Load CP CC CT I% CP CC CT I% CP CC CT I%

light 18.9 14.0 32.9 – 18.3 13.4 31.8 3.4 18.4 13.3 31.6 3.8
medium 12.1 8.9 21.0 – 11.9 8.7 20.7 1.7 11.9 8.7 20.6 2.1
heavy 8.0 5.9 14.0 – 8.0 5.9 14.0 0.0 8.0 5.9 14.0 0.0

Table 3. Performance of delayed scheduling techniques (W denotes the window size)

WindowFCFS WindowLJF WindowSJF

Load W CP CC CT I% CP CC CT I% CP CC CT I%

light

6 18.3 13.1 31.3 4.7 18.2 13.0 31.3 4.9 18.3 13.1 31.4 4.5
12 18.3 13.0 31.2 5.0 18.2 13.0 31.2 5.2 18.3 13.0 31.3 4.7
24 18.2 13.0 31.2 5.1 18.2 13.0 31.1 5.4 18.2 13.1 31.3 4.9

medium

6 11.8 8.6 20.3 3.3 11.8 8.5 20.3 3.5 11.8 8.6 20.4 3.1
12 11.7 8.5 20.2 3.9 11.7 8.5 20.1 4.2 11.7 8.5 20.2 3.7
24 11.7 8.4 20.1 4.5 11.6 8.4 20.0 4.7 11.7 8.4 20.1 4.3

heavy

6 8.0 5.9 13.8 0.9 8.0 5.9 13.8 1.0 7.9 5.8 13.8 1.4
12 9.1 6.7 15.8 -13.1 9.8 7.2 17.1 -22.3 8.3 6.1 14.3 -2.8
24 9.1 6.7 15.8 -13.0 9.4 6.9 16.2 -16.4 8.9 6.5 15.4 -10.2

(Random) that tries to balance the workload of the data centers. We compared
the performance of the proposed algorithms against this baseline.

5 Results

As explained in Section 3, there are three factors that we consider: spatial and
temporal electricity price change and outside weather temperature. By compar-
ing the performance of the algorithms, we can determine the contribution of
these factors to the cost saving. Tables 2 and 3 summarize our simulation results
and the amount of improvement achieved by each algorithm. Most of the gain
is achieved by exploiting the spatial electricity price variation as seen by the
improvement of the CheapestDC algorithm. Next, the biggest improvement is
achieved by algorithms with a time window that exploit the temporal electricity
price change. The least improvement, but still significant, is by taking advantage
of the reduced cooling cost of the servers located in colder climates.

In the light workload case, we have the flexibility to postpone the execution
of a job since there are few jobs. This is also true for the medium workload.
The current state-of-the-art data center systems work under medium workloads,
where the system tries to keep the total utilization of the servers under a certain
percentage, i.e., mostly around 35%-40%. When the simulation is run under
the heavy workload, the number of jobs executed by each algorithm differs.
Therefore, we presented these results in terms of cost per job. The number of



jobs executed by delayed scheduling algorithms drops in the heavy workload
case because some of the early time slots are not utilized by the algorithm,
which forecasts some cheaper future time slots. In the end, we were left with
many non-executed jobs in the job queue. In order to overcome this drawback,
we are planning to propose a workload adaptive delayed scheduling algorithm
that also utilizes the current time slots when the workload is heavy.

6 Conclusion

We proposed request dispatching algorithms that exploit spatio-temporal elec-
tricity price variations and reduced cooling cost opportunities in colder climates
to minimize the energy cost of geographically distributed data centers. Our sim-
ulation results show that significant electricity cost reduction can be achieved by
the proposed algorithms, compared to a random scheduler that aims to achieve
only load balancing. As a future work, we plan to conduct experiments including
the SLA penalty concept.
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