Computer Networks 53 (2009) 2259-2274

Contents lists available at ScienceDirect

mpu*fer
Computer Networks rﬁqfw;rks

journal homepage: www.elsevier.com/locate/comnet

Stepwise fair-share buffering for gossip-based peer-to-peer
data dissemination

b Emrah Cem?, Emrah Ahi¢

2 Department of Computer Engineering, Koc University, Istanbul, Turkey
b Department of Mathematics, Koc University, Istanbul, Turkey
€Risk Software Technologies, Inc., ITU Technopark, Ayazaga, Istanbul, Turkey

Oznur Ozkasap **, Mine Caglar , Emre Iskender*®

ARTICLE INFO ABSTRACT

Article history:

Received 1 September 2008

Received in revised form 25 March 2009
Accepted 25 March 2009

Available online 21 April 2009

We consider buffer management in support of large-scale gossip-based peer-to-peer data
dissemination protocols. Coupled with an efficient buffering mechanism, system-wide buf-
fer usage can be optimized while providing reliability and scalability in such protocols. We
propose a novel approach, stepwise fair-share buffering, that provides uniform load distri-
bution and reduces the overall buffer usage where every peer has a partial view of the sys-
tem. We report and discuss the comparative performance results with existing buffering
approaches as well as random buffering which serves as a benchmark. We present separate
evaluations of bufferer selection and gossip-based data dissemination. Reliability, content
dissemination time, message delay, buffering delay, and minimum buffer requirements

keywords:
Distributed systems
Performance of systems

Buffering are considered as the key metrics investigated through simulations. The performance of
Gossiping our approach in the case of multiple senders, link failures with multiple bufferers, and sca-
Epidemic lability to larger networks are investigated. Several power-law and hierarchical overlay

Peer-to-peer

Data dissemination
Reliability
Scalability

topologies are considered. Analytical bounds for reliability of dissemination are also
provided.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Buffer management is a significant component that
supports reliability in large-scale peer-to-peer (P2P) data
dissemination protocols. A key feature of such large-scale
protocols is the provision of all-or-none (that is, reliable)
data delivery to all peers that need the data. In order to
deal with problems such as failure of the sender and possi-
ble request implosion on the sender, other peers in the sys-
tem buffer the data that they receive. Buffering refers to the
approach of determining which data and how each peer
keeps in its memory. It is used to offer data retransmis-
sions when needed for loss recovery. However, a protocol

* Corresponding author. Tel.: +90 212 3381584; fax: +90 212 3381548.
E-mail addresses: oozkasap@ku.edu.tr (0. Ozkasap), mcaglar@ku.
edu.tr (M. Caglar).

1389-1286/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.03.021

having all peers buffer messages until the message has
been delivered to all (that is, the message becomes stable)
would not be scalable, since the buffering load on each
peer grows with the system size. One reason is that the
time to accomplish and detect message stability increases
as the system size scales up [1]. Thus, an efficient mecha-
nism for buffering is crucial to maintain both reliability
and scalability of data dissemination protocols. Another
benefit of efficient buffer management and having differ-
ent bufferers for data messages is to balance the recovery
overhead among peers. The available approaches for buffer
management concentrate on several aspects of the prob-
lem such as flow control [2,3], reducing the memory usage
[1,4,5], providing message stability [6,7], and the replace-
ment of buffer items [8,9].

In this study, we couple the buffer management prob-
lem with a P2P gossip-based (or epidemic) data dissemina-
tion method. For large-scale P2P services, bio-inspired
epidemic protocols have considerable benefits as they are

mailto:oozkasap@ku.edu.tr
mailto:mcaglar@ku. edu.tr
mailto:mcaglar@ku. edu.tr
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

2260 0. Ozkasap et al./ Computer Networks 53 (2009) 2259-2274

robust against network failures, scalable and provide
probabilistic reliability guarantees. Several distributed ser-
vices such as failure detection, data aggregation, resource
discovery and monitoring [10], and database replication
[11] utilize epidemic algorithms. A major aim of our ap-
proach is to be able to choose bufferers uniformly through-
out the system so that the load of buffering will be well
balanced among participating peers and the efficiency of
content dissemination will be improved as a result.

We propose a robust and distributed buffering scheme
named stepwise fair-share buffering and analyze its behav-
ior by extending the preliminary results reported in [13].
Our approach needs only local information at each peer
(that is, one-hop neighboring peers on the overlay). It is
called stepwise, since it uses this local knowledge to search
for and then determine bufferer(s) of a data message in a
step-by-step (or, hop-by-hop) manner. Our buffering ap-
proach is referred as fair-share, since it is fair among the
peers in terms of distributing the buffering load in a bal-
anced way. This fairness is accomplished by determining
bufferers uniformly throughout the system independent
of the overlay topology.

Our simulation results show that stepwise fair-share
buffering provides a uniform load distribution. It reduces
the memory usage since only a small subset of the peers
is chosen as bufferers for each message. Furthermore, step-
wise fair-share buffering is applicable to large-scale sce-
narios, provides reliable delivery and is adaptable to
dynamic join and leaves in the system. We show that it
is scalable, simple and applicable to any kind of underlying
network topology where each peer has only a partial view
of the system. The performance of stepwise fair-share buf-
fering is investigated also in the presence of link failures in
which case multiple bufferers are crucial for reliability. The
distribution of the bufferers among different domains is
examined.

In our scheme, the buffer size can be adjusted to
achieve message stability with a high probability. We de-
rive an analytical model for computing the reliability of
dissemination as a function of buffer sizes as well as
the number of bufferers. These results are based on a
Markov chain analysis and are evaluated numerically.
Comparison with the simulation shows that the analytical
approach yields a tight lower bound for higher reliability
values.

The paper is organized as follows. Section 2 reviews the
related work in comparison to our approach. In Section 3,
we describe stepwise fair-share buffering approach in de-
tail. Section 4 explains the simulation settings and other
buffering approaches used for comparison. Section 5 is de-
voted to the analysis of the buffering approach only. Sec-
tion 6 describes the analysis of data dissemination
integrated with various buffering approaches. In Section
7, analytical evaluation of our approach is given. Finally,
the concluding remarks are given in Section 8.

2. Related work

The existing approaches for buffer management are de-
signed for various aspects of the problem, namely, flow

control, optimization of the memory usage, providing mes-
sage stability and the replacement of buffer items. In this
section, we review the related work and compare with
our approach.

2.1. Network flow control

Flow control is an adaptive mechanism that deals with
varying resources such as CPU and bandwidth in the end
hosts. In the NAK based retransmission control scheme gi-
ven in [2], the sender reduces its transmission rate when-
ever it receives too many NAKs from the receivers. This
mechanism helps to minimize the buffer overflows at the
receivers.

A different idea explored in [3] requires every process
to calculate the average buffer capacity among all pro-
cesses it communicates with and transmit that informa-
tion. When the rate is too high with respect to the
average, the process reduces the rate locally. On the other
hand, a source node reduces the rate of information pro-
duction according to the process with the smallest buffer
space.

2.2. Reducing the memory usage

The pioneering study [1] focuses on reducing the mem-
ory requirement by buffering each message only over a
small set of members. During reliable multicast data dis-
semination, a member determines whether it should buf-
fer a message it receives using an approximation of the
membership information, and a hash function based on
its network address and the identifier of the message.
The hash function is devised so that the bufferers are cho-
sen uniformly among the available peers. However, when
a new peer joins the system it cannot become a bufferer,
as dynamic redefinition of the hash table is not
considered.

In [12], a probabilistic buffering algorithm is devised as
a separate stage before epidemic data dissemination. It
aims to distribute the load of buffering to the entire sys-
tem and provides a fairly uniform distribution when each
peer has a partial view of the system. However, the unifor-
mity is observed only when the number of generated mes-
sages approaches the total long-term buffer capacity of
the system. Stepwise fair-share buffering as well as the
hash-based [1], and probabilistic approach [12] are all de-
signed to reduce the memory usage since only a small
subset of the peers is chosen as bufferers for each mes-
sage. In contrast with the hash-based approach, a new
member can become a bufferer in our buffering
mechanism.

A multicast protocol that reduces buffer requirements is
Randomized Reliable Multicast Protocol (RRMP) [4] which
uses epidemic loss recovery. In particular, RRMP offers effi-
cient loss recovery for large multicast groups. A data mes-
sage is kept in the long-term buffer for a fixed amount of
time. By distributing the responsibility of loss recovery
among all group members, it aims to improve the effi-
ciency and robustness of tree-based protocols.

Structured P2P networks such as Chord [24], CAN [25]
and Tapestry [26] offer a management of participating

0. Ozkasap et al. / Computer Networks 53 (2009) 2259-2274 2261

peers and published data items. Chord is based on a ring, in
Pastry and Tapestry hypercube is used, Tornado uses a tree
structure. These systems name the participating peers and
available data items with a distributed hash function.
Chord [24] assigns keys to nodes with consistent hashing.
With a high probability this function balances the load
imposed on peers: namely all nodes receive approximately
the same amount of keys. Chord peers store a small
amount of data and require partial membership
information. A node resolves the hash function by commu-
nicating with other nodes because the hash function is
distributed.

Another buffer management scheme which
reduces memory usage is [5] where the members are
organized into regions. In every region, the nodes with
the most reliable links are responsible for buffering the
data.

2.3. Achieving stability

A message is said to be stable when it is delivered to all
members of the group. There are buffer management ap-
proaches which explicitly take stability into account. In
[6], all members periodically exchange messages to inform
each other about the messages they have received. When a
member becomes aware of a message becoming stable, it
safely discards the message. Thus, the system-wide buffer
space is reduced. A drawback is the high traffic caused by
frequent exchange of history messages.

Search Party [7] is another protocol in which contribu-
tion of a timer helps to discard packets from the buffers.
All the members discard packets after a fixed amount of
time to achieve stability.

A heuristic buffer management method based on both
ACKs and NAKs is proposed in [5] to provide scalability
and reliability. In every group of receivers, there are one
or more members with higher error rates than the other
members. These nodes are the ones with the least reliable
and slowest links. The idea is that if a message is correctly
received by these nodes, it has been probably received by
all other nodes. In that case, the repair nodes that buffer
the message can discard it.

Our protocol adjusts several parameters such as the
number of bufferers and the buffer size to achieve stability
with a high probability.

2.4. Replacement policy for buffer items

Network Friendly Epidemic Multicast [8] combines a
standard epidemic protocol with a novel buffering tech-
nique that combines different selection techniques for dis-
carding messages in case of a buffer overflow. The used
selection strategies are random purging, age-based purging
and semantic purging. Random purging refers to discard-
ing an item from the buffer randomly. Age-based purging
is simply discarding the oldest message and semantic
purging means that a message which has been recognized
as obsolete is discarded. Obsolescence relation is deter-
mined by the application.

Least recently used (LRU) buffer replacement scheme is
considered in [9] for epidemic information dissemination.

In LRU scheme, a new coming message is placed on the
first position and the message at the rear is discarded as
in our case. However, when a request arrives for a message
in the buffer, that message is placed into the first place by
moving the items in front one position down. Hence, the
least used item stays at the rear of the stack possibly
next to be discarded. In our approach, a first-in-first-out
policy equivalent to age-based purging has been imple-
mented in the case of a buffer overflow. We have run
simulations also with LRU scheme and found no significant
difference.

3. Stepwise fair-share buffering

In this section, we describe the system model, and ex-
plain details of stepwise fair-share buffering. We also de-
scribe the gossip-based data dissemination algorithm.

3.1. System model

We consider a P2P application consisting of a set of
peers P = {p;,p,,...,py} Where N is the system size. Each
peer p; € P has a unique identifier. Peers are connected
through an overlay reflecting the properties of the underly-
ing network topology. Each p; has only a partial view of the
system (its neighboring peers). This is a quite plausible
assumption considering a large-scale distributed applica-
tion scenario.

Each p; has a long-term buffer. When a peer becomes a
bufferer for a particular data message, it keeps the mes-
sage in its long-term buffer. The long-term buffer is useful
for achieving reliability in data dissemination. We use the
term bufferer in the sense of long-term bufferer of a mes-
sage. A peer may also have a short-term buffer which is
useful during the data dissemination stage. Note that
short-term buffers are not required for our approach to
work. Once a data message is received by a peer during
dissemination, it may be kept in the short-term buffer un-
til it is replaced by a new message at a later time. For
both short and long-term buffers, FIFO replacement policy
is used.

3.2. Buffering algorithms

We describe stepwise fair-share buffering approach in
detail through its algorithms. Abbreviations used in the
algorithms are listed in Table 1.

The bufferer determination phase in stepwise fair-share
buffering is initiated by a data message source (MS) to-
wards its neighbors with a buffering request message

Table 1

Abbreviations used in algorithms.

d Data message

MS Message source

NH Neighbor history

TTL Time-to-live

BR Buffering request message

LB Long-term buffer

LB-count Count of ds buffered in a peer’s LB so far

2262 0. Ozkasap et al./ Computer Networks 53 (2009) 2259-2274

(BR). Every peer maintains the number of data messages
that its neighbors have ever buffered in their long-term
buffers, which is collectively called neighbor history (NH)
information. This local information is updated through
our buffering mechanism and used for determining the
bufferers of a data message.

Procedures for data generation at MS, NH information
update and forwarding BR are given in Algorithm 1.
When a data message is generated at a MS, the MS first
updates its NH. Updating NH information at a peer is
done as follows. The peer sends NH request message to
its neighboring peers. Then, it collects responses (LB-
counts) from its neighbors, and updates its NH informa-
tion. A peer receiving an NH request sends requester
the count of data messages it has buffered in its long-
term buffer (LB) so far which we call LB-count. The MS,
which updates its NH, then sets the TTL value of BR for
the data, and forwards the BR. The TTL value attached
to a BR indicates the maximum number of times (that
is, steps) that the BR can be forwarded among peers. For-
warding BR is done to the neighboring peer with the
minimum LB-count.

Handling a BR and accepting it are described in Algo-
rithm 2. When a peer receives a BR for a data message
for which it is not the MS, the peer first decreases the
BR’s TTL value. If the TTL becomes zero, then the peer ac-
cepts the buffering request. Accepting a BR is done as fol-
lows. The peer first inspects its LB, and if the LB is full
then it removes the oldest data in LB according to FIFO
policy. After that, it puts the data into its LB and incre-
ments its LB-count. Then, the peer informs the MS of
data message that it has accepted the BR for the data
and become a bufferer for it. In the other case (when
the TTL value is greater than zero), the peer first updates
its NH information. Then, it detects the peer among its
neighbors (including itself) that has the minimum
LB-count. If this is the peer itself, it accepts the buffering
request, otherwise it forwards the BR (that is, sends it to
the neighboring peer with the minimum LB-count). In
the case of a tie among the minimum LB-counts, the
peer chooses one of the neighbors randomly. Thus, the
BR is propagated in steps from a peer to another neigh-
boring peer until a bufferer for the data message is
determined.

Algorithm 1. Data generation, neighbor history update
and forwarding buffering request

Generation of data msg d at MS:

- Update NH()

- set TTL of BR for d

- Forward BR()

Update NH():

- send NH request to my neighbors

- get LB-counts from neighbors

- set local NH information of neighbors

On receipt of NH request from peer q:

- send peer g my LB-count

Forward BR():

- send BR to neighboring peer with the minimum
LB-count

Algorithm 2. Handling a buffering request message, and
accepting a buffering request

On receipt of BR for data msg d at a peer:
if | am not MS of d
TTL=TTL-1
if TTL == 0 then
Accept BR()

else
Update NH()
if my LB-count is the minimum among my neigh-
bors’ LB-counts then
Accept BR()

else
Forward BR()

end if
end if

else
TTL=TTL+1
Forward BR()

end if

Accept BR():
if my LB is full then
remove oldest data from LB

end if

put d into my LB
LB-count=LB-count+1

send my peer ID and d.ID to MS
(I am the bufferer of d)

A major benefit of our approach is that it works with lo-
cal information at each peer. There are four types of control
messages, namely BR, Accept BR, NH request and NH re-
sponse as described above. The number of hops that a BR
can propagate is limited by its TTL value. After a bufferer
is determined for a data message, identifiers of bufferer
and data are sent back to MS in an Accept BR message.
Note that, a BR can be piggybacked on a data message as
well. Once a bufferer is found, the ID of the bufferer is then
attached to the data during epidemic dissemination. Con-
sidering that NH request/response messages are ex-
changed with neighbors of a peer at most once per
buffering request, the signaling cost associated with them
is negligible. In fact, our performance analysis results show
the low cost associated with finding bufferers, and also the
effect of TTL parameter.

3.3. Improvements

We incorporate improvements to handle fast buffering
request rates and also to deal with link/connection and
peer failures. We consider a fail-stop model for peers and
receive-omissions for message losses.

When a BR is received by a peer, it sends NH request
messages to its neighbors (that is, its partial view
members). Then, a certain time passes until all responses

0. Ozkasap et al. / Computer Networks 53 (2009) 2259-2274 2263

Fig. 1. Handling fast request rate: (a) five BRs accumulate at peer 1 and
(b) load is distributed evenly to neighbors.

are received by the peer. Therefore, a key point in the
mechanism is to make adjustments when the rate of
receiving a BR is faster than the rate of updating the NH.
In this case, before the peer receives the responses from
its neighbors, multiple buffering requests accumulate in
the buffering request list of the peer. Then, the peer locally
updates its NH after processing each BR in the list. This
mechanism, for handling fast request rate, balances the load
in the case of faster reception of buffering requests.

The improvement for handling fast request rate is illus-
trated with a simple scenario in Fig. 1. In the network
topology given in the figure, peer 1 has three neighbors.
Peers 2, 3 and 4’s LB-counts are 2, 3 and 5, respectively,
as indicated in Fig. 1a. Assume that until peer 1 receives
the NH responses from its neighbors, five messages accu-
mulate in its buffering request list. Then, it sends message
1 to peer 2 because it has the minimum LB-count and
increments peer 2's LB-count. As a result, LB-counts of
peers 2 and 3 are equal to 3. After that, peer 1 selects ran-
domly peer 3 and sends message 2 to it. Then, it sends
message 3 to peer 2, message 4 to peer 3 and message 5
to peer 2 as shown in Fig. 1b. Consequently, every peer re-
ceives five BRs and the load is distributed evenly.

In the NH update process, every peer waits for re-
sponses from its neighbors. However, if there is a link or
neighboring peer failure, the peer could wait indefinitely
for a response. In order not to lead such a situation, a time-
out parameter is used. The timeout can be set to a value
greater than the maximum round-trip time to the
neighbors.

3.4. Epidemic dissemination

A popular distribution model based on the theory of
epidemics is the anti-entropy [19]. In the terminology of
epidemiology, a peer holding information or an update it
is willing to share is called infectious. A peer is called sus-
ceptible if it has not yet received an update. In the anti-en-
tropy process, non-faulty peers are always either
susceptible or infectious. For spreading data, our system
uses a pull-based approach in which spreading is triggered
by susceptible peers (by pulling data) when they are picked
as gossip destinations by infectious peers.

Actions performed at each peer for the pull anti-entropy
data dissemination is given in Algorithm 3. At each gossip
round, every peer picks randomly fan-out number of peers
from its partial view (or, neighbors) and sends its digest

(containing the identifiers of recent data it has received
and identifiers of their bufferers). In fact, each peer in the
system performs a state exchange periodically and concur-
rently with the others.

On receiving a digest and comparing it with its local
data, the receiving peer determines the data messages that
it lacks. Then, it can request them from the bufferers indi-
cated in the digest for retransmission, if the sending peer
has dropped the message from its short-term buffer. If a
bufferer has crashed or cannot retransmit the message,
the request can be forwarded to another bufferer. We de-
fine three events that can occur in a round at a peer,
namely digest receipt, request receipt and retransmission
receipt. Corresponding actions for these events are given
in the algorithm.

Algorithm 3. Pull Anti-entropy Gossiping

Algorithm executed periodically once per gossip round at
each peer p:

for fan-out number of randomly selected peers q do
Send Digest (containing list of p’s recent data IDs and
data bufferers’ IDs) to q

end for

Event(Digest Receipt) from peer r:

Compare Digest of r with p’s local data

if r has a data d that p is missing then
Request d from r (or from a bufferer of d)

end if

Event(Request Receipt)
for data d from peer q:
Retransmit d to q (if d is in local buffer)

Event(Retransmission Receipt) for data d:
Update p’s local data with d

4. Simulation settings

We evaluate the performance of stepwise fair-share
buffering through simulations. The simulation software is
implemented in Java where a discrete time event based
model is used. We generate two types of topologies,
namely power-law and hierarchical, with equal mean de-
gree and mean link delay. In this section, we describe the
topology settings and give an overview of the buffering ap-
proaches that will be compared with the stepwise fair-
share buffering.

4.1. Topology properties

Power-law and hierarchical network topologies are
considered in this study as models of the Internet overlays.
Power-law graphs have attracted great interest on the ba-
sis that the Internet AS level graph exhibits a power-law
degree distribution [14]. On the other hand, the hierarchi-
cal structure of the topology of the Internet is reproduced
by the transit-stub model.

A power-law graph is one where the number of nodes
with degree k is proportional to k* for some g > 1. We

2264 0. Ozkasap et al./Computer Networks 53 (2009) 2259-2274

generate the power-law topologies using the BRITE topol-
ogy generator together with the coordinates of the nodes
on the plane [15,16]. We assign link delays using the
Euclidian distances as in [17]. The topology is generated
according to the Barabasi-Albert model with incremental
growth which is suggested as one possible cause for the
emergence of a power-law degree distribution in the
Internet.

We use the gt-itm tool [18] for generating transit-stub
topologies and the corresponding link delays. The transit-
stub model is a hierarchical approach which views the
Internet as a set of interconnected routing domains. Each
domain can be classified as either a stub or transit domain.
Stub domains correspond to interconnected local area net-
works and the transit domains model wide or metropolitan
area networks. A transit domain is composed of backbone
nodes which are well connected to each other with high
bandwidth links. Every transit node is connected to one
or more stub domains.

We set the mean degree and mean link delay the same
in both topologies. However, their degree and delay distri-
butions are quite different. The degree distribution is
approximately normal for the hierarchical topology,
whereas it is power-law for the power-law topology. For
a realization with 1000 nodes, about 9000 edges and aver-
age link delay of 2.5 ms, the delay distributions are illus-
trated in Figs. 2 and 3. The delay distributions inherit the
characteristics of the respective degree distributions.

4.2. Other buffering approaches

There are two comparable approaches to stepwise fair-
share buffering developed in connection with epidemic
data dissemination. These are hash-based [1] and probabi-
listic approaches [12]. As a third and baseline approach, we
also consider random buffering [20] which assumes full
membership information on the source side. In this case,
the bufferer selection occurs at once as well as it can be ex-
pected to be uniform due to completely random selection
of the bufferers.

2500

2000]

1500 |

1000

Number of links

500

0 .
0 10 20 30 40 50 60 70 80 90
Delay of a link

Fig. 2. The distribution of link delays (in x.1 ms) for hierarchical
topology.

8000

6000

4000

Number of links

2000

0 [1 .
0 50 100 150 200 250 300 350
Delay of a link

Fig. 3. The distribution of link delays (in x.1 ms) for power-law topology.

The hash-based approach proposed in [1] focuses on
reducing the buffer requirement by buffering each mes-
sage only over a small set of members. All members are as-
sumed to have an approximation of full membership in the
form of a set of member addresses. Upon receiving a data
message through epidemic dissemination, a member can
determine whether it should buffer the data. For this pur-
pose, it uses its approximation of the entire membership,
and a hash function based on its network address and
the identifier of the data message. A commonly used iden-
tifier for a data message is [source address,sequence num-
ber]. The hash function is devised so that the bufferers
are chosen uniformly among the members. Note that a
member can become a bufferer of a data message only
when it receives the data message through gossiping even-
tually. Thus, there is no immediate bufferer selection phase
separate from the data dissemination in contrast with
stepwise fair-share buffering.

A drawback of the hash-based approach is that it re-
quires members to have an approximation of the entire
membership (in the form of a set of member addresses)
which is not practical to achieve in large-scale systems.
Furthermore, since updates to the full membership infor-
mation are not considered in the case of dynamic peer
arrivals, new peers cannot become a bufferer. This may
cause uneven buffering of messages over the membership,
and hence unfairness in balancing the load of buffering
over members. In terms of signaling cost of the approach,
message exchanges among members are needed to form
an approximation of the full membership. This information
is required to determine bufferers of data messages. Fur-
thermore, all members should agree on the hash function,
and then use it locally to determine for any data message
which members are the bufferers. There are no other con-
trol messages specifically needed to determine bufferers.

Probabilistic buffering [12] provides a fairly uniform
distribution with partial views of peers. For determining
the bufferers of a data message, the source sends buffering
request messages to randomly selected b peers in its par-
tial view. Parameter b is the number of bufferers per mes-
sage. For a data message, if b > 1 then its bufferers are
determined in parallel. The buffer fullness ratio of a peer

0. Ozkasap et al. / Computer Networks 53 (2009) 2259-2274 2265

(BF) is the ratio of the number of messages that are stored
in the peer’s buffer to its long-term buffer capacity. When a
peer receives a buffering request message for a particular
piece of data, it accepts the request with probability
(1 — BF). Otherwise, it forwards the message to a randomly
selected peer from its partial view with a probability equal
to BF. If a member receives a buffering request, the mem-
ber writes its ID to the buffering request and sends it to a
neighbor. The IDs of the last n forwarders are included in
the buffering request message. Via this information, a buf-
ferer request is not resent to the last n forwarders and the
TTL mechanism is used more efficiently.

5. Buffering results

In this section, the simulation results for our buffering
approach are evaluated separately to demonstrate its effi-
ciency. In particular, uniformity of buffering load, its scala-
bility, the effect of the TTL parameter and multiple-sender
scenarios are investigated.

5.1. Uniformity of buffering load

We evaluate the performance of stepwise fair-share
buffering in terms of distributing the buffering load. In
the first group of experiments, 1000-node power-law and
hierarchical topologies are used. Long-term buffer capacity
of the nodes is 10 messages, and 50,000 messages are dis-
seminated from a single source with rate of 20 msgs/s. The
total messages disseminated in the system is greater than
the total long-term buffer capacity of all nodes. The TTL va-
lue is set to 20. Each message is buffered only by a single
bufferer. In Fig. 4, the buffering load of the nodes is given
for various dissemination percentages (20-100%) in
power-law and hierarchical topologies. It is observed that
stepwise fair-share buffering provides uniformity over
time which would be helpful for reliable data dissemina-
tion. In particular, it achieves a more uniform distribution
with power-law topology in comparison to hierarchical, for
all dissemination percentages. Likewise, the comparison
for reliable data dissemination to the entire system for
both topologies is given in Fig. 5. In comparison to random

70
60}
N T P VI
(0]
o 40 i =H480%
= . ! e) . o
g 30 e . = e 60%
S 3 & Lot o . . L
20 s i TET40%
10 i e e e
% 200 400 600 800 _ 1000

Node ID

Fig. 4. Uniformity of the fair-share scheme in time for power-law (black
dots) and hierarchical (gray dots) topologies.

100 T
Power law
Hierarchical
g 80 1
£
=]
o) 60.
3 e i o o
IS
‘s 40t
o)
£
S 201
zZ
0
0 200 400 600 800 1000

Node ID

Fig. 5. Comparison of buffering load distribution: hierarchical and
power-law topologies.

140

120}

1004

807

60}

Fair share
Random full

401

Number of msgs bufferred

20t

0 200 400 600 800 1000
Node ID

Fig. 6. Comparison of buffering load distribution in large scale: fair-share
and random-full approaches.

buffering, the uniformity of the distribution of buffering
load is significantly better in the fair-share scheme as given
in Fig. 6 for a power-law 1000-node network.

5.2. Scalability of buffering load

In this part, we investigate the performance of stepwise
fair-share buffering as the system size scales up. We com-
pare the buffering load for both hierarchical and power-
law topologies. The size of the network is increased from
1000 to 10,000 nodes. A total of 100,000 messages are gen-
erated from a single source with rate of 20 msgs/s. The
average link delay is 2.5 ms. The short-term buffer size is
set to O, the long-term buffer size is taken to be 10, the
TTL parameter is 20 and the fan-out is 5.

The number of messages buffered by each node for the
power-law topology is given in Fig. 7 up to system size
6000 for the sake of visual clarity. The analogous result
for hierarchical topology is similar and not shown here.
As the system size increases, each peer buffers fewer
messages. Clearly, this is due to the increase in the total

2266 0. Ozkasap et al./ Computer Networks 53 (2009) 2259-2274

130 T .
120 t : Fair share

s 1000 nodes Random full

2

o 80f

(2]

()]

(2]

€ 60¢ 2000 nodes

©

é 40, 4000 nodes

=}

2 oof 6000 nodes |

0
0 1000 2000 3000 4000 5000 6000
Node ID

Fig. 7. The buffering load versus peer id for various group sizes in power-
law topology.

120 T T
S — Fair-share
g 100} .,\ 0.62, 20.2 Random full 1
e \
a2 \
» 801 1\
28 \
£ \
< 60F \
© \ 034,142
8
e 40t 0.26, 10.0
>
c N 094,82]
§ 20f i 1270 07627
= T

2000 4000 6000 8000 10000
Number of nodes

Fig. 8. Mean number of messages buffered versus group size in power-
law topology. The pair of numbers denote the width of the error bars for
fair-share and random approaches, respectively.

buffering capacity of the network. The uniformity of fair-
share holds in all system sizes in both topologies as op-
posed to random buffering shown for 1000 and 2000 only.
The results for the larger sizes with random buffering are
similar and are not graphed. What is more, the stepwise
fair-share algorithm leads to a more uniform distribution
in power-law topology consistently throughout various
network sizes compared to the hierarchical topology. This
confirms the results of Fig. 5.

In Fig. 8, the mean number of messages buffered per
peer is shown up to group size 10,000 for different ap-
proaches in power-law topology. Since the mean values
are very close, the two line graphs coincide. However, the
standard deviations are different and the error bars in
the figure show two standard deviations spread of the buf-
fering load distribution among all peers. The hash-based
approach results are found to be similar to those of random
buffering, but are not shown in the figure for the sake of vi-
sual clarity. The hash-based approach does not specifically
aim at uniformity of the buffering load. Originally, it is de-

signed for several bufferers. A parameter of the algorithm
guarantees at least one bufferer for each message. For com-
parison purposes, we choose only one of those randomly in
our implementation. Thus, the results of hash-based ap-
proach turn out to be similar to those of random buffering.
The spread of the buffering load is much lower for the step-
wise fair-share algorithm. This is true also for the hierar-
chical topology in view of our simulations.

5.3. The effect of TTL

For the stepwise fair-share algorithm to achieve uni-
form buffering load, the buffering request must be for-
warded sufficiently many steps over the network. The
parameter that controls the number of steps is TTL, which
is therefore crucial in the implementation. For a relatively
large network of size 4000, we analyze its effect on the uni-
formity of the buffering load. The long-term buffer size is
set to 10, and 80,000 messages are sent from the source.

In Fig. 9, the buffering load of each node for various TTL
values are given for the power-law topology. The load be-
comes more uniform as the TTL value increases. The stan-
dard deviation of the load on the peers is plotted against
TTL values for both hierarchical and power-law topologies
in Fig. 10. The standard deviation for hierarchical topology
for TTL = 10 is not shown as it is about 100 which is much
larger than the other cases. Although the results for hierar-
chical topology are similar for the behavior of TTL, there is
a difference between the topologies for optimizing this
parameter. The uniformity of the buffering load increases
significantly for TTL value 20 for power-law topology as
the standard deviation decreases to about 1 or 2 messages
for TTL = 20, 25, 30. On the other hand, such a low value of
the standard deviation is obtained only for TTL = 30 in the
case of hierarchical topology. The reason for this is that dif-
ferent topologies have different diameters. The diameter is
effective in the efficiency of the buffering request delivery
to sufficiently far distances in the network in connection to
TTL. Also note that there is connection to the whole topol-
ogy, not just the diameter, as the standard deviation is low-
er for TTL=15 and much larger for TTL=10 in the

Power law topology

350 ‘

300
he]
o + o+ ++ ++ + o+
£ 250
=1
o
& 200 + TTL 15|
g A TTL20
5 150 x TTL 25 |1
5 TTL 30
£ 100 © TTL10]]
S
z 50 XX X X X X X X X X X x -

O L L L
0 1000 2000 3000 4000
Node Id

Fig. 9. The buffering load of each node for various TTL values.

0. Ozkasap et al. / Computer Networks 53 (2009) 2259-2274 2267

20
> —— Power law
o Hierarchical
E 15
o
o]
£
S 10}
kS|
S
(0]
e
e
s Of
e
c
g
n
0 . .
10 15 20 25 30

TTL

Fig. 10. The standard deviation of buffering load versus TTL values.

hierarchical topology. As a result, our fair-share algorithm
balances the buffering load uniformly depending on the
topology and the adjustment of the TTL parameter.

5.4. Multiple senders

In this section, we investigate the performance of the
stepwise fair-share algorithm in presence of several send-
ers. The power-law topology is considered with 4000
peers. The long-term buffer size is set to 15 and a total of
90,000 messages are sent from all sources. The senders
are uniformly distributed over the network. The single sen-
der case is also included for comparison.

We have seen that the buffering load is quite uniform
for a single sender. When the number of senders increases,
the variance of the buffering load is expected to increase as
well. If the buffering algorithm proceeds independently for
all sources, then the standard deviation is expected to in-
crease as the square root of the number of sources. This fol-
lows from the fact that the variance of the sum of the
buffers contributed from all sources is the sum of the vari-
ances of the buffering load from each source. Then, the var-

IS Pite
%5 3.5¢ i
g 3
c
Qo 2.5¢
ks
3 2t -
© e
g 1.5¢ 2
° —e— simulation
s 1 - y=06yz
n
0.5t
0 10 20 30 40 50

Number of sources

Fig. 11. The standard deviation of number of messages buffered with
multiple sources.

iance would grow linearly with the number of sources and
the standard deviation as the square root of it.

The stepwise fair-share buffering algorithm is imple-
mented in its original form also with multiple senders.
The results are shown in Fig. 11 where the number of send-
ers is increased from 1 to 50. For a single sender the stan-
dard deviation is about 0.6. The standard deviation would
be 0.6/n if there were n senders behaving independently
in terms of buffering. Both this curve and the standard
deviation of the buffering load in our simulations are plot-
ted on the same graph. The standard deviation with fair-
share increases slowly when compared to the independent
behavior case. The algorithm proceeds as before by moni-
toring the neighbor history information to achieve unifor-
mity regardless of the source of a received message. The
peers at the vicinity of a sender will quickly exhaust their
long-term buffers. The request is propagated further in
the graph at each transmission as long as the TTL parame-
ter permits. However, the number of buffering requests at
a given time could be larger in some nodes with multiple
senders in comparison to the single source case, depending
on the topology and the TTL parameter. This clearly causes
the standard deviation to increase, but not as much as in
the independent case. The neighbor history check modu-
lates the number of messages buffered for each peer as
up and down, which keeps the covariances negative over
time and hence lowers the total variance.

6. Gossip-based dissemination results

In this section, evaluation of stepwise fair-share buffer-
ing and its comparison with other approaches are given in
terms of data dissemination metrics, scalability and link
failures. The metrics investigated are reliability, content
dissemination time, buffering delay and message delay of
the system. These metrics have shown minimal variance
through several independent replications of the simula-
tions. That is why we report only the mean values.

6.1. Reliability

Reliability is defined as the ratio of the total number of
received messages by peers to the total number of gener-
ated messages. Less than full reliability means that some
messages have been discarded from all buffers before they
are delivered to some of the peers.

The simulations are done on the hierarchical topologies
of various sizes and the other parameters are kept the
same. In these simulations, short-term buffer size per node
is zero, that is, only the long-term buffer is used as the
storage for received messages. The message generation
rate is 100 msgs/s and the gossip interval is 200 ms. Simu-
lation results show that the minimum buffer requirement
decreases as the system size scales up from 500 to 2000
peers as given in [13]. Since the number of nodes increases,
the rate of being bufferer per node decreases and the wait-
ing time of a message in the buffer increases. Thus, smaller
buffer sizes begin to be sufficient for a message to be deliv-
ered by all members if the size of the network gets larger.
The results in Fig. 12 indicate the reliability of the data

2268 0. Ozkasap et al./Computer Networks 53 (2009) 2259-2274

100 F B e .
98 '
96 B B
94| = 100
2 —o-500
5 92 -6-1000|1
E 90 :4«»2:000]
88!
86 fi
84T
82 S S
1 2 3 4 5 6 7 8 9 10 1

Long-term buffer size

Fig. 12. Reliability as a function of long-term buffer size.

dissemination as a function of the long-term buffer size for
different system sizes N from 100 to 2000. The minimum
buffer sizes for full reliability can be observed from this fig-
ure as well.

6.2. Dissemination time

Content dissemination time is the time that passes for
dissemination of the content to all peers from the start to
end including the buffering phase.

Stepwise fair-share scheme is compared with the hash-
based approach [1], probabilistic buffering [12] as well as
random buffering [20]. The dissemination times in a 1000
node hierarchical network scenario are given in Fig. 13.
All 50,000 messages are generated from a single source
and the message generation rate is 20 msgs/s so that all
messages are generated in 2500 s. The gossip interval is
set to 200 ms. In the random and hash-based buffering
methods, every peer has the full view of the system. As in-
ferred from Fig. 13, dissemination times of stepwise
fair-share and probabilistic buffering are close to that of
random buffering, even though in the first two every peer

2505 Fair share
Random full
- Hash
3 2504 —— Probabilistic
@2
(]
£ 2503 f
c
k)
S 2502 ﬁ
IS
[0
&
2 2501 HW%HW ;
2500 ¢ l
0 200 400 600 800 1000
Node ID

Fig. 13. Comparison of content dissemination times.

has only partial membership information on which a buf-
fering stage is based. In random buffering, the bufferers
are determined right away, among all members, when a
message is generated and the message is directly sent to
the bufferers. Therefore, we infer that the buffering stage
is relatively fast in stepwise fair-share and probabilistic
buffering approaches on the average. On the other hand,
the hash-based approach has a higher dissemination time.
In this approach, a peer decides to be a bufferer for a mes-
sage when it receives the message through gossiping even-
tually. The dissemination time is larger probably due to
quite delayed delivery of some messages to some of the
peers. There is no significant difference between the prob-
abilistic buffering and fair-share buffering in terms of dis-
semination time. Basically, the last message is sent out
from the source at time 2500 s, and is received by all nodes
in the next few gossip rounds for both approaches.

For topology comparison, Fig. 14 depicts the content
dissemination times for fair-share buffering in the case of
power-law and hierarchical networks. Consistent with
the distribution of buffering load reported in the previous
section, fair-share buffering achieves a more uniform dis-
tribution of dissemination times at peers with power-law
topology in comparison to hierarchical.

6.3. Message delay and buffering delay

Message delay is the duration between the generation of
the message from the data source and the delivery of it by
a receiver node. Buffering delay is the time required to find
a bufferer that indicates the signaling cost associated with
our approach.

Comparison of the average message delays on 1000-
node hierarchical topologies is given in Fig. 15. Stepwise
fair-share and probabilistic buffering approaches lead to
slightly higher average message delays per node, in com-
parison to hash-based and random buffering. This is due
to the fact that the former approaches use additional time
to determine the bufferer of each data message dissemi-
nated. However, when distributing a large content consist-
ing of thousands of messages, bufferer determination and

2506

Hierarchical
2505 - Power law

N N N
(o] a [o))
o o o
N w S

Dissemination time

N
(o]
o
=

2500

2499 : - : -
0 200 400 600 800 1000

Node ID

Fig. 14. Content dissemination times: power-law and hierarchical
topologies.

0. Ozkasap et al. / Computer Networks 53 (2009) 2259-2274 2269

1.6 —
1.4 ?5,‘%\3‘ R] j‘M“‘
> oAt S i, P
% 1.2t " ¢
© :'n_,\x;;f’w“.
g’ 1 M\}‘»u‘(; X %% % X
© I XX %
g 0.8l X %%
GE.) Rl I R ¥
% O.6-VXX wx
S 0.4} x Probabilistic
< - Hash
0.2} Fair share
—— Random full
O n n n 1
0 200 400 600 800 1000

Node ID

Fig. 15. Comparison of average message delays.

message dissemination phases take place concurrently,
and total dissemination time for the content is not affected
adversely as discussed for the results of Fig. 13. We also
conclude in the hash-based approach that the last deliv-
ered messages that cause the dissemination time to be
high in Fig. 13 must be quite rare because the mean delay
is relatively low as shown in Fig. 15 for this approach. We
have also observed that uniform buffering load distribution
of fair-share leads to a uniform long-term buffering time
distribution among nodes. On the other hand, message de-
lays and content dissemination times vary from node to
node as shown in Figs. 13 and 15 due to the partial view
of each peer during data dissemination.

We further examine the average message delay behav-
ior of stepwise fair-share buffering in the case of power-
law topology for comparison with the hierarchical case.
As shown in Fig. 16, average message delays in power-
law networks are lower and follow a more uniform distri-
bution compared to hierarchical networks.

We also investigate the signaling cost to find a bufferer
for each data message in our approach. In 1000-node net-

2 ‘
Hierarchical
Power-law
&
< 157
©
(0]
()]
©
?
s 1
1S
(0]
(o]
o k
2057
<
O L L L L
0 200 400 600 800 1000

Node ID

Fig. 16. Average message delays: power-law and hierarchical topologies.

1 ' Average message delay (mean:0.751s)
— Average buffering delay (mean:0.042s)
0.8
0.6
0.4
0.2
0 I 1 1 1
0 200 400 600 800 1000

Node ID

Fig. 17. Average buffering delay in comparison with message delay in
power-law topology.

work scenarios, 50,000 messages are generated from a sin-
gle source and the message generation rate is 20 msgs/s.
We explicitly measure the time required to find a bufferer
(buffering delay) in comparison to data message delay.
Fig. 17 shows average buffering and message delays for
all 50,000 messages disseminated to 1000 peers in a
power-law topology. We measure average message delay
over all peers as 0.751 s, and average buffering delay as
0.042 s. Based on these, percentage of buffering delay
within data message delay is 5.7% on average for all peers.
Similar results are also obtained for hierarchical networks.
These results indicate the low cost associated with finding
bufferers in stepwise fair-share approach.

6.4. Scalability of dissemination

We investigate data dissemination metrics for the buf-
fering approaches as the system size scales up. The hierar-
chical topology of size 1000 to 10,000 nodes is used to
compare with the other buffering approaches. The number
of transit nodes and the stub domains is increased with the
system size while the average number of stub nodes in

3
2.5¢

>
©
o 2f /—#\ 7
[0)
o))
® >
12}
1%}
@
S
)
o
g —— Probabilistic
4 ’
Z sl Fair share

: —— Random full

—v—Hash

0 n n
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

Fig. 18. Average message delays as a function of group size.

2270 0. Ozkasap et al./Computer Networks 53 (2009) 2259-2274

each domain is 30. In these simulations, the message gen-
eration rate is 100 msgs/s, gossip interval is 200 ms and
5,000,000 messages are disseminated to the whole
network.

Fig. 18 shows the comparison of average message
delays for stepwise fair-share buffering with the other ap-
proaches as a function of network size. Stepwise fair-share
and probabilistic buffering approaches result in higher
average message delays per node when compared to
hash-based and random buffering. This is due to the fact
that fair-share and probabilistic buffering work with local
neighbor information (that is, each peer has only a partial
view of the system) and they use a bufferer selection phase
separate from data dissemination. However, bufferer
determination and data dissemination phases take place
concurrently for several data messages, and total dissemi-
nation time for the content is not affected adversely as de-
picted in Fig. 19 for all network sizes.

In Fig. 19, the lowest content dissemination time occurs
with the random approach which serves as a baseline for
comparison. In this approach, since the sender is assumed
to have the full membership knowledge, it immediately se-
lects bufferers at random among all peers. On the other
hand, there is no need to have full membership informa-
tion in stepwise fair-share as well as probabilistic buffering
at the expense of only slightly higher average message de-
lays. Hash-based method leads to a higher dissemination
time since a peer becomes a bufferer only when it receives
the message through gossiping eventually. In other words,
there is no immediate bufferer selection phase separate
from the data dissemination in contrast with stepwise
fair-share buffering. This may lead to the set off in time
due to dissemination of the last fraction of the messages
in hash-based buffering. In all cases, the dissemination
time increases only logarithmicly with the system size
due to the epidemic dissemination algorithm. The delay in-
creases in the same fashion also for power-law topology.

Note that, stepwise fair-share buffering works with lo-
cal information at each peer. This makes it applicable to
large-scale systems at low cost. In contrast, hash-based
and random buffering need an approximation of the full

x 10
5.001

o

£

c

Kl

®

£

€

@

@

i)

e —— Probabilistic

5t Fair share

—— Random full
—v—Hash

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

Fig. 19. Dissemination time as a function of group size.

membership information that may be difficult to achieve
in dynamic peer arrivals and large-scale systems due to
the cost of maintaining this information. In our simulation
models for hash-based and random buffering, we assume
that peers have the full view of the system, and we also
do not include the cost associated with maintaining an
approximation of the entire membership.

6.5. Failure cases and multiple bufferers

In this group of experiments, the performance of epi-
demic dissemination with stepwise fair-share buffering is
investigated under congestion and/or link failures in the
network. In either case, a data message may not reach its
destination and the nodes could simply request a retrans-
mission from the sender if the single bufferer is not suffi-
cient. Since this could have an implosion effect at the
sender, multiple bufferers are used to ensure the recovery.

Certain link drop probabilities are assigned for each
message traversing the network to simulate congestion
and failures. We assume a uniform link drop probability
in the network. Explicitly, any message traveling on a given
link has a chance of not being delivered to the destination
node with probability p. In the results given in Figs. 20 and
21, a 1000 node hierarchical network topology is used for
message dissemination and 50,000 messages are dissemi-
nated from a single source. The short-term buffer size of
a peer is set to zero in order to observe the long-term buf-
fer performance. The message generation rate is 100 msgs/
s and the gossip interval is 200 ms. In the first result given
in Fig. 20, the link drop probability of the network is in-
creased from 0.01 to 0.05. Clearly, the minimum number
of bufferers increases as the link drop probability in-
creases. Fig. 21 gives the minimum buffer size needed for
reliable dissemination with the number of bufferers b of
a message set to 6. The minimum buffer size is 5 messages
if the drop probability is 0.01 which is consistent with
Fig. 20. On the other hand, this increases to 11 if the drop
probability goes up to 0.05. Note that the minimum buffer
size remained constant for link drop probabilities 0.04 and

-
~

-
N W

-

Minimum number of bufferers

01 0.02 0.03 0.04 0.05
Link drop probability

Fig. 20. Minimum number of bufferers for reliability as a function of link
drop probability.

0. Ozkasap et al. / Computer Networks 53 (2009) 2259-2274 2271

Minimum buffer size

obh O ® N ® © o

.01 0.02 0.03 0.04 0.05
Link drop probability

Fig. 21. Minimum buffer size needed for reliability as a function of link
drop probability.

x10

——Random full
5.001} —v—Hash

Fair share
—— Probabilistic

Dissemination time

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Link drop probability

Fig. 22. Comparison of dissemination time as a function of link drop
probability.

0.05. Although this is somewhat misleading, the graph
would show an increase for larger drop probabilities.

Fig. 22 shows the comparative behavior of the buffering
approaches as the drop probability of the links increases. In
these simulations, 500,000 messages are disseminated to
the network, network size is 1000 peers, message genera-
tion rate is 100 message/s, gossip interval is 200 ms.
Short-term buffer size is 10, long-term buffer size is 20
and the number of bufferers per message is five so that a
reliable dissemination is achieved for all the scenarios.
Fig. 22 shows that the dissemination time increases as p in-
creases and the different approaches behave analogously
as in Fig. 19. Likewise, we have observed that the average
message delay increases slightly as a function of the link
failure rate.

7. Analytical bound for reliability

If the buffering time of a message is longer than its dis-
semination time, it can be safely discarded. In a random

environment, the probability of this event represents the
reliability of dissemination. In this section, a Markov chain
formulation is considered for finding the distribution of the
dissemination time. On the basis of this, we find an analyt-
ical expression for reliability for each buffer size and com-
pare it with simulations.

Let o denote the message generation rate of the source
node, / the rate of receiving a new message to be buffered,
n the number of nodes in the system, B the size of the long-
term buffer of a node (namely the number of messages in
the long-term buffer when the buffer is full) and T the time
that passes for one message to reach all the nodes. Our aim
is to find the minimum buffer size B that guarantees reli-
able delivery of a message to all nodes. We can approxi-
mate the expected time between two buffer updates by 1.
As a result, the average waiting time of one message in
the long-term buffer of a node is W =2 when the buffer
is full as in the steady state. By virtue of the results ob-
tained in Section 3, it can be assumed that the load of being
a bufferer is distributed uniformly to all n nodes. Thus, the
rate of being a bufferer 2 can be approximated as %. There-
fore, the average waiting time becomes

Bn
W= o (1)

To provide perfectly reliable dissemination, the waiting
time of one message in the long-term buffer of a node
should be greater than the time T that passes for one mes-
sage to reach all the nodes. That is, we must have T < W in
order to have a reliable dissemination. By approximating
the waiting time in the buffer as a deterministic quantity
given by its mean (1), we consider P(T < W) = P(T < &),
That is, the cumulative distribution function (cdf) of T gi-
ven by F(&%) = P(T <) is computed and we require this
value to be close to 1 for high reliability.

In order to find F, a Markov chain model is used for epi-
demic dissemination of messages as given in [21]. We use
the push-based model rather than pull as its analytical
model can be used for larger fan-out values as well. That
is why the simulations in this section are performed with
the push mechanism for comparison purposes. In the pull
model, an infectious peer selects a susceptible peer ran-
domly and sends its digest message to a susceptible peer.
In the push model, the process is the reverse namely a sus-
ceptible peer selects an infectious peer randomly and
sends its digest message to the infectious peer. The quali-
tative behaviors are the same, and hence the analysis of
this section is based on push approach for convenience.

The states of the Markov chain (X; : t =1,2,...) are de-
fined as the number of infected nodes for one fixed mes-
sage in the system at time t, taking integer values
between 1 and n. This is an absorbing Markov chain and
the absorbing state is equal to the total number of nodes
n. Therefore, we need to find the time to absorption which
is the time that passes for the Markov chain to reach from
an initial state to an absorbing state. The cdf of the time to
absorption is given by

F(k) = o + 1 — Qe 2)

where k denotes the time to absorption y, and u denote
the probability and the probability (row) vector that the

2272 0. Ozkasap et al./Computer Networks 53 (2009) 2259-2274

Markov chain starts at the absorbing and transient states,
respectively, e is the vector consisting of all 1's and Q is
the portion of the transition matrix P of X that corresponds
to the transient states [22].

In the push model, the probability that there will be j
infected nodes at the next stage when there are k infec-
tious peers at present is found as [21,23]:

(n—k—]) I (n—k—l) "
n—k f f
P"J*<j_k>X 1- <n71> * <n—1>

f f
forj=1,2,...,n—kand fixed f where n — 1 is the number
of nodes a peer sends gossip to, excluding itself. Using P,
we construct the matrix Q. The cdf F of (2) is evaluated at
k = |B2] because k should be an integer and the floor func-
tion |-] gives the correct lower bound for reliability rather
than the ceiling function [-]. In our model, p is a unit vector

as the chain starts at state 1. Then, the following result is
obtained:

n-1

B Bn .| Bn
r:p(H’J) =1-[10...00Q%1...1]" =13 Q,j'.

=1

Using this information the minimum buffer size B
needed for reliable dissemination is computed for each le-
vel of reliability r.

The results obtained from the analytical model are com-
pared with the results obtained from the simulation of
stepwise fair-share buffering scheme coupled with epi-
demic dissemination. Reliability is estimated from the sim-
ulations as the ratio of the total number of received
messages by peers to the total number of generated mes-
sages. There are 100 nodes in the system (n=100) and
the message generation rate is 100 msgs/s. The average
of 100 independent replications are reported as the esti-
mate of P(T < W).

In Fig. 23, the reliability of the scheme with different
buffer sizes in analytical and simulation results is com-

o o
O —_
T T

0.7t 'l Push

- - - - Simulation

o
o

Prob(T < B™n/alfa)

c o o o
Now AW
h g T T

0 5 10 15 20 25
Buffer size

Fig. 23. Reliability versus buffer size for model and simulation (f=1).

1
0.8
o)
©
? 0.6
m
v i ! -v-fan-out=3
| 1
35’ 0.4 i ——fan—-out=4
& i -© -fan-out=5
0.2 :
v
ol oo , ,
0 5 10 15

Buffer size

Fig. 24. Reliability versus buffer size: analytical results for different fan-
out values.

pared when the fan-out is 1. It can be inferred that the ana-
lytical values give a lower bound for reliability. In other
words, the simulations achieve higher reliability for a gi-
ven buffer size. This may be due to the discrepancy be-
tween the simulation approach and the analytical model.
In the simulations, there is partial view and the peers have
a limited short-term buffer. Some messages are obtained
from the short-term buffers and the others are recovered
from the long-term buffers. In the analytical model, the
infection is assumed to occur in a similar fashion when a
susceptible contacts with an infectious peer. The missing
information is identified and it is assumed to be recovered
from the infectious peer which has an infinite size (short-
term) buffer. In terms of the required time, this is no differ-
ent from obtaining the message from the long-term buffer-
er. However, the difference with the analytical model is
that it is based on full knowledge of the system. Partial
membership knowledge and digest exchange seem to
speed up the dissemination process in the simulations.
On the other hand, the analytical results are very close to
the simulation results for the larger reliability values.
Therefore, the analytical model can be used for designing
a highly reliable system.

When the comparison is done with fan-out 3, the re-
sults are similar to the f=1 case. However, the reliability
is achieved with a smaller buffer size since increasing the
fan-out hastens the epidemic spread. So, a message
reaches all nodes in a shorter time period and smaller buf-
fer size becomes enough in this case. In Fig. 24, the reli-
ability computed by the analytical model is compared
for different fan-out parameters. As expected, if fan-out
increases, the same buffer size provides more reliable
dissemination.

8. Conclusions

We have studied the buffer management problem in
support of large-scale gossip-based peer-to-peer data dis-
semination services. A robust scheme named stepwise
fair-share buffering has been proposed, modeled and ana-
lyzed. It achieves a uniform load of buffering throughout

0. Ozkasap et al. / Computer Networks 53 (2009) 2259-2274 2273

the network with only partial knowledge of peers about
the system. It is simple and functions independently of
the underlying network topology. Our approach reduces
the memory usage since only a small subset of the peers
is chosen as bufferers for each message. As a result, the
efficiency of content dissemination is improved. Further-
more, it is applicable to large-scale scenarios, provides reli-
able delivery and is adaptable to dynamic join and leaves
to the system.

Separate evaluations of bufferer selection and gossip-
based dissemination are presented to demonstrate the buf-
fering efficiency through simulations. For the buffering
analysis, uniformity of the buffering load, its scalability,
the effect of TTL parameter and multiple senders scenarios
have been investigated. Furthermore, the evaluation of our
approach in comparison with other buffering schemes are
given in terms of data dissemination metrics, scalability
and link failures. The metrics investigated are reliability,
content dissemination time, buffering delay and message
delay of the system.

The hash-based buffering scheme, probabilistic scheme
and a completely randomized approach with full member-
ship information have been used for comparison. Several
power-law and hierarchical overlay topologies were con-
sidered. We have found that stepwise fair-share buffering
performs well and is scalable for large networks also in
the case of failures in the links. The buffer sizes and num-
ber of bufferers have been determined to guarantee reli-
able delivery.

Analytical results for reliability of epidemic dissemina-
tion as a function of buffer sizes and the number of buffer-
ers have been derived. These results are based on a Markov
chain analysis and are evaluated numerically. Comparison
with simulations of stepwise fair-share scheme shows that
the analytical model provides a good lower bound for reli-
ability. For high levels of reliability values, the bounds are
very close to the simulation results.

As future work, one can include link failures in the
underlying network topology to the analytical model. The
minimum number of bufferers required for reliability
would be of interest. On the other hand, identifying the
true overlay topologies more precisely would be of inter-
est. It has been shown recently in [27] that Gnutella net-
work exhibits the clustering and short path lengths of a
small world network rather than power-law scaling. Final-
ly, trace-driven data could be used instead of synthetic
topologies which can be overly simplified.

Acknowledgement

Research of the first author is supported by TUBITAK
(The Scientific and Technical Research Council of Turkey)
under CAREER Award Grant 104E064.

References

[1] O. Ozkasap, R. van Renesse, K.P.Birman, Z. Xiao, Efficient buffering in
reliable multicast protocols, in: Proceedings of the First International
Workshop on Networked Group Communication (NGC' 99), Pisa,
Italy, November 1999, pp. 188-203.

[2] K. Yamamoto, Y. Sawa, M. Yamamoto, H. Ikeda, Performance
evaluation of ACK-based and NAK-based flow control mechanisms

for reliable multicast communication, IEICE Trans. Commun. E84-B
(8) (2001) 2313-2316K.

[3] L. Rodrigues, S. Handurukande,]. Orlando, R. Guerraoui, A.M.
Kermarrec, Adaptive gossip-based broadcast, in: IEEE International
Conference on Dependable Systems and Networks (DSN), 2003.

[4] Z. Xiao, K.P. Birman, R. van Renesse, Optimizing buffer management
for reliable multicast, in: Proceedings of the International Conference
on Dependable Systems and Networks (DSN’02), Washington, DC.

[5] J.F. Paris, J. Baek, A heuristic buffer management and retransmission
control scheme for tree-based reliable multicast, ETRI J. 27 (1)
(2005).

[6] G.Rhee, I. Rhee, Message stability detection for reliable multicast, in:
Proceedins of the 19th IEEE Conference on Computer Comm.
(INFOCOM 2000), New York, USA, March 2000, pp. 814-823.

[7] M. Costello, S. McCanne, M. Yamamoto, H. Ikeda, Search party: using
randomcast for reliable multicast with local recovery, in:
Proceedings of the 18th IEEE Conference on Computer Comm.
(INFOCOM’99), New York, USA, March 1999, pp. 1256-1264.

[8] J. Pereira, L. Rodrigues, M. Monteiro, R. Oliviera, A.M., Kermarrec,
Network friendly epidemic multicast, in: IEEE International
Symposium on Reliable Distributed Systems, 2003.

[9] C. Lindemann, O. Waldhorst, Modelling epidemic information
dissemination on mobile devices with finite buffers, in:
SIGMETRICS, 2005.

[10] R. van Renesse, K.P. Birman, W. Vogels, Astrolabe: a robust and
scalable technology for distributed systems monitoring,
management, and data mining, ACM Trans. Comput. Syst. 21 (2)
(2003) 164-206.

[11] AJ. Demers et al., Epidemic algorithms for replicated data-
base maintenance, in: Proceedigns of the 6th Annual ACM
Symposium on Principles of Distributed Computing, ACM Press,
1987, pp. 1-12.

[12] E. Ahi, M. Gaglar, O. Ozkasap, Stepwise probabilistic buffering, in:
International Conference on Bio Inspired Models of Network,
Information and Computing Systems (Bionetics), December 11-13,
2006, Cavalese, Italy.

[13] E. Ahi, M. Gaglar, O. Ozkasap, Stepwise fair-share buffering
underneath bio-inspired P2P data dissemination, in: 6th
International Symposium on Parallel and Distributed Computing,
July 2007, Hagenberg, Austria.

[14] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships
of the Internet topology, in: Proceedings of ACM SIGCOMM,
1999.

[15] A. Medina, A. Lakhina, I. Matta, J. Byers, BRITE: Universal topology
Generator from a Users Perspective, Technical Report, BUCS-TR-
2001-003, April 12, 2001, Boston University. <http://www.cs.bu.
edu/brite/publications/usermanual.pdf>).

[16] A. Medina, A. Lakhina, I. Matta,]. Byers, BRITE: an approach to
universal topology generation, in: Proceedings of MASCOTS,
Cincinnati, OH, August 2001.

[17] B. Zhang, T.S.E. Ng, A. Nandi, R. Riedi, P. Druschel, G. Wang,
Measurement based analysis, modeling, and synthesis of the
internet delay space, in: Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, October 2006.

[18] gt-itm, <http://www-static.cc.gatech.edu/fac/Ellen.Zegura/graphs.
html>.

[19] N.TJ. Bailey, The Mathematical Theory of Infectious Diseases and its
Applications, second ed., Hafner Press, 1975.

[20] A. Alagbz, E. Ahi, O. Ozkasap, Network awareness and buffer
management in epidemic information dissemination (poster
paper), in: ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), July 2005, Las Vegas.

[21] M. Gaglar, O. Ozkasap, A chain-binomial model for pull and push-
based information diffusion, in: IEEE ICC, June 2006, Istanbul.

[22] M.F. Neuts, Matrix-geometric Solutions in Stochastic Models, The
John Hopkins University Press, 1981.

[23] 0. Ozkasap, E. S.Yazicl, S. Kiigiikgifci, M. Caglar, Exact performance
measures for peer-to-peer epidemic information diffusion, in:
Lecture Notes in Computer Science, vol. 4263, ISCIS 2006.

[24] I Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord:
a scalable peer-to-peer lookup service for internet applications, in:
Proceedings of the ACM SIGCOMM Conference, San Diego, CA, USA,
August 2001.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable
content-addressable network, in: Proceedings of the ACM SIGCOMM
Conference, San Diego, CA, USA, August 2001.

[26] B. Zhao, J. Kubiatowicz, A. Joseph, Tapestry: an infrastructure for
fault-tolerant wide-area location and routing, Comput. Sci. Div.,
Univ. California, Berkeley, Tech. Rep. UCB/CSD-01-1141, 2001.

http://www.cs.bu.edu/brite/publications/usermanual.pdf
http://www.cs.bu.edu/brite/publications/usermanual.pdf
http://www-static.cc.gatech.edu/fac/Ellen.Zegura/graphs.html
http://www-static.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

2274 0. Ozkasap et al./Computer Networks 53 (2009) 2259-2274

[27] D. Stutzbach, R. Rejaie, S. Sen, Characterizing unstructured overlay
topologies in modern P2P file-sharing systems, IEEE-ACM Trans.
Network. 16 (2) (2008) 267-280.

Oznur Ozkasap received her M.S. and Ph.D.
degrees in Computer Engineering from Ege
University, in 1994 and 2000, respectively.
From 1997 to 1999, she was a graduate
research assistant at Cornell University,
Department of Computer Science, where she
completed her Ph.D. dissertation. She is cur-
rently an assistant professor in Department of
Computer Engineering at Koc University
which she joined in 2000. Her research
interests include distributed computing sys-
tems, multicast protocols, peer-to-peer sys-
tems, bio-inspired distributed algorithms and computer networks.

Mine Caglar received her BS. and M.S.
degrees in Industrial Engineering from Middle
East Technical University and Bilkent Univer-
sity, respectively. She received a Ph.D. degree
in Statistics and Operations Research from
Princeton University in 1997. She worked as a
post-doctoral research scientist at Bellcore in
Morristown, in Network Design and Traffic
Research Group during 1997-1998. She is
currently an associate professor in Depart-
ment of Mathematics at Koc University which
she joined in 1999. Her current research
interests include stochastic modeling in telecommunication networks; in
particular traffic modeling, epidemic algorithms and queuing.

Emrah Cem received his B.S. in Computer
Engineering from Koc University in 2008. He
is currently working towards the M.S. degree
in Computer Engineering at Koc University.
His research interests include mobile ad hoc
networks, peer-to-peer and distributed
systems.

Emrah Ahi received his B.S. in Mathematics
from Middle East Technical University in 2004
and M.S. degree in Computational Sciences
and Engineering from Koc University in 2007.
He currently works at Risk Software Tech-
nologies, Inc., in Istanbul.

Emre Iskender received his B.S. in Electrical
and Electronics Engineering from Bilkent
University in 2006. He is currently working
towards the M.S. degree in Computer Engi-
neering at Koc University. His research inter-
ests include peer-to-peer and distributed
systems.

	Stepwise fair-share buffering for gossip-based peer-to-peer data dissemination
	Introduction
	Related work
	Network flow control
	Reducing the memory usage
	Achieving stability
	Replacement policy for buffer items

	Stepwise fair-share buffering
	System model
	Buffering algorithms
	Improvements
	Epidemic dissemination

	Simulation settings
	Topology properties
	Other buffering approaches

	Buffering results
	Uniformity of buffering load
	Scalability of buffering load
	The effect of TTL
	Multiple senders

	Gossip-based dissemination results
	Reliability
	Dissemination time
	Message delay and buffering delay
	Scalability of dissemination
	Failure cases and multiple bufferers

	Analytical bound for reliability
	Conclusions
	Acknowledgement
	References

