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Abstract

The popularity of large-scale distributed applications, such as videoconferencing, multimedia dissem-
ination, electronic stock exchange and distributed cooperative work, has grown with the availability of
high-speed networks and the expansion of the Internet. The key property of this type of applications is the
need to distribute data among multiple participants together with an application-specific quality of service
needs. This fact makes scalable multicast protocols an essential underlying communication structure.
Although there exist several studies investigating the traffic characteristics of unicast communication,
multicast traffic has not been erxamined extensively in previous studies. It is well known that the aggre-
gate traffic properties of self-similarity and long-range dependence are ubiquitous in wide area networks
and lead to adverse consequences in network performance. In this study, we analyze traffic characteristics
of a novel scalable, reliable multicast protocol, Bimodal Multicast (Pbcast). In particular, our simulation
studies demonstrate that epidemic approach of Bimodal Multicast generates short-range dependent traffic
with low overhead traffic and transport delays. We elaborate on the protocol mechanisms as an underlying

factor in our empirical results.

Key Words: Multicast network traffic, self-similarity, long-range dependence, Bimodal Multicast
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1. Introduction

It is well known that multicast transport protocols offering strong reliability guarantees such as atomicity,
virtual synchrony, delivery ordering, and network-partitioning support have limitations in terms of scalability
and throughput stability [1]. The main drawback is that in order to obtain strong reliability guarantees,
costly protocols are used and the possibility of unstable or unpredictable performance under failure scenarios
is accepted. Although the other class of protocols offering support for best-effort reliability in large-scale
overcome message loss and failures, they do not guarantee end-to-end reliability. Common failure scenarios
such as router overload and system-wide noise can cause these protocols to behave pathologically and hence
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lead to negative protocol effects on network performance. Our approach in this article is to focus on both
scalable and reliable multicast communication, which we analyze through traffic characteristics.

Many analyses of fine-grained measurements over the last decade have shown that network traffic
is often bursty on a wide range of time scales with strong correlations across arbitrarily large time lags.
These characteristics, called self-similarity and long-range dependence (LRD) respectively, imply significant
queuing delays and degraded network performance. As a result, much of the recent research has focused
on investigating the causes and consequences of traffic self-similarity and LRD. The pioneering work of
Leland et al. [2] is based on the analysis of massive amounts of aggregate traffic traces from LAN. This
has triggered three research streams: one dealing with further traffic characterization, another dealing with
modeling issues, and the other concentrating on queuing implications and performance evaluation. In the
characterization stream, several studies have verified the ubiquitous presence of self-similarity in a variety
of networked environments such as LAN, WAN and ATM. Isolated traffic sources such as VBR video traffic
and WWW traffic have been shown to possess self-similarity and LRD as source-intrinsic properties [3]. The
research stream on the modeling of network traffic is based on matching the characteristics established by
the analysis of traffic traces with the elements of a stochastic model. Incidentally, the collective efforts of
researchers in this area have resulted in shedding light on the causes of self-similarity and LRD observed at the
link level. See [4] for a review of such models and a specific construction based on compound Poisson packet
generation. The research stream on performance evaluation examines the consequences of self-similarity
and LRD. Most importantly, the queue lengths under self-similar traffic decay more slowly as compared to
short-range dependent traffic. This has been shown analytically for various self-similar models in addition
to simulation studies [3]. Another striking result verified with both approaches is that the utilization factor
cannot be practically improved by enlarging buffers [5,6]. Instead, increasing link bandwidth has the effect
of decreasing queuing delay more drastically under self-similar and long-range dependent traffic conditions.

The position of the network in the three layers of protocol stack with relation to network traffic has
been illustrated in Figure 1. Research has revealed the nature of applications and user behavior as the main
cause of statistical characteristics of traffic observed at the link layer while establishing the consequences
of such characteristics on network performance. It has been shown that transport layer mechanisms are
important components in translating heavy-tailed file size distributions at the application layer into link
traffic self-similarity [6]. Since the application and user characteristics are static, in order to provide superior

network performance, current traffic research has moved towards the analysis of intermediate layers.

User/applicationqg——— Application Layer
characteristics

. Transport/Network
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control and loss

Self-similar traffic ¢———
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Figure 1. Protocol stack and its relationship to network traffic.

In this article, we analyze traffic characteristics of scalable multicast communication. We focus on
a transport level scalable multicast protocol, namely Bimodal Multicast as a promising approach. It is
compared to Scalable Reliable Multicast (SRM) protocol, which significantly differs from Bimodal Multicast
in loss recovery and has similar mechanisms to TCP prevalent in the Internet. Bimodal Multicast based on
epidemic principles in loss recovery emerges as both reliable and scalable, and provides remarkably stable
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delivery output [1]. SRM is also scalable, but having best-effort reliability can be problematic in the presence
of low levels of system-wide noise or by transient elevated rates of message loss [7,8]. For unicast traffic, in
[9] TCP connection arrivals have been studied at the transport layer. However, in previous studies, large-
scale multicast traffic has not been examined for LRD characteristics. Our initial study [10] and our further
consideration in the present study investigating two multicast protocols show that when one approach does
not intrinsically lead to long-range dependent traffic, the other does, under identical network conditions.

The article is organized as follows. In Section 2, Bimodal Multicast is reviewed in comparison to
other scalable reliable multicast protocols. Section 3 describes our simulation settings and method of traffic
analysis. We report the simulation results in Section 4. The significance of these results in terms of LRD is
discussed in Section 5. Finally in Section 6, we state our overall conclusions.

2. Multicast Transport Protocols

2.1. Bimodal Multicast

Bimodal Multicast [1] is a novel option in the spectrum of multicast protocols that is inspired by prior work
on epidemic protocols [11], Muse protocol for network news distribution [12], and the lazy transactional
replication method [13]. Bimodal Multicast is based on an epidemic loss recovery mechanism. It has been
shown to exhibit stable throughput under failure scenarios that are common on real large-scale networks [1].
In contrast, this kind of behavior can cause other reliable multicast protocols to exhibit unstable throughput.
Bimodal Multicast consists of two sub-protocols, namely an optimistic dissemination protocol and a two-
phase anti-entropy protocol.

Optimistic dissemination: This sub-protocol is a best-effort, hierarchical multicast used to efficiently
deliver a multicast message to its destinations. This phase is unreliable and does not attempt to recover a
possible message loss. If IP multicast is available in the underlying system, it can be used for this purpose.
For instance, the protocol model implemented on the ns-2 network simulator [14] in this study uses IP
multicast. Otherwise, a randomized dissemination protocol can play this role.

Two-phase anti-entropy: The second stage of Bimodal Multicast is responsible for message loss
recovery. It is based on an anti-entropy protocol that detects and corrects inconsistencies in a system
by continuous gossiping. The two-phase anti-entropy protocol progresses through unsynchronized rounds.

In each round:

e Every group member randomly selects another group member and sends a digest of its message history.

This is called a ‘gossip message’.

e The receiving group member compares the digest with its own message history. Then, if it is lacking
a message, it requests the message from the gossiping process. This message is called ‘solicitation’, or
retransmission request.

e Upon receiving the solicitation, the gossiping process retransmits the requested message to the process

sending this request.

Protocol execution: Figure 2 illustrates the execution of Bimodal Multicast. A, B, C and D are group
members, and the time advances from top to bottom. A dashed arrow in the figure denotes a message
loss. First, multicast messages M0, M1 and M2 are transmitted unreliably by the dissemination protocol.
Because of a process or communication failure, process C fails to receive message MO0, and process D fails to
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receive M1. Then, the anti-entropy protocol executes. Each process selects another one randomly, and sends
its message history digest. Upon receiving a gossip message from process B, process C discovers that it is
missing M0 and requests a retransmission from B, and recovers this message loss. Because of the randomness
in selecting a process to gossip, a process may not receive a gossip message in a given round. For example,
process D does not detect its message loss until the next anti-entropy round. The figure simplifies the
execution by showing that the protocol alternates between dissemination and anti-entropy stages. However,
in practice, these stages run concurrently.

One of the differences of Bimodal Multicast’s anti-entropy protocol from the other gossip protocols is
that during message loss recovery, it gives priority to the recent messages. If a process detects that it has
lost some messages, it requests retransmissions in reverse order: most recent first. If a message becomes old
enough, the protocol gives up and marks the message as lost. By using this mechanism, the protocol avoids
failure scenarios where processes suffer transient failures and are unable to catch up with the rest of the
system. One of the drawbacks of traditional gossip protocols is that such a failure scenario can slow down
the system by causing processes’ message buffers to fill up. The duration of each round in the anti-entropy
protocol is set to be larger than the typical round-trip time for an RPC over the communication links. The
simulations conducted in this study use a round duration of 100 ms. Processes keep buffers for storing data
messages that have been received from members of the group. Messages from each sender are delivered in
FIFO order to the application. After a process receives a message, it continues to gossip about the message

for a fixed number of rounds. Then, the message is garbage collected.
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Figure 2. Execution of Bimodal Multicast.

2.2. Other Scalable Reliable Multicast Protocols

Other scalable reliable multicast protocols focus on best-effort reliability in large-scale systems. These

protocols overcome message loss and failures, but they do not guarantee end-to-end reliability. For instance,
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group members may not have a consistent knowledge of group membership, or a member may leave the group
without informing the others. When the message loss probability is very low or uncommon, they can give
a very high degree of reliability. However, failure scenarios such as router overload and system-wide noise,
which are known to be common in Internet protocols, can cause these protocols to behave pathologically
[15,16]. Example systems are the Internet Muse protocol for network news distribution [12], the Scalable
Reliable Multicast (SRM) protocol [17], the Pragmatic General Multicast (PGM) protocol [18], and the
Reliable Message Transfer Protocol (RMTP) [19].

SRM [17] is a well-known reliable multicast protocol that was first developed to support wb, a
distributed whiteboard application. The protocol is inspired by the principles of IP multicasting, application
level framing (ALF), and the TCP/IP architecture design. The protocol necessitates the basic IP delivery
model and forms reliability on an end-to-end basis. There is no need for modification on the underlying
IP network. Similar to TCP that adaptively sets timers or congestion control windows, SRM algorithms
dynamically regulate their control parameters based on the observed performance within a session. Unlike
Bimodal Multicast, which provides FIFO delivery ordering, SRM does not provide an ordered delivery of
messages. The protocol aims to scale well both to large networks and sessions, and exploits a receiver-based
reliability mechanism.

In SRM, each group member multicasts low-rate, periodic session messages that report the sequence
number state for active sources, or the highest sequence number received from every member. As well as
the reception state, the session messages also contain timestamps that are used to estimate the distance
from each member to every other. Members utilize session messages in SRM to determine the current
participants of the session. In addition to state exchange, receivers use the session messages to estimate
the one-way distance between nodes. The session packet timestamps are used to estimate the host-to-host
distances needed by loss recovery mechanisms. The random delay before sending a request or repair packet
is a function of that member’s distance in seconds from the node that triggered the request or repair. Repair
requests and retransmissions are multicast to the whole group. A lost packet ideally triggers only a single
request from a host just downstream of the point of failure.

Loss recovery: Multicast group members detect lost messages by means of gaps in the sequence
number. In order to detect losses of the last messages that are sent, SRM uses session messages. When a
group member A detects a message loss, it schedules a retransmission request, and sets a request timer to a

value from the uniform distribution on

[Cy * ds,a, (C1 + Cq) * dg, 4] seconds

where dg 4 is member A’s estimate of the one-way delay to the original source S of the missing data and
C1, Co are request timer parameters. If a member receives a request for the missing data before its own
request timer for that data expires, then the member resets its request timer. When a group member B
receives a request from A for a data message that B has a copy, B sets a repair timer to a value from the

uniform distribution on

[D1 xda g, (D1 + D) *d 4 p] seconds

where d 4 p is the B’s estimate of the one-way delay to A, and D;, Dy are repair timer parameters. If B
receives a repair for the missing data before its repair timer expires, then B cancels its repair timer. As
discussed in [17], there is no single setting for the timer parameters that gives optimal performance for all

topologies, session memberships and loss patterns. When it is desirable to optimize the tradeoff between
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delay and the number of duplicate requests and repairs, an adaptive algorithm can be used. Adaptive SRM
adjusts the timer parameters C;, Cy, Dy, and Do in response to the past behavior of the loss recovery
algorithms.

Recent studies [1,7,8] have shown that, for the SRM protocol, random packet loss can trigger high
rates of overhead messages. In addition, this overhead grows with the size of the system. Related to this
scalability problem, some of our previous simulations have explored the behavior of Bimodal Multicast and
SRM protocol versions on a large-scale network with high-speed data transfer. In these simulations, we
construct large-scale tree topologies consisting of 1000 nodes. Up to 100 of the 1000 nodes were randomly
chosen to be group members. We set the message loss rate to 0.1% on each link with the sender located
at the root node injecting 100 210-byte multicast messages per second. One set of results, taken from [20],
for the background overhead of each protocol in the form of repair message traffic is shown in Figure 3.
We include error bars showing minimum and maximum values recorded over the set of runs, using different
seeds for the random number generator. The results demonstrate that as the network and process group size
scale up, the number of control messages received by group members during loss recovery increases linearly
for SRM protocols, an effect previously reported [7,8]. These costs remain almost constant for Bimodal
Multicast versions (in the graphs these are labeled as Pbcast and Pbcast-ipmc for short). Pbcast-ipmc is
the version of Bimodal Multicast that uses IP multicast for message repairs during loss recovery. Compared
to the basic Pbcast, Pbcast-ipmc has a slightly lower overhead in the form of request messages. If multiple

receivers miss a message, Pbcast-ipmc increases the probability of rapid convergence during loss recovery.

Pbcast and SRM with 0.1% system wide constant noise, 1000-node tree topology
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Figure 3. Overhead in the form of repairs per second for Bimodal Multicast and SRM, 1000-node tree topologies
with 0.1% system-wide drop rate.

3. Simulation Settings and Method of Analysis

Simulation methods allow gaining control over the parts of the network and lead to a better understanding
of protocols. For instance, in a simulation model, link loss probabilities can be set and maintained easily,
and several network topologies can be constructed. Many process group applications and scenarios can be
built on top of these settings. Our simulation study uses the ns-2 network simulator [14] to model network
and protocol behavior. Our The implementation for Bimodal Multicast developed over ns-2 is used in this
study [1]. Implementation of SRM available in ns-2 is used for the comparison of some results. For that

case, we compare SRM and Bimodal Multicast in the same simulation settings.
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Our approach is to consider the delay of packets over the network. Recently, packet delay measure-
ments over the Internet are used to trace the conditions of the network between an origin and destination
pair [21-23]. In our simulations, such measurements represent traffic at the transport level. The randomness
in delays is due to traffic generated as a result of noise and the control and recovery mechanisms of the
transport protocol.

In our simulations, the delay of a data message at a process is measured as the delay between the time
that a message is initially multicast to the group by data source and the time the message is first delivered
by the process. There are basically two cases:

e The message is not exposed to failure and is delivered at the end of best-effort transmission,

e The message drops because of a failure in the network, and error recovery mechanism takes part in
recovering the message and makes sure it reaches the intended destination processes.

A process can also receive duplicate copies of a message, but in our analysis we do not consider dupli-
cate receipts and just use the first receipt time of a message to calculate its delay. Since Bimodal Multicast
protocol provides FIFO ordered delivery, in some of our simulations we analyze its delay distribution in two
forms: Delay distribution at the node level and delay distribution after FIFO ordering. In contrast, since

SRM does not guarantee ordered delivery, we only analyzed its delay distribution at the node level.

3.1. Topologies

Our initial simulations are performed on a 500-node tree topology where a randomly selected 300 nodes
are group members. The sender located at the root node sends at a rate of 0.01 (100 multicast messages
per second), and on all network links there is a system-wide drop rate of 1%. An example application
for this scenario would be a multicast-based distance education session in a wide area setting consisting of
multiple local campus networks. In this case, one server would multicast the content to most of the nodes
in the network. Another application could be an air traffic control system where the controller consoles are
replicated to achieve fault tolerance.

Other scenarios might be LANs connected by long distance links and networks where routers with
limited bandwidth connect group members. Such configurations are common in today’s networks as well.
With these in mind, our second scenario simulates a clustered network with 80 nodes where it consists of two
40-node fully connected clusters, and a single link connects those clusters. All nodes are the members of the
multicast group where there is one sender. There is a 1% intracluster drop rate formed in both clusters, and
a varying high drop rate is injected on the link connecting the clusters that make it behave like a bottleneck
link. A sample cluster topology with 18 nodes is shown in Figure 4b. We vary the operating parameters of
the multicast message rate of the sender and intracluster drop rate.

A dense transit stub topology is considered for various group sizes. The Internet can be viewed as
a collection of interconnected routing domains where each domain can be classified as either a stub or a
transit domain. Stub domains correspond to interconnected LANs and the transit domains model WAN or
MANs. We use a gt-itm [24] topology generator for producing transit-stub topologies. A sample transit-stub
topology with 128 nodes is shown in Figure 4a. We obtain our results from three runs of simulations, each
run consisting of a sequence of at least 2 = 32768 multicast data messages transmitted by the sender at a
rate 50 messages (each with size 210 bytes) per second. We do only three replications, but the topology is
generated randomly and differs in each run.

Another scenario consists of large-scale transit-stub topologies (that approximate the structure of the

Internet) with 1500 nodes where the sender is located on a central node and receivers are located at randomly
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selected nodes on the network. A certain link noise in the form of a drop rate is set on every link forming
a system-wide noise. We vary three operating parameters, namely group size, multicast message rate of the
sender, and system-wide drop rate. This scenario primarily focuses on the impact of randomized message

loss over traffic generated by the Bimodal Multicast. We obtain our results from several runs of ns.

Figure 4. Sample topologies (a) Transit-stub (b) Clusters.

3.2. Hurst Parameter of Message Delay

LRD is defined as the slow, power-law like decrease of the autocovariance function «y of a stationary sequence
at large lags k, given by ~(k) ~ ckaH*Z, with 0.5 < H < 1. The parameter H is called the Hurst
parameter, whose value represents the magnitude of the correlation. The value H = 0.5 corresponds to an
independent sequence as in Gaussian white noise, and the larger the H, the slower the decay of the function
v at large lags. Hence, we say that there exists more LRD as H increases.

The long-term correlations in the traffic can be characterized through delay process among others
[25,22]. There exist traffic models for workload, which corresponds to the message arrival process in multicast
traffic studied in the present paper. It is shown in [25] that the Hurst parameter computed from the workload
process and the delay process are in agreement. Along these lines, [22] studied LRD through packet delay
traces in Internet traffic. Our approach in this paper will be similar. We will concentrate on the delay data
obtained from the simulations of multicast message traffic and compute the Hurst parameter H from these
data. The delay sequence is stationary as the transient part of the simulations disregarded. Here, the lag
k of the function ~ has the unit of a number of messages. We estimate H using the wavelet estimation

method, as will be described next.

3.3. Wavelet Estimation Method

The wavelet estimation method is known to have very good properties for estimating the Hurst parameter
H as opposed to variance-time estimation and other heuristic methods [25-27]. It is an unbiased, consistent,
and also computationally efficient method of estimation.

We apply the wavelet estimation method as given in [26], using Daubechies wavelets with two vanishing
moments. Let d(j,k), k=1,...,n;, j =1,...,J denote the ’details’ obtained by the discrete wavelet
transform of the sequence of message delays {zx, k = 1,..., N}, where J is such that 277! < N < 2742,

and n; is the number of coefficients available at octave j. The statistic central to the method is given by

1 ex o )
uj:;Zdz(],k), j=1,...,J.
J k=1
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Let c; denote the coefficient in the spectrum of the delay sequence. That is, it is the counterpart of
¢ of the autocovariance function in the spectrum. Then, the Hurst parameter H and the coefficient c; are

estimated through a weighted linear regression of

y; = logs(ps) — g;

over j = ji,...,j2, where j; and jo are the scales relevant for LRD. Typically, these are the larger scales.

The constant

9; = E(logy (1)) — j(2H — 1) —logy(c;C)

is introduced to ensure that the fundamental hypothesis of regression holds (with C' a constant that depends

on H). Then, the slope « of the regression line is (2H — 1) and the estimate of H is given by

a+1
2

_H-:

which is unbiased and consistent.

4. Simulation Results

In this section, we report our initial results given in [10] as well as our more detailed simulations of Bimodal
Multicast traffic in comparison to SRM. First, a large-scale tree topology is considered where the group size
is also large. In another setting, moderate-size clusters connected by a noisy link are simulated. Then, the
two protocols are compared in dense transit-stub topology where both the network and group sizes are the
same. In view of these results, the effect of a large scale network is analyzed only for Bimodal Multicast in

the sparse case as well.

4.1. Randomized Message Loss

In this part of the study, data were gathered on a 500-node tree topology where a randomly selected 300
nodes are group members. The sender located at the root node sends with at a rate of 0.01 (100 multicast
messages per second), and on all network links there is a 1% system-wide drop with rate.

Figure 5 shows delay histograms of the protocols for this scenario where the x-axis is the delay in
seconds (in increments of 0.1 ms intervals) and the y-axis is the percentage of occurrences. Figures 5a and 5c¢
are the node level delay distribution of Pbcast, and SRM respectively. A typical receiver delivers messages
with lower delays when Pbcast protocol is used for group communication. As shown in Figure 5¢, SRM has
a large tail with a maximum observed delay of nearly 800 ms, and a group of packets delivered at around
400 ms. Overall, SRM has a significant number of packets delivered during the first 100 ms and a second
broad distribution containing almost 5% of packets, which arrive with delays of between 300 ms and 800 ms.
Notice that the basic SRM distribution is not as tight as the unordered Pbcast distribution, which has more
than 90% of its packets arriving at the lowest possible delays. In the case of Pbcast, around 2% of packets
are delayed and arrive in the period between 200 ms and 300 ms, with no larger delays observed.

We also investigate message delays of Pbcast after FIFO ordering is accomplished. In that case,
depending on the message loss rate experienced by the receiver, some percentage of messages are delivered

25



Turk J Elec Engin, VOL.11, NO.1, 2003

with higher delays since messages not in order are buffered prior to delivery in order to guarantee FIFO
ordering property (Figure 5b). These higher delays reflect the cost of waiting for messages to be retransmitted
and placing them into the correct delivery order.

These results are important at least in settings where the steady delivery of data is required by the
application. We observe that as SRM is scaled to larger groups, steadiness of throughput can be expected to
degrade. We experimented with a variety of noise levels, and obtained similar results, although the actual
number of delayed packets obviously depends on the level of noise in the system.

We have found the Hurst parameter H for Pbcast to be 0.54 whereas for SRM to be 0.65. In this
case H being close to 0.5, Pbcast performs very well with no LRD implication. On the other hand, the
delays for SRM are long-range dependent, although H is not very high. Hence, Pbcast performs better.
Our estimate of H for Pbcast after FIFO is 0.72, which qualifies the delay in this case to be long-range
dependent. However, note that this result reflects the effect of the application level, namely the requirement
of FIFO ordering, and not the effect of the transport layer.

1% system wide noise, 500 nodes, 300 members, pbcast-grb% system wide noise, 500 nodes, 300 members, pbcast-grb
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Figure 5. Delay histograms. a) Pbcast at node level, b) Pbcast after FIFO ordering, ¢) SRM.

4.2. Clusters connected by a noisy link

In the previous subsection, we focused on the impact of randomized message loss on the performance of
Pbcast and SRM protocols. In this scenario, we simulate a clustered network with 80 nodes. The network
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consists of two 40-node fully connected clusters, and a single link connects those clusters where all nodes
form an 80-member process group. The sender is located on the first cluster, and it generates 100 multicast
messages per second. There is 1% intra-cluster noise formed in both clusters, and a high drop rate of 20%,
40% or 50%, is injected into the link connecting the clusters. This inter-cluster noise corresponds to the
probability that a message transmitted from the first cluster to the second will drop and hence get lost. We
then explore the delay characteristics of a receiver on the second cluster.

In this configuration, both SRM and adaptive SRM deliver some messages with very long delays of
many seconds. In the adaptive case particularly, about 5% of all data messages are delayed by 5 s or more
before delivery. On the other hand, Pbcast delivers all data messages within 1 s and hence can be seen as

offering relatively steady data throughput in networks with this configuration.

Table 1. Hurst Parameter of Delay for Clustered Network.

Drop Pbcast SRM

Rate | before FIFO | after FIFO | non-adaptive | adaptive
20% 0.54 0.63 0.52 0.55
40% 0.49 0.61 0.66 0.59
50% 0.54 0.61 0.55 0.65

Table 1 gives the estimates of the Hurst parameter H for the three different noise rates and the two
protocols. We see that H is very low for Pbcast before ordering at around 0.5 for all levels of drop rate. In
these cases, the delays have very weak dependence among each other. As one would expect, FIFO ordering
has an implication towards longer and more correlated delays over the network. This fact is demonstrated
with higher values of H, around 0.6, for Pbcast after ordering. On the other hand, the value of H for both
adaptive and non-adaptive SRM protocol varies from around 0.5 to 0.65, again with no specific pattern with
the noise level. These values leading to only moderate LRD characterization, as in the case of Pbcast after
FIFO, do not have adverse implications on the network performance. However, even non-adaptive SRM
could have long-range dependence, as a protocol, while Pbcast before FIFO does not.

The histograms obtained from delay data for clusters connected by a noisy link support the LRD
analysis. The Pbcast delays are concentrated around low values (all less than 1 s) and the histograms look
like normal and exponential distributions and/or their mixtures. Hence, the tails of the histograms decay
exponentially. As an example, delay distributions with a 50% drop rate are given in Figure 6. For Pbcast
before FIFO, an exponential distribution fits well, with a mean 0.18 s, where H was found to be 0.54. For
Pbcast after FIFO, a normal distribution fits well with a mean of 0.43 s, where H was found to be 0.61. In
contrast, for the distributions of SRM delay the tails are prominent. Although an exponential distribution
fits well for non-adaptive SRM delay as in Figure 6¢, the mean delay, 1.22 s, is higher than that for Pbcast
even after FIFO, and the distribution has a long right tail. For this case H was found to be 0.55. The
adaptive SRM was found to be long-range dependent with H equal to 0.65. This is in agreement with the
corresponding distribution in Figure 6d, which has a long right tail with very large observations and amean
of 1 s. A Pareto distribution, which is quite common in LRD, fits well in this case.

4.3. Dense Transit-Stub Topology

In the view of previous results, we did a more detailed analysis in this subsection. Initially, several
independent runs of ns-2 were obtained to observe the effect of randomness. For the statistical precision of our

results for long-range dependence, each run lasts at least 2!° = 32768 messages. With such a long sequence,
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independent runs with different seeds showed almost no random variation in the estimated Hurst parameters
and other statistics of performance. That is why we have chosen to generate three independent random
topologies for each group size and report their average statistics here. This has introduced randomness in our
experiments while reinforcing our results as all topologies for a fixed group size showed similar performance

characteristics within some variation.
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Figure 6. Delay distributions with 50% noise rate (a) Pbcast before FIFO, (b) Pbcast after FIFO, (c) non-adaptive
SRM, (d) adaptive SRM.
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Figure 7. Hurst parameter versus group size for Bimodal Multicast and SRM at two levels of system-wide drop
rate.
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The most significant comparative result is displayed in Figure 7. We have started with small groups
of size 20 and went up to 120 all on a transit-stub topology. The Hurst parameter estimates are given in
Figure 7 for Bimodal Multicast and SRM at two levels of system-wide drop rate, namely 1% and 2% . Both
protocols behave similarly up to group size 80; they generate short-range dependent traffic with H values
around 0.5. When the group size increases to 100 or more, SRM traffic shows long-range dependence with
H values statistically significantly greater than 0.7. Bimodal Multicast continues to produce short-range
dependent traffic for groups of size 100 and 120. To demonstrate this pattern with respect to bigger group
sizes, the scaling diagram is given in Figure 8a for Bimodal Multicast and (b) for SRM. The trivial scaling
for Bimodal Multicast is apparent whereas the scaling for SRM indicates H > 0.5. In addition to the Hurst
parameter, which indicates the strength of correlations across time, the mean of delay is also strikingly
different for the two protocols. The mean delay for Bimodal Multicast is in the order of 0.03 s, whereas it
is in the order of 0.70 s for SRM.
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Figure 8. Scaling diagram used for the estimation of H obtained as a result of the wavelet transform of the delay
sequence for the farthest receiver in a group of size 120 with 1% system-wide drop rate in the case of (a) Bimodal
Multicast and (b) SRM.

Summary statistics of our simulations for large group sizes 60 to 120 are given in Tables 2 and 3.
Overall, we see that the interarrival distribution is approximately normally distributed when the network is
not pressured. This is true for Bimodal Multicast in all cases, and in smaller size groups for SRM. In the SRM
case, as the group size increases, the distribution becomes right-skewed (long right tail) and an exponential
distribution fits well. In the tables, the parameters given for the normal distribution are the mean and
the standard deviation, and the parameter of the exponential distribution is the mean. The interarrival
distributions reflect the performance implications of the traffic patterns. The interarrival distribution of the
long-range dependent sequence for SRM is found to be exponentially distributed, whereas it is found to be
normally distributed for the corresponding Bimodal Multicast traffic, which is short-range dependent. In
Tables 2 and 3, the difference in the standard deviations of normal and exponential distributions is remarkable
although they may have the same mean. Recall that the mean and the standard deviation of exponential
distribution are the same. There is a similar difference for the throughputs, which is not documented here.
Although the mean throughput is the same, the variance is significantly smaller for Bimodal Multicast.
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Table 2. Hurst Parameter and Performance Measures on Transit-stub for Bimodal Multicast.

Parameters Performance

Drop | Message rate | Group H and 95% CI Loss ratio | Throughput Interarrival

rate (msgs/s) size (msgs/s) Distribution

1% 50 60 0.506 [0.500,0.513] | 0.0019% 49.9981 N(0.02,0.00555)
1% 50 80 0.514 [0.511,0.518] | 0.0019% 49.9986 N(0.02,0.00620)
1% 50 100 0.531 [0.529,0.533] | 0.0010% 49.9981 N(0.02,0.00620)
1% 50 120 0.517 [0.498,0.536] | 0.0029% 49.9976 N(0.02,0.00619)
2% 50 60 0.525 [0.521,0.530] | 0.0086% 49.9948 N(0.02,0.00793)
2% 50 80 0.524 [0.516,0.532] | 0.0229% 49.9876 N(0.02,0.00880)
2% 50 100 0.530 [0.519,0.541] | 0.0010% 49.9938 N(0.02,0.00849)
2% 50 120 0.526 [0.517,0.535] | 0.0210% 49.9871 N(0.02,0.00880)

The scalability of Bimodal Multicast is remarkable, only at a negligible cost in reliability. The
throughput decreases and the variance of the interarrival increases only slightly as the group size increases
and/or the drop rate increases. The Hurst parameter, on the other hand, is very stable in response to the
doubling of the drop rate or the increase of the group size. Bimodal Multicast provides stable throughput in
the sense that it has smaller variance than SRM. On the other hand, SRM makes the utmost effort reliability
as no losses have been encountered in our simulations. This comes at a cost of longer delays, slightly lower
throughput than Bimodal Multicast (significantly lower for N = 120), more variable interarrivals and most,

importantly, self-similar traffic patterns.

Table 3. Hurst Parameter and Performance Measures on Transit-stub for SRM.

Parameters Performance
Drop | Message rate | Group H and 95% CI Throughput Interarrival
rate (msgs/s) size (msgs/s) Distribution
1% 50 60 0.517 [0.511,0.523 49.9990 N(0.02,0.00744)
1% 50 80 0.531 [0.527,0.535 49.9971 N(0.02,0.0152)
1% 50 100 | 0.734 [0.702,0.765 49.9962 Exp(0.02)
1% 50 120 | 0.787 [0.676,0.792 49.9962 Exp(0.02)
2% 50 60 0.516 [0.514,0.518 49.9986 N(0.02,0.0117)
2% 50 80 0.522 [0.516,0.528 49.9981 Exp(0.02)
2% 50 100 | 0.695 [0.653,0.738 49.99381 Exp(0.02)
2% 50 120 | 0.742 [0.676,0.808 49.9251 Exp(0.02)

4.4. Bimodal Multicast at Large-scale Sparse Topology

In this subsection, Bimodal Multicast is analyzed in detail for a much larger network. As shown in Table
4, the H values remain essentially around 0.5 even if we increase the drop rate or the group size. In the
lower 1% drop rate, H increases slightly due to an increase in the transmission rate. This is slightly more
pronounced in the 10% drop rate, where we have an increase to values around 0.55 (0.543 and 0.577) with
increased message rate. The protocol is scalable as there is no significant increase due to group size and also
network size when compared to the previous subsection.

Loss ratio increases with the drop rate as expected. Since the noise is system wide, an increase in
the group size is also effective as the number of hops increases between the sender and the receiver. The
interarrival distributions are normal or exponential as expected for such low H values. The mean interarrival
times increase and the throughputs decrease slightly as the drop rate or the group size increases.
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Table 4. Hurst Parameter and Performance Measures on Transit-stub.

Parameters Performance

Drop | Message rate | Group H and 95% CI Loss ratio | Throughput Interarrival

rate (msgs/s) size (msgs/s) Distribution

1% 10 10 0.514 [0.508, 0.521] | 0.0012% 9.9998 Normal (0.100003, 0.018)
1% 100 10 0.525 [0.518, 0.532 0.0003% 99.9863 Normal (0.010002, 0.002)
1% 10 50 0.503 [0.496, 0.510 0.023% 9.9973 Normal (0.10003, 0.028)
1% 100 50 0.516 [0.509, 0.523] | 0.0012% 99.9806 Normal (0.010004, 0.003)
10% 10 10 0.511 [0.507, 0.515 0.209% 9.9787 Exp (0.1002)

10% 100 10 0.577 [0.573, 0.581 0.049% 99.9253 Exp (0.01001)

10% 10 50 0.523 [0.517, 0.528 3.87% 9.6127 Exp (0.104)

10% 100 50 0.543 [0.537, 0.549] 3.60% 96.3484 Exp (0.0104)

5. Discussion on Long-Range Dependence

The present article focuses on traffic properties of Bimodal Multicast through several simulation scenarios.
More detailed analysis on the comparison of Bimodal Multicast with SRM is given in [28]. In particular, the
marginal delay distribution has been analyzed for Bimodal Multicast [28], which complements the earlier
results in [1]. We have shown that the delay distribution decays exponentially fast as expected from the
Markov property of the epidemic mechanism of Bimodal Multicast. Such behavior can be modeled through
an appropriate chain-binomial framework [29]. In [28], the intrinsic relation of transport protocol mechanisms
to traffic characteristics is studied. The real MBone traces are also examined in comparison to unicast TCP
and UDP traffic as a motivation for the study of the transport layer.

We consider a given message multicast to all group members from a sender. In the worst case, it is
possible that none of the other group members receive the multicast. No matter how many processes receive
the message, it will be repaired through the epidemic mechanism of the protocol. Let N denote the group
size and R; denote the number of receivers that have not received the message at round ¢. In the epidemic
terminology, these are susceptible processes, and equivalently N — R; corresponds to the number of infectious
processes. In the worst case, Rypwould be N-1 and only the sender would have the original message. At each
round, the probability of infection depends on the infectious processes present at that time. Let p denote
the probability that a given susceptible process receives a gossip and the following retransmitted message
from a given infectious process successfully. Then ¢ = 1 — p is the probability of failure of an infection by
that infectious process. A plausible assumption is that processes become infected independent of each other,
since each process sends a gossip message to a randomly chosen group member. Also with the assumption
that message loss occurs independently for each process, it is possible to evaluate q. Let ¢ be an upper
bound for the probability of message loss for each pair of processes in the network. On the other hand, the
probability that a given infectious process gossips to a given susceptible process is = f/N where f is the
fanout, that is, the number of processes a process gossips to at each round. For a successful retransmission
of the data message, all of the gossip, request and retransmission messages associated with the recovery
process must be transmitted successfully. It follows that an upper bound for ¢is B(1 — ¢)3, which we use
as a pessimistic value for ¢. Hence, the probability that none of the infectious processes at round ¢ infect
N—R;

a susceptible process is ¢ . Therefore, the number of susceptible processes R;y1 in the next round is

binomially distributed with parameters R; and ¢V ~%¢. That is, R is a Markov chain with a lower triangular

transition matrix and state space {0, 1, ..., N-1} where 0 is the absorbing state, in the worst case when
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Ry = N-1. In general, it is conditionally a Markov chain on {0, 1, ..., Ry} given Ry.
By demonstrating the relationship of the delay D of a retransmitted message to the expected values
of Ry, t=1,2, ..., we can show that

Ft)y=P{D>t}<q, t=1,2,...

Hence, the tail of the marginal delay distribution decays faster than a geometric distribution with
parameter q. Geometric distribution is the discrete analogue of exponential distribution, which is indeed
found to be a good fit to the empirical distributions of the delay of retransmitted messages in [28]. Both
geometric and exponential distributions have light tails, whereas many statistics in network traffic have
heavy-tails in the presence of LRD. Although the Hurst parameter is an indicator about the autocorrelation
of delay, an intrinsically exponential type marginal delay distribution and a Markovian recovery mechanism
show that LRD is not expected for Bimodal Multicast. This substantiates the idea that short-range
dependence is intrinsically due to the epidemic mechanism of the protocol.

We have also demonstrated through simulations that while Bimodal Multicast generates desirable
network traffic, SRM traffic shows LRD at time scales over 1 s to 1 min. Smaller time scales might represent
the effect of SRM’s control actions at the granularity of time-to-live, and request and repair timers, spanning
time scales smaller than 1 s. In contrast, the larger scales show the overall effect on the network due to
congestion caused by the overhead of the protocol and they span time scales from 1 s to a minute or so. This
range of time scales is generally sufficient for traffic modeling purposes as shown in [30] due to the finite
buffer sizes of real systems. On the other hand, LRD induced by the application layer, which is excluded in
this study, is relevant at time scales of minutes, and hours. The timer mechanism of SRM depends on the
estimations of delay over the network. The adjustment of request and repair timers accordingly can have
an effect that propagates self-similarity to scales from seconds to minutes although these timers are in much
smaller scales. The longer the delay estimate, the larger the timers are set. As a result, in the presence
of heavy tailed delays in the Internet, SRM’s behavior is expected to degrade. In the unicast case, TCP’s
congestion control mechanism is suggested as the cause for the self-similarity induced at time scales of a few
milliseconds to tens of seconds and analyzed to an extent in [31]. We believe that a similar analysis is valid
also for SRM, which is left as future work.

6. Conclusion

We have studied the traffic characteristics and performance criteria for Bimodal Multicast protocol in tree,
transit-stub and connected cluster topologies. Various drop rates, group sizes and data transmission rates
have been considered in the transit-stub topology. The Hurst parameter is estimated from the delay sequence
as a representative measure of LRD. We established that the protocol generates well-behaved traffic with
no signs of LRD in realistic network topologies and parameters. These results reinforce the scalability
results reported in [1]. As the group size increases, overhead traffic, throughput, loss ratio and the Hurst
parameter, which is around 0.5, all remain stable proving the scalability of Bimodal Multicast. We also
conclude that Bimodal Multicast protocol does not intrinsically lead to long-range dependent traffic when
the network topology is tree, clusters or transit-stub. On the other hand, SRM protocol shows LRD although
at a moderate level in clusters. Since LRD behavior of the traffic leads to adverse implications for network
performance, we conclude that Bimodal Multicast is a superior protocol in this sense.

As future work, Bimodal Multicast deserves more research in terms of traffic characteristics for various
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parameters such as gossip rate and buffer sizes. We aim to provide a stochastic model involving the
parameters and the mechanisms of Bimodal Multicast. Comparative studies with other scalable multicast
approaches will help to identify efficient protocol mechanisms. We emphasize multicast communication
as a prominent paradigm for future applications. In addition, concrete results to be obtained for multicast
communication mechanisms would also provide a basis in examining unicast and wireless data communication
mechanisms in terms of their effects on network performance. What happens when Bimodal Multicast mixes
with self-similar traffic of WAN/Internet is an open question. We expect that performance results for the
multiplexing of short-range and long-range dependent traffic will be valid. In multiservice networks, the
control of the hybrid traffic with different QoS requirements will be important. Modeling such a control on

the basis of a stochastic framework also remains as future work.
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