
Transport Protocol Mechanisms for Wireless Networking:
A Review and Comparative Simulation Study

Alper Kanak, Öznur Özkasap

Koç University, Department of Computer Engineering, Istanbul, Turkey
{akanak, oozkasap}@ku.edu.tr

Abstract. Increasing popularity of wireless services has triggered the need for
efficient wireless transport mechanisms. TCP, being the reliable transport level
protocol widely used in wired network world, was not designed with
heterogeneity in mind. The problem with the adaptation of TCP to the evolving
wireless settings is because of the assumption that packet loss and unusual
delays are mainly caused by congestion. TCP originally assumes that packet
loss is very small. On the other hand, wireless links often suffer from high bit
error rates and broken connectivity due to handoffs. A range of schemes,
namely end-to-end, split-connection and link-layer protocols, has been
proposed to improve the performance of transport mechanisms, in particular
TCP, on wireless settings. In this study, we examine these mechanisms for
wireless transport, and discuss our comparative simulation results of end-to-end
TCP versions (Tahoe, Reno, NewReno and SACK) in various network settings
including wireless LANs and wired-cum-wireless scenarios.
Keywords. TCP, wireless transport protocols, end-to-end protocols, split-
connection protocols, wired-cum-wireless.

1. Introduction

With the growth and increasing popularity of wireless services, need for efficient
wireless connections to the existing network infrastructures will be become crucial in
future internetworks. TCP, being the reliable transport level protocol widely used in
wired network world, was not designed with heterogeneity in mind. As an example,
when a data packet is lost, in a wired network it is relatively safe to assume that this is
most likely due to congestion, that is, too many packets are contending for network
resources. However, when a wireless link or sub-network is involved it could as well
be because of bad reception at the location of the user.

It is not unusual today, and will certainly become increasingly more common in
forthcoming years, that a given TCP connection would pass through networks with
varying latency and bandwidth characteristics. For example, it may pass through a
network with high latency/low bandwidth (e.g. a wireless WAN) and then through a
low latency/high bandwidth (wired) network. The problem with the adaptation of
TCP to the evolving wireless settings is because of the assumption that packet loss
and unusual delays are mainly caused by congestion. TCP is thus tuned to adapt to
such congestion losses by slowing down the amount of data it transmits. It shrinks its
transmission window and backs off its retransmission timer, thus reducing the load
and congestion on the network. However, in wireless networks, packet loss is often

caused due to other factors besides congestion. Wireless channels often suffer from
high bit error rates and broken connectivity due to handoffs. Moreover, the Bit Error
Rate (BER) may vary continuously during a session. Unfortunately, TCP assumes that
these losses are due to congestion and invokes its congestion control algorithms.
Consequently, effects of packet losses in wireless links on TCP performance and
enhancements to the classical TCP versions are significant research topics to study.
Based on the studies in this area, a question to be answered would be “Would TCP, in
particular, be the transport layer of preference for a wired-cum-wireless world?”

A range of schemes has been proposed to improve the performance of transport
mechanisms, in particular TCP, on wireless settings. They can be broadly categorized
into three groups: end-to-end protocols, split-connection protocols and link-layer
protocols. These approaches are revisited in the next section. In this study, we
examine mechanisms for wireless transport, and conduct simulations and analysis of
end-to-end TCP versions (Tahoe, Reno, NewReno and SACK) for various network
settings including wireless LANs and wired-cum-wireless scenarios. Tahoe is an old
TCP protocol that is rarely used currently. It implements slow start algorithm and has
no fast recovery algorithm. In TCP Reno, the fast retransmit operation has been
modified to include fast recovery. It prevents the communication path from going
empty after fast retransmit, thereby avoiding the need to slow start to refill it after a
single packet loss. Reno significantly improves the behavior of Tahoe when a single
packet is dropped from a window of data, but can suffer from performance problems
when multiple packets are dropped from a window of data. The NewReno TCP
includes a small change to Reno algorithm at the sender that eliminates Reno’s wait
for a retransmit timer when multiple packets are lost from a window. NewReno can
recover without a retransmission timeout. The TCP SACK uses the TCP Extensions
for high performance. The congestion control algorithms are a conservative extension
of Reno’s congestion control. SACK differs from Reno when multiple packets
dropped from a window of data. During fast recovery, SACK maintains a variable
called pipe that represents the estimated number of packets outstanding in the path.
The sender only sends new or retransmitted data when the estimated number of
packets in the path is less than the congestion window [1].

The outline of the paper is as follows. In Section 2, we review mechanisms for
wireless transport, namely end-to-end protocols, split-connection protocols and link-
layer protocols. Section 3 gives details of our simulation study and analysis results on
various network settings. Section 3.1 discusses comparisons of TCP performances
over wired and wireless LAN scenarios. Section 3.2 and 3.3 discuss results for end-to-
end protocols and split-connection protocols in wired-cum-wireless scenarios
respectively. Finally, our conclusions and future work are stated in Section 4.

2. Review of Mechanisms for Wireless Transport

In contrast to wired LANs, a wireless LAN exhibits typical characteristics, such as
low and highly variable throughput, high and highly variable latency, bursty and
random packet losses unrelated to congestion, irregular blackouts, and asymmetric
uplink and downlink channels. Under such conditions, when packets are lost due to
errors other than congestion, this leads to unnecessary reduction in end-to-end

throughput and hence degraded performance. In order to improve the transport
protocol performance, in particular TCP, in wireless settings, two methods are
common in systems experiencing packet loss:

 Hiding any non-congestion-related losses from the TCP sender which therefore
requires no changes to existing sender implementations.

 Attempt to make the sender aware of existence of the wireless hops and realize
that some packets losses are not due to congestion

For implementing these methods, several schemes are proposed which can be
examined in three broad categories, namely, end-to-end protocols where sender is
aware of the wireless link, link layer protocols that provide local reliability, and split-
connection scheme where the connection is partitioned into two, wired and wireless,
at the base station [2]. Next, we review these approaches.

2.1 End-to-end protocols

End-to-end protocols, in which the sender is aware of the wireless link, retain a single
TCP connection from sender to receiver and they handle losses through the use of
selective acknowledgements (SACKs). This allows the sender to recover from losses
within a window without resorting to timeout. This scheme performs well with TCP
SACK but also applicable for Tahoe and Reno protocols.

The common TCP implementation currently employed on the Internet is Reno
TCP. Reno TCP algorithm uses a combination of slow-start, congestion avoidance,
fast retransmit and fast recovery methods. It utilizes cumulative acknowledgments for
providing reliable delivery. NewReno TCP is an extended version of Reno TCP
which is proposed for improving performance after multiple packet losses. SACK
protocols add selective acknowledgments allowing the sender to handle multiple
losses within a window of outstanding data more efficiently. Another approach
referred to as explicit loss notification (ELN) is used to prevent unnecessary throttles
applied to congestion window.

2.2 Data Link Layer Protocols

Proposals in this category are based on the following argument: Since the problem of
high link error rates in a wireless environment lies at the physical layer, the data link
layer (LL) has more control over it than any other layer and can sense a problem
faster. Hence, the problem can be solved at the LL that aims to offer a good
communication channel to the layers above, in particular to TCP. This does not
require any change on current TCP implementations. The way to do this is to ensure
reliable delivery of packets at all times, for example using an Automatic Repeat
reQuest (ARQ) scheme. However, studies have shown that this could lead to
degraded performance. This is because TCP also attempts to ensure reliable
transmission, thus leading to a lot of duplicate effort. If such a solution is to be
accepted, it has to be tightly coupled with TCP.

The most prominent proposal in this category is the SNOOP protocol [3]. SNOOP
lies in an intermediate position between the end-to-end and split-connection
proposals, trying to utilize the ability of a LL protocol to respond fast, and at the same
time using the available information to keep TCP “happy” with the existing network

connection. For example, SNOOP would favor local LL retransmissions instead of
TCP retransmissions. This is achievable because a SNOOP agent would be aware of
duplicate acknowledgments traveling from the receiver to the sender and suppress
them, locally re-transmitting the potentially lost segment instead. Without SNOOP,
the receipt of a certain number of duplicate acknowledgments would have caused a
TCP segment retransmission.

2.3 Split-connection protocols

The basic idea behind the proposals in this category, such as Indirect TCP (I-TCP)
[4], is that since there exist two completely different classes of sub-networks, namely
wired and wireless, each TCP connection could be split into two connections at the
point where the two sub-networks meet. As an example, suppose a mobile user
browses a conventional web site using his laptop. The TCP connection will be split
into two: one between the mobile host and the base station and one between the base
station and the web server. The advantage is that TCP implementation in the sender
does not need to be modified to deal with the enhanced functionality required for the
wireless hop. The best transport protocol for each type of network can be utilized.
This is very similar to using a HTTP proxy server. Splitting the TCP connection is
essentially the technique used under the Wireless Application Protocol (WAP)
architecture. The most significant disadvantage of splitting TCP connections is the
loss of end-to-end semantics of TCP. In addition, the performance may also be
degraded by the fact that it could end up splitting a particular connection several
times, if different combinations of sub-networks are involved. Handoffs are also not
handled as efficiently, and crashes in the base station result in TCP connection
termination.

3. Simulation Results

The underlying platform for our simulation model is ns-2 network simulator [5].
Wireless model in ns-2 supports the effectiveness of mobile nodes by different
routing mechanisms, routing protocols, network components, movement/traffic
scenario generation and transmission protocols. Among the ad-hoc routing protocols
currently available for mobile networking in ns-2, we chose DSR (dynamic source
routing) as the routing agent. The DSR agent checks every data packet for source-
route information. It forwards the packet as per the routing information. In case it
does not find routing information in the packet, it provides the source route if route is
known, or caches the packet and sends out route queries if route to destination is not
known. Routing queries, always triggered by a data packet with no route to its
destination, are initially broadcast to all neighbors. Route replies are sent back either
by intermediate nodes or the destination node, to the source, if it can find routing info
for the destination in the route query. Simulation parameters common to all set of runs
are frequency of 2.4GHz, 802.11b Mac layer, 10Mbps channel, 100m distance
between neighbor nodes in the topology, RED queue management algorithm, and
1400 byte-packet size with sender’s rate of 200 packets per second. Versions of TCP
protocols simulated are Tahoe, Reno, NewReno and SACK.

3.1 Comparison of TCP performances over wired and wireless LAN scenarios

Scenario 1: Simple two-node connection: The first scenario consists of a pair of nodes
communicating either in wireless or wired settings that is used to simulate wireless
LAN without collision. This is because there is only a pair of nodes communicating,
and no additional node exists which could affect the communication. Besides, note
that there is an error model on the link which is described when discussing our
simulation results. The second set is for the two nodes connected via a wired link.

The measurement metrics are throughput and queue delay. Queue delay
measurement is accomplished as follows: Suppose that a packet p is to be sent. There
are two events associated: E1 and E2. E1 is scheduled to occur when the current
sending operation has completed and E2 represents the packet arrival event. Here E1
is associated with a Queue object of ns-2, and queue delay is the time difference
between these two events. On the other hand, average queue delay is calculated by
tracing a set of packets during a time period. RED is used as the queuing algorithm,
and buffer size is varied by using ns-2 arguments while we kept the buffer sizes of
both sender and receiver the same.

According to the throughput results in Fig. 1 where x-axis represents the number of
lost packets in a congestion
window, SACK performs better in
terms of throughput among all TCP
versions while Tahoe has the
lowest throughput values. The
reason is that SACK uses a
selective acknowledge and pipe
scheme to ensure that when packets
are dropped, the congestion
window will recover fast. Thus the
average throughput will be
improved. Now let’s consider the
effect of buffer size on delay and
throughput. As shown in Fig. 2,
when the buffer size increases,
different TCP versions have almost
the same performance on average
queue delay. However, we observed that the distinction of throughput for different
TCP versions when buffer size increases is relatively large (Fig.3). The NewReno and
SACK performs better than Tahoe and Reno. The reason is that when buffer size is
small, multiple packets will be dropped. Tahoe and Reno has no fast recovery
algorithm for dealing with multiple drops. Thus the TCP congestion window drops
rapidly, hence leading low throughput. We observed similar results in wired
connection as well (because of the page limitation, we do not include these graphs).

Scenario 2: Wireless N-node model: The second scenario is a wireless N-node model
as illustrated in Fig. 4, which is used to simulate a wireless LAN with collisions. The
network size N changes from 10 to 50. When the network size increases, the
collisions become more frequent. Fig. 5 shows throughput analysis results as the

Fig. 1. Throughput for n-packet losses in
simple wireless scenario

network size increases for TCP versions. We observe that all four curves have the
same trend of decrease when node number increases. The reason is that if node
number increases, due to collisions taking place frequently, it becomes harder and
harder to establish a connection link for each pair. However, SACK still presents the
best performance among all. This is due to the fast recovery and fast retransmission
algorithms implemented in SACK. Even when collisions occur and multiple packets
are dropped, fast recovery algorithm could help TCP link to maintain a relatively
good performance.

3.2 End-to-End protocols: wired-cum-wireless scenario

TCP has been optimized over the years for wired networks. With the proliferation of
wireless networking, TCP has to perform well in heterogeneous infrastructures, which
exhibit different characteristics than the wired ones such as random segment
corruption over wireless links. Several improvement proposals attempt to lessen
TCP’s inefficiencies in a wired-cum-wireless environment. In order to simulate the
end-to-end schemes, we have constructed the topology shown in Fig. 6. Node 1 sends
ftp packets to every node in the system without caring the link on the way to the
destination. That could be either a wireless or wired link. End-to-end protocol
maintains a single TCP connection from sender to receiver and attempts to make TCP
aware of wireless losses so that it can deal with them. Protocols handle losses through
the use of some form of selective acknowledgements (SACKs). As mentioned before,
this allows the sender to recover from losses within a window without needing to
timeout. Thus, end-to-end schemes involve modifying the TCP implementation in the
sender to make it “wireless” aware. This may not always be feasible and is a potential
problem for widespread implementation of end-to-end schemes.

Note that, in this scenario, a real base station is not constructed at node 3 but a non-
mobile node is inserted to simulate the end-to-end protocol. In fact, there may be a
base station to manage the communication among mobile nodes. End-to-end protocols
do not worry about the communication path between the sender and the receiver even
if there is a base station on the way. In other words, the mobile nodes in our

Fig. 2. Average queue delay as a function
of buffer size in simple wireless scenario

Fig. 3. Throughput as a function of
buffer size in simple wireless scenario

simulation act as a base station. We construct a scenario with a base station for split-
connection protocols, and evaluate combined performance results in the next section.

3.3 Split-Connection protocols: wired-cum-wireless scenario

In this scenario, we replace node 3 in Fig.6 with a base station to split the connection
into wired and wireless parts. In other words, both parts are communicating via the
base station. The nodes connected to each other via wired links are aware of the
wireless link on the other end. Split-connection protocols hide the unreliability of the
wireless link from the sender by terminating the TCP connection at the base station
and using a separate protocol from the base station to the mobile host. This has the
advantage that the TCP implementation in the sender does not need to be modified.

Throughput analysis results of end-to-end and split-connection cases for different
error rates are given in Fig. 7. The rates represent the ratio of erroneous bits over the
whole packet. For instance, 1/256 means there is 1 erroneous bit for every 256 bit in a
packet. In all cases, SACK shows better performance in lossy wireless links. For high
error rates, splitting schemes may
perform better compared to end-to-
end counterparts. Reno is the
weakest protocol in all cases. As
shown in Fig. 8, we observe that
the bigger the queue size of the
link, less congestion will occur and
performance would be better.
When queue size increases, a large
proportion of total error is due to
non-congestion losses. This is
because of the fact that as the queue size on the link increases, the probability of
congestion would decrease. Hence the throughput does not change much. Among all
TCP versions simulated, SACK protocols perform better. Likewise, end-to-end case
with TCP Reno shows degraded performance among the others.

Fig. 4. Wireless N-node topology

1

3

N-1

2

4

N

Fig. 5. Throughput for N nodes scenario

Fig. 6. Simulation topology for end-to-end
and split connection protocols

100 m

100 m
100 m

100 m 1 3

2

4

5

4. Conclusions

In this study, we review three main approaches for transport mechanisms of wireless
networking, namely end-to-end, split-connection and link-layer methods together with
our comparative simulation results. Our simulation study yields some conclusions
about the performance of end-to-end and split-connection transport protocol
mechanisms particularly in wireless local area network settings. We conclude that,
among the simulated TCP versions, TCP SACK has the best performance. When the
buffer size increases, different TCP versions show almost the same trend on average
queue delay, but the difference is apparent on average throughput behavior. In
particular, for wireless multi-node model, throughputs of all TCP versions are
inversely proportional to the node number. We have also simulated wired-cum-
wireless scenarios for both end-to-end and split connection mechanisms and found out
that TCP SACK performs best in both cases in terms of throughput versus different
error rates and queue sizes. According to results, TCP SACK with end-to-end
protocols performs a little better than the TCP SACK with split-connection protocols.
An area for further study would be simulating and analyzing link-layer protocols and
ELN schemes. There are also other solutions within this area such as WTCP (wireless
TCP) or TCP-aware protocols that can be studied on the same network scenarios.

References

1. K. Fall and S. Floyd, Comparisons of Tahoe, Reno, and SACK TCP,
ftp://ftp.ee.lbl.gov/papers/sack.ps.Z, December 1995.

2. H. Barakrishnan, V. N. Padmanabban, S. Seshan, R. H. Katz, A comparison of mechanisms
for improving TCP performance over wireless links,Proc. ACM SIGCOMM, 1996.

3. H. Balakrishnan, S. Seshan, and R.H. Katz. Improving Reliable Transport and Handoff
Performance in Cellular Wireless Networks. ACM WirelessNetworks, 1(4), December 1995.

4. A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. In Proc. 15th
International Conf. on Distributed Computing Systems (ICDCS), May 1995.

5. K.Fall and K. Varadhan, NS Notes and Document. February 25, 2000.

Fig.7. Throughput analysis of end-to-end and
split protocols as a function of error rate

Fig. 8. Throughput analysis of end-to-end
and split protocols as a function of queue size

