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Abstract. Increasing popularity of wireless services has triggered the need for 
efficient wireless transport mechanisms. TCP, being the reliable transport level 
protocol widely used in wired network world, was not designed with 
heterogeneity in mind. The problem with the adaptation of TCP to the evolving 
wireless settings is because of the assumption that packet loss and unusual 
delays are mainly caused by congestion. TCP originally assumes that packet 
loss is very small. On the other hand, wireless links often suffer from high bit 
error rates and broken connectivity due to handoffs. A range of schemes, 
namely end-to-end, split-connection and link-layer protocols, has been 
proposed to improve the performance of transport mechanisms, in particular 
TCP, on wireless settings. In this study, we examine these mechanisms for 
wireless transport, and discuss our comparative simulation results of end-to-end 
TCP versions (Tahoe, Reno, NewReno and SACK) in various network settings 
including wireless LANs and wired-cum-wireless scenarios. 
Keywords. TCP, wireless transport protocols, end-to-end protocols, split-
connection protocols, wired-cum-wireless. 

1. Introduction 

With the growth and increasing popularity of wireless services, need for efficient 
wireless connections to the existing network infrastructures will be become crucial in 
future internetworks. TCP, being the reliable transport level protocol widely used in 
wired network world, was not designed with heterogeneity in mind. As an example, 
when a data packet is lost, in a wired network it is relatively safe to assume that this is 
most likely due to congestion, that is, too many packets are contending for network 
resources. However, when a wireless link or sub-network is involved it could as well 
be because of bad reception at the location of the user. 

It is not unusual today, and will certainly become increasingly more common in 
forthcoming years, that a given TCP connection would pass through networks with 
varying latency and bandwidth characteristics. For example, it may pass through a 
network with high latency/low bandwidth (e.g. a wireless WAN) and then through a 
low latency/high bandwidth (wired) network. The problem with the adaptation of 
TCP to the evolving wireless settings is because of the assumption that packet loss 
and unusual delays are mainly caused by congestion. TCP is thus tuned to adapt to 
such congestion losses by slowing down the amount of data it transmits. It shrinks its 
transmission window and backs off its retransmission timer, thus reducing the load 
and congestion on the network. However, in wireless networks, packet loss is often 



caused due to other factors besides congestion. Wireless channels often suffer from 
high bit error rates and broken connectivity due to handoffs. Moreover, the Bit Error 
Rate (BER) may vary continuously during a session. Unfortunately, TCP assumes that 
these losses are due to congestion and invokes its congestion control algorithms. 
Consequently, effects of packet losses in wireless links on TCP performance and 
enhancements to the classical TCP versions are significant research topics to study. 
Based on the studies in this area, a question to be answered would be “Would TCP, in 
particular, be the transport layer of preference for a wired-cum-wireless world?” 

A range of schemes has been proposed to improve the performance of transport 
mechanisms, in particular TCP, on wireless settings. They can be broadly categorized 
into three groups: end-to-end protocols, split-connection protocols and link-layer 
protocols. These approaches are revisited in the next section. In this study, we 
examine mechanisms for wireless transport, and conduct simulations and analysis of 
end-to-end TCP versions (Tahoe, Reno, NewReno and SACK) for various network 
settings including wireless LANs and wired-cum-wireless scenarios. Tahoe is an old 
TCP protocol that is rarely used currently. It implements slow start algorithm and has 
no fast recovery algorithm. In TCP Reno, the fast retransmit operation has been 
modified to include fast recovery. It prevents the communication path from going 
empty after fast retransmit, thereby avoiding the need to slow start to refill it after a 
single packet loss. Reno significantly improves the behavior of Tahoe when a single 
packet is dropped from a window of data, but can suffer from performance problems 
when multiple packets are dropped from a window of data. The NewReno TCP 
includes a small change to Reno algorithm at the sender that eliminates Reno’s wait 
for a retransmit timer when multiple packets are lost from a window. NewReno can 
recover without a retransmission timeout. The TCP SACK uses the TCP Extensions 
for high performance. The congestion control algorithms are a conservative extension 
of Reno’s congestion control. SACK differs from Reno when multiple packets 
dropped from a window of data. During fast recovery, SACK maintains a variable 
called pipe that represents the estimated number of packets outstanding in the path. 
The sender only sends new or retransmitted data when the estimated number of 
packets in the path is less than the congestion window [1].  

The outline of the paper is as follows. In Section 2, we review mechanisms for 
wireless transport, namely end-to-end protocols, split-connection protocols and link-
layer protocols. Section 3 gives details of our simulation study and analysis results on 
various network settings. Section 3.1 discusses comparisons of TCP performances 
over wired and wireless LAN scenarios. Section 3.2 and 3.3 discuss results for end-to-
end protocols and split-connection protocols in wired-cum-wireless scenarios 
respectively. Finally, our conclusions and future work are stated in Section 4. 

2. Review of Mechanisms for Wireless Transport 

In contrast to wired LANs, a wireless LAN exhibits typical characteristics, such as 
low and highly variable throughput, high and highly variable latency, bursty and 
random packet losses unrelated to congestion, irregular blackouts, and asymmetric 
uplink and downlink channels. Under such conditions, when packets are lost due to 
errors other than congestion, this leads to unnecessary reduction in end-to-end 



throughput and hence degraded performance. In order to improve the transport 
protocol performance, in particular TCP, in wireless settings, two methods are 
common in systems experiencing packet loss: 

 Hiding any non-congestion-related losses from the TCP sender which therefore 
requires no changes to existing sender implementations. 

 Attempt to make the sender aware of existence of the wireless hops and realize 
that some packets losses are not due to congestion 

For implementing these methods, several schemes are proposed which can be 
examined in three broad categories, namely, end-to-end protocols where sender is 
aware of the wireless link, link layer protocols that provide local reliability, and split-
connection scheme where the connection is partitioned into two, wired and wireless, 
at the base station [2]. Next, we review these approaches.  

2.1 End-to-end protocols 

End-to-end protocols, in which the sender is aware of the wireless link, retain a single 
TCP connection from sender to receiver and they handle losses through the use of 
selective acknowledgements (SACKs). This allows the sender to recover from losses 
within a window without resorting to timeout. This scheme performs well with TCP 
SACK but also applicable for Tahoe and Reno protocols.  

The common TCP implementation currently employed on the Internet is Reno 
TCP. Reno TCP algorithm uses a combination of slow-start, congestion avoidance, 
fast retransmit and fast recovery methods. It utilizes cumulative acknowledgments for 
providing reliable delivery. NewReno TCP is an extended version of Reno TCP 
which is proposed for improving performance after multiple packet losses. SACK 
protocols add selective acknowledgments allowing the sender to handle multiple 
losses within a window of outstanding data more efficiently. Another approach 
referred to as explicit loss notification (ELN) is used to prevent unnecessary throttles 
applied to congestion window. 

2.2 Data Link Layer Protocols 

Proposals in this category are based on the following argument: Since the problem of 
high link error rates in a wireless environment lies at the physical layer, the data link 
layer (LL) has more control over it than any other layer and can sense a problem 
faster. Hence, the problem can be solved at the LL that aims to offer a good 
communication channel to the layers above, in particular to TCP. This does not 
require any change on current TCP implementations. The way to do this is to ensure 
reliable delivery of packets at all times, for example using an Automatic Repeat 
reQuest (ARQ) scheme. However, studies have shown that this could lead to 
degraded performance. This is because TCP also attempts to ensure reliable 
transmission, thus leading to a lot of duplicate effort. If such a solution is to be 
accepted, it has to be tightly coupled with TCP.  

The most prominent proposal in this category is the SNOOP protocol [3]. SNOOP 
lies in an intermediate position between the end-to-end and split-connection 
proposals, trying to utilize the ability of a LL protocol to respond fast, and at the same 
time using the available information to keep TCP “happy” with the existing network 



connection. For example, SNOOP would favor local LL retransmissions instead of 
TCP retransmissions. This is achievable because a SNOOP agent would be aware of 
duplicate acknowledgments traveling from the receiver to the sender and suppress 
them, locally re-transmitting the potentially lost segment instead. Without SNOOP, 
the receipt of a certain number of duplicate acknowledgments would have caused a 
TCP segment retransmission. 

2.3 Split-connection protocols 

The basic idea behind the proposals in this category, such as Indirect TCP (I-TCP) 
[4], is that since there exist two completely different classes of sub-networks, namely 
wired and wireless, each TCP connection could be split into two connections at the 
point where the two sub-networks meet. As an example, suppose a mobile user 
browses a conventional web site using his laptop. The TCP connection will be split 
into two: one between the mobile host and the base station and one between the base 
station and the web server. The advantage is that TCP implementation in the sender 
does not need to be modified to deal with the enhanced functionality required for the 
wireless hop. The best transport protocol for each type of network can be utilized. 
This is very similar to using a HTTP proxy server. Splitting the TCP connection is 
essentially the technique used under the Wireless Application Protocol (WAP) 
architecture. The most significant disadvantage of splitting TCP connections is the 
loss of end-to-end semantics of TCP. In addition, the performance may also be 
degraded by the fact that it could end up splitting a particular connection several 
times, if different combinations of sub-networks are involved. Handoffs are also not 
handled as efficiently, and crashes in the base station result in TCP connection 
termination. 

3. Simulation Results 

The underlying platform for our simulation model is ns-2 network simulator [5]. 
Wireless model in ns-2 supports the effectiveness of mobile nodes by different 
routing mechanisms, routing protocols, network components, movement/traffic 
scenario generation and transmission protocols. Among the ad-hoc routing protocols 
currently available for mobile networking in ns-2, we chose DSR (dynamic source 
routing) as the routing agent. The DSR agent checks every data packet for source-
route information. It forwards the packet as per the routing information. In case it 
does not find routing information in the packet, it provides the source route if route is 
known, or caches the packet and sends out route queries if route to destination is not 
known. Routing queries, always triggered by a data packet with no route to its 
destination, are initially broadcast to all neighbors. Route replies are sent back either 
by intermediate nodes or the destination node, to the source, if it can find routing info 
for the destination in the route query. Simulation parameters common to all set of runs 
are frequency of 2.4GHz, 802.11b Mac layer, 10Mbps channel, 100m distance 
between neighbor nodes in the topology, RED queue management algorithm, and 
1400 byte-packet size with sender’s rate of 200 packets per second. Versions of TCP 
protocols simulated are Tahoe, Reno, NewReno and SACK. 



3.1 Comparison of TCP performances over wired and wireless LAN scenarios 

Scenario 1: Simple two-node connection: The first scenario consists of a pair of nodes 
communicating either in wireless or wired settings that is used to simulate wireless 
LAN without collision. This is because there is only a pair of nodes communicating, 
and no additional node exists which could affect the communication. Besides, note 
that there is an error model on the link which is described when discussing our 
simulation results. The second set is for the two nodes connected via a wired link. 

The measurement metrics are throughput and queue delay. Queue delay 
measurement is accomplished as follows: Suppose that a packet p is to be sent. There 
are two events associated: E1 and E2. E1 is scheduled to occur when the current 
sending operation has completed and E2 represents the packet arrival event. Here E1 
is associated with a Queue object of ns-2, and queue delay is the time difference 
between these two events. On the other hand, average queue delay is calculated by 
tracing a set of packets during a time period. RED is used as the queuing algorithm, 
and buffer size is varied by using ns-2 arguments while we kept the buffer sizes of 
both sender and receiver the same. 

According to the throughput results in Fig. 1 where x-axis represents the number of 
lost packets in a congestion 
window, SACK performs better in 
terms of throughput among all TCP 
versions while Tahoe has the 
lowest throughput values. The 
reason is that SACK uses a 
selective acknowledge and pipe 
scheme to ensure that when packets 
are dropped, the congestion 
window will recover fast. Thus the 
average throughput will be 
improved. Now let’s consider the 
effect of buffer size on delay and 
throughput. As shown in Fig. 2, 
when the buffer size increases, 
different TCP versions have almost 
the same performance on average 
queue delay. However, we observed that the distinction of throughput for different 
TCP versions when buffer size increases is relatively large (Fig.3). The NewReno and 
SACK performs better than Tahoe and Reno. The reason is that when buffer size is 
small, multiple packets will be dropped. Tahoe and Reno has no fast recovery 
algorithm for dealing with multiple drops. Thus the TCP congestion window drops 
rapidly, hence leading low throughput. We observed similar results in wired 
connection as well (because of the page limitation, we do not include these graphs). 
 
Scenario 2: Wireless N-node model: The second scenario is a wireless N-node model 
as illustrated in Fig. 4, which is used to simulate a wireless LAN with collisions.  The 
network size N changes from 10 to 50. When the network size increases, the 
collisions become more frequent. Fig. 5 shows throughput analysis results as the 

Fig. 1. Throughput for n-packet losses in 
simple wireless scenario 



network size increases for TCP versions. We observe that all four curves have the 
same trend of decrease when node number increases. The reason is that if node 
number increases, due to collisions taking place frequently, it becomes harder and 
harder to establish a connection link for each pair. However, SACK still presents the 
best performance among all. This is due to the fast recovery and fast retransmission 
algorithms implemented in SACK. Even when collisions occur and multiple packets 
are dropped, fast recovery algorithm could help TCP link to maintain a relatively 
good performance. 

3.2 End-to-End protocols: wired-cum-wireless scenario 

TCP has been optimized over the years for wired networks. With the proliferation of 
wireless networking, TCP has to perform well in heterogeneous infrastructures, which 
exhibit different characteristics than the wired ones such as random segment 
corruption over wireless links. Several improvement proposals attempt to lessen 
TCP’s inefficiencies in a wired-cum-wireless environment. In order to simulate the 
end-to-end schemes, we have constructed the topology shown in Fig. 6. Node 1 sends 
ftp packets to every node in the system without caring the link on the way to the 
destination. That could be either a wireless or wired link. End-to-end protocol 
maintains a single TCP connection from sender to receiver and attempts to make TCP 
aware of wireless losses so that it can deal with them. Protocols handle losses through 
the use of some form of selective acknowledgements (SACKs). As mentioned before, 
this allows the sender to recover from losses within a window without needing to 
timeout. Thus, end-to-end schemes involve modifying the TCP implementation in the 
sender to make it “wireless” aware. This may not always be feasible and is a potential 
problem for widespread implementation of end-to-end schemes. 

Note that, in this scenario, a real base station is not constructed at node 3 but a non-
mobile node is inserted to simulate the end-to-end protocol. In fact, there may be a 
base station to manage the communication among mobile nodes. End-to-end protocols 
do not worry about the communication path between the sender and the receiver even 
if there is a base station on the way. In other words, the mobile nodes in our 

Fig. 2. Average queue delay as a function 
of buffer size in simple wireless scenario 

Fig. 3. Throughput as a function of 
buffer size in simple wireless scenario 



simulation act as a base station. We construct a scenario with a base station for split-
connection protocols, and evaluate combined performance results in the next section.  

3.3 Split-Connection protocols: wired-cum-wireless scenario 

In this scenario, we replace node 3 in Fig.6 with a base station to split the connection 
into wired and wireless parts. In other words, both parts are communicating via the 
base station. The nodes connected to each other via wired links are aware of the 
wireless link on the other end. Split-connection protocols hide the unreliability of the 
wireless link from the sender by terminating the TCP connection at the base station 
and using a separate protocol from the base station to the mobile host. This has the 
advantage that the TCP implementation in the sender does not need to be modified. 

Throughput analysis results of end-to-end and split-connection cases for different 
error rates are given in Fig. 7. The rates represent the ratio of erroneous bits over the 
whole packet. For instance, 1/256 means there is 1 erroneous bit for every 256 bit in a 
packet. In all cases, SACK shows better performance in lossy wireless links. For high 
error rates, splitting schemes may 
perform better compared to end-to-
end counterparts. Reno is the 
weakest protocol in all cases. As 
shown in Fig. 8, we observe that 
the bigger the queue size of the 
link, less congestion will occur and 
performance would be better. 
When queue size increases, a large 
proportion of total error is due to 
non-congestion losses. This is 
because of the fact that as the queue size on the link increases, the probability of 
congestion would decrease. Hence the throughput does not change much. Among all 
TCP versions simulated, SACK protocols perform better.  Likewise, end-to-end case 
with TCP Reno shows degraded performance among the others.  

Fig. 4. Wireless N-node topology
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Fig. 6. Simulation topology for end-to-end 
and split connection protocols 
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4. Conclusions 

In this study, we review three main approaches for transport mechanisms of wireless 
networking, namely end-to-end, split-connection and link-layer methods together with 
our comparative simulation results. Our simulation study yields some conclusions 
about the performance of end-to-end and split-connection transport protocol 
mechanisms particularly in wireless local area network settings. We conclude that, 
among the simulated TCP versions, TCP SACK has the best performance. When the 
buffer size increases, different TCP versions show almost the same trend on average 
queue delay, but the difference is apparent on average throughput behavior. In 
particular, for wireless multi-node model, throughputs of all TCP versions are 
inversely proportional to the node number. We have also simulated wired-cum-
wireless scenarios for both end-to-end and split connection mechanisms and found out 
that TCP SACK performs best in both cases in terms of throughput versus different 
error rates and queue sizes. According to results, TCP SACK with end-to-end 
protocols performs a little better than the TCP SACK with split-connection protocols. 
An area for further study would be simulating and analyzing link-layer protocols and 
ELN schemes. There are also other solutions within this area such as WTCP (wireless 
TCP) or TCP-aware protocols that can be studied on the same network scenarios. 
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