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Abstract

For two or more classes of points in Rd with d ≥ 1, the class cover catch digraphs (CCCDs) can be constructed using the
relative positions of the points from one class with respect to the points from one or all of the other classes. The CCCDs were
introduced by Priebe et al. [C.E. Priebe, J.G. DeVinney, D.J. Marchette, On the distribution of the domination number of random
class catch cover digraphs. Statistics and Probability Letters 55 (2001) 239–246] who investigated the case of two classes, X and
Y . They calculated the exact (i.e., finite sample) distribution of the domination number of the CCCDs based on X points relative to
Y points both of which were uniformly distributed on a bounded interval. We investigate the distribution of the domination number
of the CCCDs based on data from non-uniform X points on an interval with end points from Y . Then we extend these calculations
for multiple Y points on bounded intervals.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In 2001, a new classification method was developed which was based on the relative positions of the data points
from various classes; Priebe et al. [10] introduced the class cover catch digraphs (CCCDs) in R and gave the
exact distribution of the domination number of the CCCDs for two classes, X and Y , with uniform distribution
on a bounded interval in R. DeVinney and Wierman [6] proved a SLLN result for the one-dimensional class cover
problem. DeVinney et al. [5], Marchette and Priebe [9], and Priebe et al. [11,12] extended the CCCDs to higher
dimensions and demonstrated that CCCDs are a competitive alternative to the existing methods in classification. The
classification method based on CCCDs involves data reduction (condensing) by using approximate – rather than exact
– minimum dominating sets as prototype sets, since finding the exact minimum dominating set for CCCDs is an
NP-hard problem in general. However for finding a dominating set of CCCDs on the real line, a simple linear time
algorithm is available [10]. But unfortunately, the exact and the asymptotic distributions of the domination number of
the CCCDs are not analytically tractable in multiple dimensions.
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To address the latter issue of intractability of the distribution of the domination number in multiple dimensions,
Ceyhan and Priebe [2,3] introduced the central similarity proximity maps and r -factor proportional-edge proximity
maps and the associated random proximity catch digraphs. Proximity catch digraphs are a generalization of the
CCCDs. The asymptotic distribution of the domination number of the r -factor proportional-edge proximity catch
digraphs is calculated and then used in testing spatial patterns between two or more classes. See [3] for more detail.

In this article, we generalize the original result of Priebe et al. [10] to the case of non-uniformX points with support
being the interval with end points from Y , and then to multiple Y points in a bounded interval (c, d) ⊂ R with c < d.
These generalizations will also serve as the bases for extensions of the results for the uniform and non-uniform data
in higher dimensions.

2. Data-random class cover catch digraphs

Let (Ω ,M) be a measurable space and Xn = {X1, . . . , Xn} and Ym = {Y1, . . . , Ym} be two sets of Ω -
valued random variables from classes X and Y , respectively, with joint probability distribution function FX,Y . Let
d(·, ·) : Ω ×Ω → [0, ∞) be any distance function. The class cover problem for a target class, say X , refers to finding
a collection of neighborhoods, Ni around X i such that (i) Xn ⊆ (∪i Ni ) and (ii) Ym ∩ (∪i Ni ) = ∅. A collection of
neighborhoods satisfying both conditions is called a class cover. A cover satisfying condition (i) is a proper cover
of class X while a cover satisfying condition (ii) is a pure cover relative to class Y . This article is on the minimum
cardinality class covers; that is, class covers satisfying both (i) and (ii) with the smallest number of neighborhoods.
See [10] for more detail.

Consider the map NY : Ω → 2Ω : where 2Ω represents the power set of Ω . Then given Ym ⊆ Ω , the proximity
map NY (·) : Ω → 2Ω associates with each point x ∈ Ω a proximity region NY (x) ⊆ Ω . For B ⊆ Ω , the Γ1-region is
the image of the map Γ1(·, NY ) : 2Ω

→ 2Ω that associates the region Γ1(B, NY ) := {z ∈ Ω : B ⊆ NY (z)} with the
set B. For a point x ∈ Ω , we denote Γ1({x}, NY ) as Γ1(x, NY ). Notice that while the proximity regions are defined
for one point, Γ1-regions can be defined for sets of points.

The data-random CCCD has the vertex set V = Xn and arc set A defined by (X i , X j ) ∈ A ⇐⇒ X j ∈ NY (X i ).
In particular, we use NY (X i ) = B(X i , ri ), the open ball around X i with radius ri := minY∈Ym d(X i , Y ), as the
proximity map as in [10]. We call such a digraph a Dn,m-digraph. A Dn,m-digraph is a pseudo-digraph according
some authors if loops are allowed (see, e.g., [4]). A data-random CCCD for Ω = Rd and Ni = B(X i , ri ) is referred
to as Cn,m-graph in [10]. We change the notation to emphasize the fact that Dn,m is a digraph. Furthermore, Ceyhan
and Priebe [2] call the proximity map Ni = B(X i , ri ) a spherical proximity map.

The Dn,m-digraphs are closely related to the proximity graphs of Jaromczyk and Toussaint [8] and might be
considered as a special case of covering sets of Tuza [15] and intersection digraphs of Sen et al. [14]. Our data-
random proximity digraph is a vertex-random proximity digraph and not a standard one (see e.g., [7]). The randomness
of a Dn,m-digraph lies in the fact that the vertices are random with the joint distribution FX,Y , but arcs (X i , X j ) are
deterministic functions of the random variable X i and the random set Ni .

3. Domination number of random Dn,m-digraphs

In a digraph D = (V,A) of order |V| = n, a vertex v dominates itself and all vertices of the form {u : (v, u) ∈ A}.
A dominating set, SD , for the digraph D is a subset of V such that each vertex v ∈ V is dominated by a vertex in SD .
A minimum dominating set, S∗

D , is a dominating set of minimum cardinality; and the domination number, denoted
γ (D), is defined as γ (D) := |S∗

D|, where | · | is the set cardinality functional [16]. If a minimum dominating set
consists of only one vertex, we call that vertex a dominating vertex. The vertex set V itself is always a dominating set,
so γ (D) ≤ n.

Let F
(
Rd
)

:= {FX,Y on Rd with P(X = Y ) = 0}. As in [10], in this article, we consider Dn,m-digraphs for which
Xn and Ym are random samples from FX and FY , respectively, and the joint distribution of X, Y is FX,Y ∈ F

(
Rd
)

where F(Rd) := {FX,Y on Rd with P(X i = Y j ) = 0 for all i, j; P(X i = X j ) = 0 for i 6= j and P(Yk = Yl) =

0 for k 6= l}. We call such digraphs as F
(
Rd
)
-random Dn,m-digraphs and focus on the random variable γ (D). To

make the dependence on sample sizes explicit, we use γ (Dn,m) instead of γ (D). It is trivial to see that γ (Dn,m) is not
defined for m = 0; γ (Dn,m) = 0 for n = 0 and m ≥ 1; 1 ≤ γ (Dn,m) ≤ n for n ≥ 1 and m ≥ 1; and for nontrivial
digraphs γ (Dn,m) < n.
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4. The Distribution of the domination number of F(R)-random Dn,m-digraphs

In R, the data-random CCCD is a special case of interval catch digraphs (see, e.g., [14,13]). Let Xn and Ym be
two samples from F(R) and Y( j) be the j th order statistic of Ym for j = 1, 2, . . . , m. Then Y( j) partition R into
(m + 1) intervals a.s. Let −∞ =: Y(0) ≤ Y(1) ≤ · · · ≤ Y(m) ≤ Y(m+1) := ∞. But since Ym is from F(R), Y(i) < Y( j)
for i < j a.s. Also let I j := (Y( j−1), Y( j)),X j

:= Xn ∩ I j , and Y j
:= {Y( j−1), Y( j)} for j = 1, 2, . . . , (m + 1).

This yields a disconnected digraph with subdigraphs D j for j = 1, 2, . . . , (m + 1), each of which is induced by the
vertices X j whose support is in Y j . Notice that each subdigraph D j might be null or itself disconnected. Let γ (D j )

denote the domination number of the subdigraph D j , n j := |X j
|, and F j be the density FX restricted to I j . Then

γ (Dn,m) =
∑m+1

j=1 γ (D j ). We study the simpler random variable γ (D j ) first. The following lemma follows trivially
(see [10]).

Lemma 4.1. For j ∈ {1, (m + 1)}, γ (D j ) = I(n j > 0) where I(·) is the indicator function.

For j = 2, . . . , m and n j > 0, we prove that γ (D j ) ∈ {1, 2} with the distribution dependent probabilities
1 − pn j (F j ), pn j (F j ), respectively, where pn j (F j ) = P(γ (D j ) = 2). A quick investigation shows that γ (D j ) = 2

iff X j
∩

(
max (X j )+Y( j−1)

2 ,
min(X j )+Y( j)

2

)
= ∅; that is, X j

⊂ B(x, r(x)) iff x ∈

(
max (X j )+Y( j−1)

2 ,
min(X j )+Y( j)

2

)
where

r(x) = min(x − Y( j−1), Y( j) − x). Hence Γ1(X j , NY ) =

(
max (X j )+Y( j−1)

2 ,
min(X j )+Y( j)

2

)
⊆ I j . By definition, if

X j
∩ Γ1(X j , NY ) 6= ∅, then γ (D j ) = 1; hence the name Γ1-region and the notation Γ1(·, NY ).

Theorem 4.2. For j = 2, . . . , m, γ (D j ) ∼ 1 + Bernoulli(pn j (F j )) for n j > 0.

Proof. See [10] for the proof. �

The probability P(γ (D j ) = 2) = P(X j
∩ Γ1(X j , NY ) = ∅) depends on the conditional distribution FX |Y and

the interval Γ1(X j , NY ), which, if known, will make possible the calculation of pn j (F j ). As an immediate result of
Lemma 4.1 and Theorem 4.2, we have the following upper bound for γ (Dn,m).

Theorem 4.3. Let Dn,m be anF(R)-random Dn,m-digraph with n > 0, m > 0 and k1 and k2 be two natural numbers
defined as k1 :=

∑m
j=2 I(|Xn ∩ I j | > 1) and k2 :=

∑m
j=2 I(|Xn ∩ I j | = 1) +

∑
j∈{1,(m+1)} I(Xn ∩ I j 6= ∅). Then

1 ≤ γ (Dn,m) ≤ 2 k1 + k2 ≤ min(n, 2 m).

In the special case of fixed Y2 = {y1, y2} and Xn a random sample from U(y1, y2), the uniform distribution on
(y1, y2), we have a Dn,2-digraph for which FX = U(y1, y2) and FY is a degenerate distribution. We call such digraphs
as U(y1, y2)-random Dn,2-digraphs and provide an exact result on the distribution of their domination number in the
next section.

4.1. The exact distribution of the domination number of U(y1, y2)-random Dn,2-digraphs

Suppose Y2 = {y1, y2} ⊂ R with −∞ < y1 < y2 < ∞ and Xn = {X1, . . . , Xn} a set of iid random
variables from U(y1, y2). Any U(y1, y2) random variable can be transformed into a U(0, 1) random variable by
φ(x) = (x − y1)/(y2 − y1), which maps intervals (t1, t2) ⊆ (y1, y2) to intervals (φ(t1), φ(t2)) ⊆ (0, 1) and

φ(X i )
iid
∼ U(0, 1). So, without loss of generality, we can assume Xn = {X1, . . . , Xn} is a set of iid random variables

from the U(0, 1) distribution. That is, the distribution of γ (Dn,2) does not depend on the support interval (y1, y2).
Recall that γ (Dn,2) = 2 iff Xn ∩ Γ1(Xn, NY ) = ∅, then P(γ (Dn,2) = 2) = 4/9 − (16/9) 4−n . For more detail, see
[10]. Hence, for U(y1, y2) data, we have

γ (Dn,2) =

{
1 w.p. 5/9 + (16/9) 4−n,

2 w.p. 4/9 − (16/9) 4−n,
for all n ≥ 1, (1)

where w.p. stands for “with probability”. Then the asymptotic distribution of γ (Dn,2) for U(y1, y2) data is given by

lim
n→∞

γ (Dn,2) =

{
1 w.p. 5/9,

2 w.p. 4/9.
(2)
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For m > 2, Priebe et al. [10] computed the exact distribution of γ (Dn,m). However, independence of the distribution

of the domination number from the support interval does not hold in general; that is, for X i
iid
∼ F with support

S(F) ⊆ (y1, y2), the exact and asymptotic distribution of γ (Dn,2) will depend on F and Y2.

4.2. The distribution of the domination number for F(R)-random Dn,2-digraphs

For Y2 = {y1, y2} ⊂ R with −∞ < y1 < y2 < ∞, a quick investigation shows that the Γ1-region is

Γ1(Xn, NY ) =

(
y1+X(n)

2 ,
y2+X(1)

2

)
. Note that Xn ∩ Γ1(Xn, NY ) is the set of all dominating vertices, which is empty

when γ (Dn,2) > 1. To make the dependence on F explicit and for brevity of notation, we will denote the domination
number of the F ((y1, y2))-random Dn,2-digraphs as γn(F).

Let pn(F) := P(γn(F) = 2) and p(F) := limn→∞ P(γn(F) = 2). Then the exact (finite sample) and asymptotic
distributions of γn(F) are 1 + Bernoulli (pn(F)) and 1 + Bernoulli (p(F)), respectively. That is, for finite n, we have

γn(F) =

{
1 w.p. 1 − pn(F)

2 w.p. pn(F)
for all n ≥ 1. (3)

The asymptotic distribution is similar.
With Y2 = {0, 1}, let F be a distribution with support S(F) ⊆ (0, 1) and density f and let Xn be a set of n iid

random variables from F . Since γn(F) ∈ {1, 2}, to find the distribution of γn(F), it suffices to find P(γn(F) = 1) or
P (γn(F) = 2). For computational convenience, we employ the latter in our calculations.

Then

pn(F) =

∫
S(F)\Γ1(Xn ,NY )

[
1 −

F((1 + x1)/2) − F(xn/2)

F(xn) − F(x1)

]n−2

f1n(x1, xn)dxndx1, (4)

where f1n(x1, xn) = n (n − 1) [F(xn) − F(x1)]n−2 f (x1) f (xn) I(0 < x1 < xn < 1) which is the joint probability
density function of X(1), X(n).

If the support S(F) = (0, 1), then the region of integration becomes{
(x1, xn) ∈ (0, 1)2

: (1 + x1)/2 ≤ xn ≤ 1, 0 ≤ x1 ≤ 1/3 or 2 x1 ≤ xn ≤ 1, 1/3 ≤ x1 ≤ 1/2
}

.

The integrand in Eq. (4) simplifies to

H(x1, xn) := n (n − 1) f (x1) f (xn) [F(xn) + F (xn/2) − (F ((1 + x1)/2) + F(x1))]n−2 . (5)

Let Xn be a set of iid random variables from a continuous distribution F with S(F) ⊆ (0, 1). The simplest of
such distributions is U(0, 1), the uniform distribution on (0, 1), which yields the simplest exact distribution for γn(F).
If X ∼ F , then by probability integral transform, F(X) ∼ U(0, 1). So for any continuous F , we can construct a
proximity map depending on F for which the distribution of the domination number for the associated digraph will
have the same distribution as that of γn(U(0, 1)).

Proposition 4.4. Let X i
iid
∼ F which is an (absolutely) continuous distribution with support S(F) = (0, 1) and

Xn = {X1, . . . , Xn}. Define the proximity map NF (x) := F−1(NY (F(x))) = F−1(B(F(x), r(F(x)))) where
r(F(x)) = min(F(x), 1 − F(x)). Then the domination number of the digraph based on NF , Xn , and Y2 = {0, 1}, is
equal in distribution to γn(U(0, 1)).

Proof. Let Ui := F(X i ) for i = 1, . . . , n and Un = {U1, . . . , Un}. Hence, by probability integral transform,

Ui
iid
∼ U(0, 1). Let U(k) be the kth order statistic of Un for k = 1, . . . , n. Furthermore, such an F preserves order;

that is, for x ≤ y, F(x) ≤ F(y). So the image of NF (x) under F is F(NF (x)) = NY (F(x)) = B(F(x), r(F(x)))

for (almost) all x ∈ (0, 1). Then F(NF (X i )) = NY (F(X i )) = NY (Ui ) for i = 1, . . . , n. Since Ui
iid
∼ U(0, 1), the

distribution of the domination number of the digraph based on NY , Un and {0, 1} is given in Eq. (1). Observe that
X j ∈ NF (X i ) iff X j ∈ F−1(B(F(X i ), r(F(X i )))) iff F(X j ) ∈ B(F(X i ), r(F(X i ))) iff U j ∈ B(Ui , r(Ui )) for
i, j = 1, . . . , n. Hence P(Xn ⊂ NF (X i )) = P(Un ⊂ NY (Ui )) for all i = 1, . . . , n. Therefore, Xn ∩Γ1(Xn, NF ) = ∅
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iff Un ∩Γ1(Un, NY ) = ∅, which implies that the domination number of the digraph based on NF , Xn , and Y2 = {0, 1}

is 2 with probability 4/9 − (16/9) 4−n . Hence the desired result follows. �

For example for F(x) = x2 I(0 ≤ x ≤ 1) + I(x > 1),

NF (x) =


(

0,
√

2 x
)

for x ∈

[
0, 1/

√
2
]
,(√

2 x2 − 1, 1
)

for x ∈

(
1/

√
2, 1

]
.

There is also a stochastic ordering between γn(F) and γn(U(0, 1)) provided that F satisfies some conditions which
are given in the following proposition.

Proposition 4.5. Suppose Xn = {X1, . . . , Xn} is a random sample from a continuous distribution F with S(F) ⊆

(0, 1) and let X( j) be the j th order statistic of Xn for j = 1, . . . , n. If

F(X(n)/2) < F(X(n))/2 and F(X(1)) < 2 F((1 + X(1))/2) − 1 hold a.s., (6)

then γn(F) <ST γn(U(0, 1)). If <’s in expression (6) are replaced with >’s, then γn(F) >ST γn(U(0, 1)). If <’s in

expression (6) are replaced with =’s, then γn(F)
d
= γn(U(0, 1)) where

d
= stands for equality in distribution.

Proof. Let Ui := F(X i ) for i = 1, . . . , n and Un = {U1, . . . , Un}. Then, by probability integral transform, Ui
iid
∼

U(0, 1). Let U( j) be the j th order statistic of Un for j = 1, . . . , n. The Γ1-region for Un based on NY is Γ1(Un, NY ) =

(U(n)/2, (1 + U(1))/2); likewise, Γ1(Xn, NY ) = (X(n)/2, (1 + X(1))/2). But the conditions in expression (6)
imply that Γ1(Un, NY ) ( F(Γ1(Xn, NY )). So Un ∩ F(Γ1(Xn, NY )) = ∅ implies that Un ∩ Γ1(Un, NY ) = ∅ and
Un ∩ F(Γ1(Xn, NY )) = ∅ iff Xn ∩ Γ1(Xn, NY ) = ∅. Hence

pn(F) = P(Xn ∩ Γ1(Xn, NY ) = ∅) < P(Un ∩ Γ1(Un, NY ) = ∅) = pn(U(0, 1)).

Then γn(F) <ST γn(U(0, 1)) follows. The other cases can be shown similarly. �

For more on the comparison of γn(F) for general F against γn(U(0, 1)), see Section 4.2.2 of the technical report
by Ceyhan [1].

4.2.1. The exact distribution of γn(F) for F with piecewise constant density
Let Y2 = {0, 1}. We can find the exact distribution of γn(F) for F whose density is piecewise constant. Note that

the simplest of such distributions is the uniform distribution U(0, 1). Below we give some examples for such densities.

Example 4.6. Consider the distribution F with density f (·) which is of the form f (x) =
1

1−2 δ
I (δ < x < 1 − δ)

with δ ∈ [0, 1/2). Then F(x) =
x−δ

1−2 δ
I (δ < x < 1 − δ) + I (x ≥ 1 − δ) . The integrand in Eq. (5) becomes

H(x1, xn) =
n(n − 1)

(1 − 2 δ)2

(
3 (xn − x1) − 1

2 (1 − 2 δ)

)n−2

.

Then for δ ∈ [0, 1/3]

pn(F) =

∫ 1/3

δ

∫ 1−δ

(1+x1)/2
H(x1, xn) dxndx1 +

∫ (1−δ)/2

1/3

∫ 1−δ

2 x1

H(x1, xn) dxndx1

=
(
4/9 − (16/9) 4−n) (1 − 3 δ

1 − 2 δ

)n

, (7)

which for δ ∈ (0, 1/3], converges to 0 as n → ∞ at (an exponential) rate O(( 1−3 δ
1−2 δ

)n). For δ ∈ [1/3, 1/2), it is easy
to see that γn(F) = 1 a.s. In fact, for δ ∈ [1/3, 1/2) the corresponding digraph is a complete digraph of order n, since
Xn ⊂ N (X i ) for each i = 1, . . . , n. Furthermore, if δ = 0, then F = U(0, 1) which yields pn(F) = 4/9−(16/9) 4−n .

�



E. Ceyhan / Discrete Mathematics 308 (2008) 5376–5393 5381

Example 4.7. Consider the distribution F with density f (·) which is of the form

f (x) =
1

1 − 2 δ
I (x ∈ (0, 1) \ (1/2 − δ, 1/2 + δ)) with δ ∈ [0, 1/6].

Then the cumulative distribution function (cdf) is given by

F(x) = F1(x) I (0 < x < 1/2 − δ) + F2 (x) I (1/2 − δ < x < 1/2 + δ)

+ F3 (x) I (1/2 + δ < x < 1) + I (x ≥ 1) ,

where

F1(x) = x/(1 − 2 δ), F2 (x) = 1/2, and F3 (x) = (x − 2 δ)/(1 − 2 δ).

There are four cases regarding the relative position of X(n)/2,
(
1 + X(1)

)
/2 and 1/2−δ, 1/2+δ that yield γn(F) = 2:

case(1)
(
X(n)/2,

(
1 + X(1)

)
/2
)

⊆ (1/2 − δ, 1/2 + δ) ;

case(2) X(n)/2 < 1/2 − δ <
(
1 + X(1)

)
/2 < 1/2 + δ;

case(3) 1/2 − δ < X(n)/2 < 1/2 + δ <
(
1 + X(1)

)
/2;

case(4) X(n)/2 < 1/2 − δ < 1/2 + δ <
(
1 + X(1)

)
/2.

Let E j (n) be the event for which case (j) holds for j = 1, 2, 3, 4, for example,

E1(n) :=
{(

X(n)/2,
(
1 + X(1)

)
/2
)

⊆ (1/2 − δ, 1/2 + δ)
}
.

Then pn(F) =
∑4

j=1 P
(
γn(F) = 2, E j (n)

)
. Furthermore, cases (2) and (3) are symmetric; i.e., P(γn(F) =

2, E2(n)) = P(γn(F) = 2, E3(n)). Then in case (1), we obtain P(γn(F) = 2, E1(n)) = 1 − 2
(

1−4 δ
1−2 δ

)n
+

(
1−6 δ
1−2 δ

)n
.

Note that P
(
Γ1(Xn, NY ) ⊆ (1/2 − δ, 1/2 + δ

)
) → 1 as n → ∞, hence it suffices to use this case to show that

pn(F) → 1 as n → ∞ at an exponential rate since P(E1(n)) ≤ pn(F).

In cases (2) and (3), we obtain P(γn(F) = 2, E2(n)) =
2
3

(
1 −

4
4n

) ((
1−4 δ
1−2 δ

)n
−

(
1−6 δ
1−2 δ

)n)
and in case (4),

P(γn(F) = 2, E4(n)) =
4
9

(
1 − 4−n+1

) ( 1−6 δ
1−2 δ

)n
. See [1] for the details of the computations.

Combining the results from the cases, for δ ∈ [0, 1/6] we have

P (γn(F) = 2) = 1 +

(
1 − 6 δ

1 − 2 δ

)n (
1/9 + (32/9)4−n)

−

(
1 − 4 δ

1 − 2 δ

)n (
2/3 + (16/3)4−n) , (8)

which, for δ ∈ (0, 1/6], converges to 1 as n → ∞ at rate O
((

1−4 δ
1−2 δ

)n)
.

Notice that if δ = 0, then F = U(0, 1). The exact distribution for δ ∈ (1/6, 1/3) can be found in a similar fashion.
Furthermore, if δ ∈ [1/3, 1/2], then pn(F) = 1 − 2 δn . See [1] also for the details of the computations. �

Example 4.8. Consider the distribution F with density f (·) which is of the form f (x) = (1 + δ) I (x ∈ (0, 1/2)) +

(1 − δ) I (x ∈ [1/2, 1)) with δ ∈ [−1, 1].

Then

pn(F) =
4(1 − δ2)

9 − δ2 −
8 · 4−n(1 − δ2)

3

(
(1 + δ)n−1

3 − δ
+

(1 − δ)n−1

3 + δ

)
. (9)

See [1] for the derivation. Hence limn→∞ pn(F) =
4 (1−δ2)

9−δ2 =: pF (δ), with the rate of convergence O
((

1+δ
4

)n)
.

Note that pF (δ) ∈ [0, 4/9] is continuous in δ and decreases as |δ| increases. If δ = 0, then F = U(0, 1) and
pF (δ = 0) = 4/9. Note also that pF (δ = ±1) = 0. �

Example 4.9. Consider the distribution F with density f (·) which is of the form

f (x) = (1 + δ) I(0 < x < 1/4) + (1 − δ) I(1/4 ≤ x < 3/4) + (1 + δ) I(3/4 ≤ x < 1) with δ ∈ [−1, 1].
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The exact value of pn(F) is available, but it is rather a lengthy expression (see [1] for the expression and its

derivation). But the limit is as follows: pn(F) →
4 (1+δ)2

(3+δ)2 =: pF (δ) as n → ∞ with the rate of convergence

O
((

5−δ
8

)n)
. So pF (δ) is increasing in δ. Notice here that pn(F) and pF (δ) are continuous in δ and pF (δ) > 0 for

all δ ∈ (−1, 1]. Moreover, pF (δ = 1) = 1 and pF (δ = −1) = 0. �

Note that extra care should be taken if the points of discontinuity in the above examples are different from
{1/4, 3/4} or 1/2, since the symmetry in the probability calculations no longer exists in such cases.

4.2.2. The exact distribution of γn(F) for polynomial f using multinomial expansions
The exact distribution of γn(F) for (piecewise) polynomial f (x) with at least one piece is of degree 1 or higher

can be obtained using the multinomial expansion of the term (·)n−2 in Eq. (5) with careful bookkeeping. However, the
resulting expression for pn(F) is extremely lengthy and not that informative.

The simplest example is with f (x) = 2 x and F(x) = x2. Then pn(F) = P (γn(F) = 2) = Λ1(n) + Λ2(n),

where Λ1(n) :=
∫ 1/3

0

∫ 1
(1+x1)/2 H(x1, xn)dxndx1, Λ2(n) :=

∫ 1/2
1/3

∫ 1
2 x1

H(x1, xn)dxndx1, and H(x1, xn) = n (n −

1)x1 xn
(
5 x2

n − 1 − 2 x1 − 5 x2
1

)n−2
. Then

Λ1(n) =

∫ 1/3

0
(8 n x1/5)(1 − x1/2 − 5 x2

1/4)n−1
− (8 n x1/5)(1/16 + x1/2 − 15 x2

1/16)n−1 dx1.

Using the multinomial expansion of (·)n−1 with respect to x1 in the integral above, we have

Λ1(n) =

∑
Q2

(
n − 1

q1, q2, q3

)
8 n (−1)q2+q15−1+q12−q2−2 q13−2−q2−2 q1

2 + q2 + 2 q1

+
n (−1)1+q123−3 q2−4 q3−4 q115q13−2−q2−2 q1

5 (2 + q2 + 2 q1)

where Q2 = {q1, q2, q3 ∈ N : q1 + q2 + q3 = n − 1}.
Similarly, the second piece follows as

Λ2 (n) =

∫ 1

1/3
(8 n x1/5) (1 − x1/2 − 5 x2

1/4)n−1
− (8 n x1/5) (15/x2

1/4 − 1/4 − x1/2)n−1 dx1.

Again, using the multinomial expansion of the (·)n−1 term above, we get

Λ2 (n) =

∑
Q3

(
n − 1

r1, r2, r3

)
[2 n(9 (−1)r2+r1 5r1 4−2 r1−r2 + 9 (−1)1+r3+r2 15r14−2 r1−r3−r2

+ 4 (−1)1+r2+r1 6−r2−2 r1 5r1 + (−1)r3+r241−r3 6−r2 12−r1 5r1)]/[90 + 45 r2 + 90 r1]

where Q3 = {r1, r2, r3 ∈ N : r1 + r2 + r3 = n − 1}. See [1] for more detail and examples.
For fixed numeric n, one can obtain pn(F) for F (omitted for the sake of brevity) with the above densities by

numerical integration of the below expression.

pn(F) = P (γn(F) = 2) =

∫ 1/3

0

∫ 1

(1+x1)/2
H(x1, xn) +

∫ 1/2

1/3

∫ 1

2 x1

H(x1, xn) dxndx1,

where H(x1, xn) is given in Eq. (5).
Recall the F(Rd)-random Dn,m-digraphs. We call the digraph which obtains in the special case of Ym = {y1, y2}

and support of FX in (y1, y2), F((y1, y2))-random Dn,2-digraph. Below, we provide asymptotic results pertaining to
the distribution of such digraphs.

5. The asymptotic distribution of the domination number of F((y1, y2))-random Dn,2-digraphs

Although the exact distribution of γn(F) is not analytically available in a simple closed form for F whose density
is not piecewise constant, the asymptotic distribution of γn(F) is available for larger families of distributions. First,



E. Ceyhan / Discrete Mathematics 308 (2008) 5376–5393 5383

we present the asymptotic distribution of γn(F) for Dn,2-digraphs with Y2 = {y1, y2} ⊂ R with y1 < y2 for various F
with support S(F) ⊆ (y1, y2). Then we will extend this to the case with Ym ⊂ R for m > 2. For ε ∈ (0, (y1 +y2)/2),
consider the family of distributions given by

F ((y1, y2), ε) = {F : (y1, y1 + ε) ∪ (y2 − ε, y2) ∪ ((y1 + y2)/2 − ε, (y1 + y2)/2 + ε) ⊆ S(F) ⊆ (y1, y2)} .

Let the kth order right (directed) derivative at x be defined as f (k)(x+) := limh→0+
f (k−1)(x+h)− f (k−1)(x)

h for all
k ≥ 1 and the right limit at c be defined as f (c+) := limh→0+ f (c + h). The left derivatives and limits are defined
similarly with +’s being replaced by −’s. Furthermore, let Eh = (h1, h2) and Ec = (c1, c2) and the directional limit at
(c1, c2) ∈ R2 for g(x, y) in the first quadrant in R2 be g(c+

1 , c+

2 ) := lim
‖Eh‖ → 0

h1, h2 > 0

g(Ec + Eh) and the directional partial

derivatives at (c1, c2) along paths in the first quadrant be

∂k+1g(c+

1 , c+

2 )

∂xk+1 := lim
‖Eh‖→0

h1,h2>0

1
‖h‖

(
∂k g(Ec + h)

∂xk −
∂k g(Ec)

∂xk

)
for k ≥ 1.

Theorem 5.1. Let Y2 = {y1, y2} ⊂ R with −∞ < y1 < y2 < ∞ and Xn = {X1, . . . , Xn} with

X i
iid
∼ F ∈ F((y1, y2), ε). Let Dn,2 be the random Dn,2-digraph based on Xn and Y2. Suppose k ≥ 0 is

the smallest integer for which F(·) has continuous right derivatives up to order (k + 1) at y1, (y1 + y2)/2,

f (k)(y+

1 ) + 2−(k+1) f (k)

((
y1+y2

2

)+
)

6= 0 and f ( j)(y+

1 ) = 0 for all j = 0, 1, . . . , k − 1; and ` ≥ 0 is the

smallest integer for which F(·) has continuous left derivatives up to order (` + 1) at y2, (y1 + y2)/2, f (`)(y−

2 ) +

2−(`+1) f (`)

((
y1+y2

2

)−
)

6= 0 and f ( j)(y−

2 ) = 0 for all j = 0, 1, . . . , ` − 1. Then γn(F) ∼ 1 + Bernoulli(pn(F))

where pn(F) := P(γn(F) = 2) and for bounded f (k)(·) and f (`)(·), we have the following limit

lim
n→∞

pn(F) =
f (k)(y+

1 ) f (`)(y−

2 )[
f (k)(y+

1 ) + 2−(k+1) f (k)

((
y1+y2

2

)+
)] [

f (`)(y−

2 ) + 2−(`+1) f (`)

((
y1+y2

2

)−
)] .

Note also that p1(F) = 0.

Proof. First suppose (y1, y2) = (0, 1). Recall that Γ1(Xn, NY ) =
(
X(n)/2,

(
1 + X(1)

)
/2
)

⊂ (0, 1) and γn(F) =

2 iff Xn ∩ Γ1(Xn, NY ) = ∅. Then for finite n,

pn(F) = P (γn(F) = 2) =

∫
S(F)\Γ1(Xn ,NY )

H(x1, xn) dxndx1,

where H(x1, xn) is as in Eq. (5).
Let ε ∈ (0, 1/3). Then P

(
X(1) < ε, X(n) > 1 − ε

)
→ 1 as n → ∞ with the rate of convergence depending on

F . So for sufficiently large n,

pn(F) ≈

∫ ε

0

∫ 1

1−ε

n (n − 1) f (x1) f (xn) [F(xn) − F(x1) + F (xn/2) − F ((1 + x1)/2)]n−2 dxndx1. (10)

Let

G(x1, xn) = F(xn) − F(x1) + F (xn/2) − F ((1 + x1)/2) .

The integral in Eq. (10) is critical at (x1, xn) = (0, 1), since G(0, 1) = 1 and for (x1, xn) ∈ (0, 1)2 the integral
converges to 0 as n → ∞. So we make the change of variables z1 = x1 and zn = 1 − xn , then G(x1, xn) becomes

G(z1, zn) = F(1 − zn) − F(z1) + F ((1 − zn)/2) − F ((1 + z1)/2) ,

and Eq. (10) becomes

pn(F) ≈

∫ ε

0

∫ ε

0
n (n − 1) f (z1) f (1 − zn) [G(z1, zn)]n−2 dzndz1. (11)
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The new integral is critical at (z1, zn) = (0, 0). Note that ∂r+s G(z1,zn)
∂zr

1 ∂zs
n

= 0 for all r, s ≥ 1. Let αi :=

∂ i+1G(z1,zn)

∂zi+1
1

∣∣∣∣
(0+,0+)

= f (i)(0+)+ 2−(i+1) f (i)
(

1
2
+
)

and β j :=
∂ j+1G(z1,zn)

∂z j+1
n

∣∣∣∣
(0+,0+)

= f ( j)(1−)+ 2−( j+1) f ( j)
(

1
2
−
)

.

Then by the hypothesis of the theorem, we have αi = 0 and f (i)
(

1
2
+
)

= 0 for all i = 0, 1, . . . , (k − 1); and β j = 0

and f ( j)
(

1
2
−
)

= 0 for all j = 0, 1, . . . , (` − 1). So the Taylor series expansions of f (z1) around z1 = 0+ up to

order k and f (1 − zn) around zn = 0+ up to order `, and G(z1, zn) around (0+, 0+) up to order (k + 1) and (` + 1)

in z1, zn , respectively, so that (z1, zn) ∈ (0, ε)2, are as follows.

f (z1) =
1
k!

f (k)(0+) zk
1 + O

(
zk+1

1

)
; f (1 − zn) =

(−1)`

`!
f (`)(1−) z`

n + O
(

z`+1
n

)
;

G(z1, zn) = G(0+, 0+) +
1

(k + 1)!

(
∂k+1G(0+, 0+)

∂zk+1
1

)
zk+1

1

+
1

(` + 1)!

(
∂`+1G(0+, 0+)

∂z`+1
n

)
z`+1

n + O
(

zk+2
1

)
+ O

(
z`+2

n

)
= 1 −

αk

(k + 1)!
zk+1

1 +
(−1)`+1β`

(` + 1)!
z`+1

n + O
(

zk+2
1

)
+ O

(
z`+2

n

)
.

Then substituting these expansions in Eq. (11), we obtain

pn(F) ≈

∫ ε

0

∫ ε

0
n(n − 1)

[
1
k!

f (k)(0+) zk
1 + O

(
zk+1

1

)] [ (−1)`

`!
f (`)(1−) z`

n + O
(

z`+1
n

)]
×

[
1 −

αk

(k + 1)!
zk+1

1 −
(−1)`β`

(` + 1)!
z`+1

n + O
(

zk+2
1

)
+ O

(
z`+2

n

)]n−2

dzndz1.

Now we let z1 = w n−1/(k+1), zn = v n−1/(`+1), and ν = min(k, `) to obtain

pn(F) ≈

∫ ε n1/(k+1)

0

∫ ε n1/(`+1)

0
n (n − 1)

[
1

nk/(k+1) k!
f (k)(0+)wk

+ O
(

n−1
)]

×

[
(−1)`

n`/(`+1) `!
f (`)(1−)v`

+ O
(

n−1
)]

×

[
1 −

1
n

(
αk

(k + 1)!
wk+1

+
(−1)`β`

(` + 1)!
v`+1

)
+ O

(
n−(ν+2)/(ν+1)

)]n−2

×

(
1

n1/(k+1)

) (
1

n1/(`+1)

)
dvdw

=

∫ ε n1/(k+1)

0

∫ ε n1/(`+1)

0
n (n − 1)

[
(−1)`

n2 k! `!
f (k)(0+) f (`)(1−)wkv`

+ O
(

n−(2k+3)/(k+1)
)

+ O
(

n−(2`+3)/(`+1)
)

+ O
(

n−2(k+2)(`+2)/((k+1)(`+1))
) ] [

1 −
1
n

[
αk

(k + 1)!
wk+1

+
(−1)` β`

(` + 1)!
v`+1

]
+ O

(
n−(ν+2)/(ν+1)

) ]n−2

dvdw,

letting n → ∞,

≈

∫
∞

0

∫
∞

0

(−1)`

k! `!
f (k)(0+) f (`)(1−)wkv` exp

[
−

αk

(k + 1)!
wk+1

−
(−1)` β`

(` + 1)!
v`+1

]
dvdw

=
f (k)(0+) f (`)(1−) (−1)` (k + 1)!(` + 1)!

k! `! (−1)` (k + 1)(` + 1) αk β`

=
f (k)(0+) f (`)(1−)

αk β`
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=
f (k)(0+) f (`)(1−)[

f (k)(0+) + 2−(k+1) f (k)
(

1
2
+
)] [

f (`)(1−) + 2−(`+1) f (`)
(

1
2
−
)] , (12)

as n → ∞ at rate O(c( f ) · n−m) where c( f ) is a constant depending on f .

For the general case of Y = {y1, y2}, the transformation φ(x) =
x−y1
y2−y1

maps (y1, y2) to (0, 1) and the transformed

random variables φ(X i ) are distributed with density g(x) = (y2 −y1) f
(

x−y1
y2−y1

)
on (0, 1). Substituting f (x) by g(x)

in Eq. (12), the desired result follows. �

Note that

• if min
(

f (k)(y+

1 ), f (`)(y−

2 )
)

= 0 and min
(

f (k)
(

(y1+y2)
2

+
)

, f (`)
(

(y1+y2)
2

−
))

6= 0 then pn(F) → 0 as n → ∞,

at rate O
(
c( f ) · n−m

)
and

• if min
(

f (k)(y+

1 ), f (`)(y−

2 )
)

6= 0 and f (k)
(

(y1+y2)
2

+
)

= f (`)
(

(y1+y2)
2

−
)

= 0 then pn(F) → 1 as n → ∞, at rate

O
(
c( f ) · n−m

)
.

For example, with F = U(y1, y2), in Theorem 5.1 we have k = ` = 0, f (y+

1 ) = f (y−

2 ) = f
(

(y1+y2)
2

+
)

=

f
(

(y1+y2)
2

−
)

= 1/(y2 − y1). Then limn→∞ pn(F) = 4/9, which agrees with the result given in Eq. (2).

Example 5.2. For F with density f (x) = (x + 1/2) I (0 < x < 1), we have k = ` = 0, f (0+) = 1/2, f (1−) = 3/2

and f
(

1
2
+
)

= f
(

1
2
−
)

= 1. Thus limn→∞ pn(F) = 3/8 = 0.375. The numerically computed (by numerical

integration) value of pn(F) with n = 1000 is p̂1000(F) ≈ 0.3753. �

Remark 5.3. Let pF := limn→∞ pn(F). Then the finite sample mean and variance of γn(F) are given by 1 + pn(F)

and pn(F) (1 − pn(F)), respectively; and the asymptotic mean and variance of γn(F) are given by 1 + pF and
pF (1 − pF ), respectively. �

Remark 5.4. In Theorem 5.1, we assume that f (k)(·) and f (`)(·) are bounded on (y1, y2). Suppose either f (k)(·)

or f (`)(·) or both are not bounded on (y1, y2) for k, l ≥ 0, in particular at y1, (y1 + y2)/2, y2, for example,
limx→y+

1
f (k)(x) = ∞. Then we find p(F) as

p(F) = lim
δ→0+

f (k)(y1 + δ) f (`)(y2 − δ)[
f (k)(y1 + δ) + 2−(k+1) f (k)

(
(y1+y2)

2 + δ
)] [

f (`)(y2 − δ) + 2−(`+1) f (`)
(

(y1+y2)
2 − δ

)] . �

Example 5.5. Consider the distribution with density function f (x) =
1

π
√

x (1−x)
I(0 < x < 1). Note that

Y2 = {0, 1} and f (x) is unbounded at x ∈ {0, 1}. See Fig. 1 (left) for the plot of f (x). Instead of f (x), we consider
g(x) =

π f (x)
2 arcsin(1−2δ)

I(δ < x < 1 − δ) with cdf G(x). For g(x), we have k = ` = 0 in Theorem 6.3 and then
limn→∞ pn(F) = limδ→0+ limn→∞ pn(G) = 1 using Remark 5.4. The numerically computed value of p1000(F) is
p̂1000(F) ≈ 1.000. �

Remark 5.6. The rate of convergence in Theorem 5.1 depends on f . From the proof of Theorem 5.1, it follows that
for sufficiently large n,

pn(F) ≈
f (k)(y+

1 ) f (`)(y−

2 )[
f (k)(y+

1 ) + 2−(k+1) f (k)
(

(y1+y2)
2

+
)] [

f (`)(y−

2 ) + 2−(`+1) f (`)
(

(y1+y2)
2

−
)] +

c( f )

nm ,

where

c( f ) =

s1 s
1

k+1
3 Γ

(
`+2
`+1

)
+ s2 s

1
`+1
4 Γ

(
k+2
k+1

)
(k + 1) (` + 1) s

k+2
k+1
3 s

`+2
`+1
4
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Fig. 1. Graph of the density in Example 5.5 (left) and Example 5.7 (right).

Fig. 2. Left plot is for the density in Example 5.11 with q = 2 or for the density in Example 5.12 with δ = 0. Right plot is for the density in
Example 5.12 with δ = 2/3.

with Γ (x) =
∫

∞

0 exp(−t)t (x−1) dt and

s1 =
1

n
k+`+1
`+1

(−1)`+1

k! (` + 1)!
f (k)(y+

1 ) f (`+1)(y−

2 ), s3 =
1

(k + 1)!

(
f (k)(y+

1 ) + 2−(k+1) f (k)

(
(y1 + y2)

2

+
))

,

s2 =
1

n
k+`+1

k+1

(−1)`

l! (k + 1)!
f (k+1)(y+

1 ) f (`)(y−

2 ), s4 =
(−1)`+1

(` + 1)!

(
f (`)(y−

2 ) + 2−(`+1) f (`)

(
(y1 + y2)

2

−
))

,

provided the derivatives exist. �

Example 5.7. Consider the distribution with absolute sine density f (x) = π/2 | sin(2 π x)| I(0 < x < 1). See

Fig. 1 (right) for the plot of f (x). Then Y2 = {0, 1} and since f (0+) = f
(

1
2
+
)

= 0 and f (1−) = f
(

1
2
−
)

= 0

and f ′(0) = f ′

(
1
2
+
)

= π2 and f ′(1−) = f ′

(
1
2
−
)

= −π2, we apply Theorem 5.1 with k = ` = 1. Then

limn→∞ pn(F) = 16/25 = 0.64. The numerically computed value (by numerical integration) of p1000(F) is
p̂1000(F) ≈ 0.6400. �

The distribution of γn(F) depends on the distribution of r(X i ) = min(d(X i , y1), d(X i , y2)). Based on this, we
have the following symmetry result.
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Proposition 5.8. Let F1 and F2 be two distributions with support S(F j ) ⊆ (y1, y2) for j = 1, 2 such that

F1(y1 + x) = 1 − F2 (y2 − x) for all x ∈ (0, y2 − y1) (hence f1(y1 + x) = f2 (y2 − x)). Also, let X j
n be a set

of iid random variables from F j for j = 1, 2. Then the distributions of γn(F j ) are identical for j = 1, 2.

Proof. By the change of variable X = ϕ(U ) = y2 −y1 −U for U ∈ (0, y2 −y1), we get F2 (y1 +u) = 1− F1(y2 −u).
Furthermore, ϕ(u) transforms Γ1(X 1

n , NY ) into Γ1(X 2
n , NY ) for X 2

n , so P(γn(F j ) = 2) are same for both j = 1, 2.
Hence the desired result follows. �

Below are asymptotic distributions of γn(F) for various families of distributions. Recall that pF =

limn→∞ pn(F) = limn→∞ P (γn(F) = 2). The asymptotic distribution of γn(F) is 1 + Bernoulli(pF ). For the
piecewise constant functions in Section 4.2.1, Theorem 5.1 applies. See Section 6.1 in [1].

Example 5.9. Consider the distribution F with density f (·) which is of the form

f (x) = (a x + b) I(x ∈ (0, 1)) with |a| ≤ 2, b = 1 − a/2.

So k = ` = 0 and f (0+) = b, f (1−) = a + b and f ( 1
2
+
) = f ( 1

2
−
) = a/2 + b. Then by Theorem 5.1, we have

lim
n→∞

pn(F) =
4 − a2

9 − a2 =: pF (a).

Note that pF (a) ∈ [0, 4/9] is continuous in a and decreases as |a| increases. If a = 0, then F = U(0, 1), and
pF (a = 0) = 4/9. Moreover, pF (a = ±2) = 0; that is, for a = ±2, the asymptotic distribution of γn(F) is
degenerate. �

Example 5.10. Consider the normal distribution N (µ, σ 2) restricted to the interval (0, 1) with µ ∈ R and σ > 0.
Then the corresponding density function is given by

f (x, µ, σ ) = κ

(
1

√
2π σ

)
exp

(
−

(x − µ)2

2 σ 2

)
I(0 < x < 1),

where κ =

[
Φ
(

1−µ
σ

)
− Φ

(
−µ
σ

)]−1
with Φ(·) being the cdf of the standard normal distribution N (0, 1). Note that

k = ` = 0, then by Theorem 5.1

lim
n→∞

pn(F) =
4(

2 + exp
(

4 µ−1
8 σ 2

)) (
2 + exp

(
3−4 µ

8 σ 2

)) =: pF (µ, σ ).

Observe that pF (µ, σ ) ∈ [0, 4/9) is continuous in µ and σ and increases as σ increases for fixed µ. Furthermore, for
fixed µ, limσ→∞ pF (µ, σ ) = 4/9 and limσ→0 pF (µ, σ ) = 0. For fixed σ > 0, limµ→±∞ pF (µ, σ ) = 0, pF (µ, σ )

decreases as |µ − 1/2| increases, and pF (µ, σ ) is maximized at µ = 1/2. �

Example 5.11. Consider the distribution F with density f (·) which is of the form

f (x) = 2q(q + 1)
[
xq I (0 < x < 1/2) + (x − 1/2)q I (1/2 ≤ x < 1)

]
with q ∈ [0, ∞].

See Fig. 2 (left) with q = 2. Since f (0+) = f
(

1
2
+
)

= 0, we can apply Theorem 5.1 with k = q and l = 0. Then

f (q)(0+) = (q + 1)! 2q , f (1−) = (q + 1), f
(

1
2
−
)

= (q + 1), and f (q)
(

1
2
+
)

= (q + 1)! 2q . By Theorem 5.1, we

have

lim
n→∞

pn(F) =
2q+2

3 (1 + 2q+1)
=: pF (q).

Note that pF (q) ∈ [4/9, 2/3] is a continuous increasing function of q. If q = 0, then F = U(0, 1). �

Example 5.12. Consider the distribution F with density f (·) which is of the form

f (x) = (δ + 12 (1 − δ) x2) I(0 < x < 1/2) + (δ + 12 (1 − δ) (x − 1/2)2) I(1/2 ≤ x < 1) with δ ∈ [0, 1].
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See Fig. 2 with δ = 0 (left) and δ = 2/3 (right). Since f (0+) = δ, f (1−) = (3 − 2 δ), f
(

1
2
−
)

= (3 − 2 δ), and

f
(

1
2
+
)

= δ, for {δ ∈ (0, 1]} we have k = ` = 0 and so by Theorem 5.1

lim
n→∞

pn(F) = 4/9 for δ ∈ (0, 1].

Note that if δ = 1, then F = U(0, 1). For δ = 0, we can apply Theorem 5.1 with k = 2 and l = 0. Hence we get
pF (δ = 0) = 16/27. Observe that in this example, γn(F) has two distinct non-degenerate distributions at different
values of δ. �

Remark 5.13. If, in Theorem 5.1, we have f (k)(0+) = f (k)
(

1
2
+
)

and f (`)(1−) = f (`)
(

1
2
−
)

, then

lim
n→∞

pn(F) =

(
1

1 + 2−(k+1)

)(
1

1 + 2−(`+1)

)
.

In particular, if k = ` = 0, then limn→∞ pn(F) = 4/9 (i.e., γn(F) and γn (U(0, 1)) have the same asymptotic
distributions). �

Example 5.14. Consider the Beta(ν1, ν2) distribution with ν1, ν2 ≥ 1. The density function is

f (x, ν1, ν2) =
xν1−1(1 − x)ν2−1

β(ν1, ν2)
I(0 < x < 1) where β(ν1, ν2) =

Γ (ν1)Γ (ν2)

Γ (ν1 + ν2)
.

Then limn→∞ pn(Beta(ν1, ν2)) = 0 at rate O
(
n−(ν1+ν2−2)

)
. Let pn(ν1, ν2) denote the P (γn(F) = 2) for F =

Beta(ν1, ν2). The numerically computed values of pn(ν1, ν2) for n = 1000 are p̂1000(4, 1) = p̂1000(1, 4) ≈ 0.000005,
p̂1000(4, 2) = p̂1000(2, 4) < 0.00001 and p̂1000(2, 2) ≈ 0.000001. �

Here is an example with general support (y1, y2).

Example 5.15. Consider the distribution F with density f (·) which is of the form f (x) = (ax + b) I(y1 < x <

y2) with b =
1

(y2−y1)

(
1 − a (y2

2 − y2
1)/2

)
and |a| ≤

2
(y2−y1)

2 . Using Theorem 5.1, we obtain pF =
a2 (y2−y1)

4
−4

a2 (y2−y1)
4−9

. If

(y1, y2) = (0, 1), then b = 1 − a/2 and pF (a) =
a2

−4
a2−9

. In both cases, pF (a) is maximized for the uniform case;

i.e., when a = 0, then we have pF (a = 0) = 4/9. Furthermore, γn(F) is degenerate in the limit when a = ±
2

(y2−y1)
2 ,

since pn(F) → 0 as n → ∞ at rate O
(
n−1

)
. �

For more detail and examples, see Section 6.4 and 7.1 in [1].

6. The distribution of the domination number of Dn,m-digraphs

In this section, we attempt the more challenging case of m > 2. For c < d in R, define the family of distributions

H (R) :=

{
FX,Y : (X i , Yi ) ∼ FX,Y with support S(FX,Y ) = (c, d)2 ( R2, X i ∼ FX and Yi

iid
∼ FY

}
.

We provide the exact distribution of γ (Dn,m) for H (R)-random digraphs in the following theorem. Let [m] :=

{0, 1, . . . , m − 1} and Θ S
a,b := {(u1, . . . ub) :

∑b
i=1 ui = a : ui ∈ S, ∀i}. Let Ym = {Y1, Y2, . . . , Ym} whose

order statistics are denoted as Y( j) for j = 1, 2, . . . , m. Note that the order statistics are distinct a.s. provided Y
has a continuous distribution. Let γ (D j ) be the domination number of the digraph induced by X j and Y j (see
Section 4). Given Y( j) = y( j) for j = 1, . . . , m, let F j be the (conditional) marginal distribution of X restricted to
I j =

(
y( j−1), y( j)

)
for j = 1, . . . , (m + 1), En be the vector of numbers of X points n j falling into intervals I j . Let

f EY (Ey) be the joint distribution of the order statistics of Ym , i.e., f EY (Ey) =
1

m!

∏m
j=1 f (y j ) I(c < y1 < · · · < ym < d),

and f j,k(y j , yk) be the joint distribution of Y( j), Y(k). Then we have the following theorem which is a generalization
of the main result of [10].
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Theorem 6.1. Let D be an H (R)-random Dn,m-digraph. Then the probability mass function of the domination
number of D is given by

P(γ (Dn,m) = k) =

∫
S

∑
En∈Θ [n+1]

n,(m+1)

∑
Ek∈Θ [3]

k,(m+1)

P( EN = En) ζ(k1, n1) ζ(km+1, nm+1)

×

m∏
j=2

η(k j , n j ) f EY (Ey) dy1 · · · dym

where P( EN = En) is the joint probability of n j points falling into intervals I j for j = 1, 2, . . . , (m +1), k j ∈ {0, 1, 2},
and

ζ(k j , n j ) = max
(
I(n j = k j = 0), I(n j ≥ k j = 1)

)
for j = 1, (m + 1), and

η(k j , n j ) = max
(
I(n j = k j = 0), I(n j ≥ k j ≥ 1)

)
· pn j (F j )

I(k j =2)
(
1 − pn j (F j )

)I(k j =1)

for j = 2, . . . , m, and the region of integration is given by

S := {(y1, y2, . . . , ym) ∈ (c, d)2
: c < y1 < y2 < · · · < ym < d}.

Proof. For γ (Dn,m) =
∑m+1

j=1 γ (D j ) = k, we must have γ (D j ) = k j for j = 1, . . . , (m + 1) so that∑m+1
j=1 k j = k and

∑m+1
j=1 n j = n. By definition, Θ [n+1]

n,(m+1) is the collection of such En and since k j ∈ {0, 1, 2} for all

j = 1, . . . , (m + 1), Θ [3]

k,(m+1) is the collection of such Ek. We treat the end intervals, I1 and Im+1, separately. The
indicator functions in the statement of the theorem guarantees that the pairs n j , k j are compatible for j ∈ {1, (m +1)};
that is, incompatible pairs such as (n j = 0, k j > 0) are eliminated. The ζ terms equal unity if (n j , k j ) are compatible.
Therefore we have

P(γ (Dn,m) = k) =

∫
S

∑
En∈Θ [n+1]

n,(m+1)

∑
Ek∈Θ [3]

k,(m+1)

P( EN = En)

m+1∏
j=1

η(k j , n j ) f EY (Ey) dy1 · · · dym

=

∫
S

∑
En∈Θ [n+1]

n,(m+1)

∑
Ek∈Θ [3]

k,(m+1)

P( EN = En)
∏

j∈{1,(m+1)}

η(k j , n j )

m∏
j=2

η(k j , n j ) f EY (Ey) dy1 · · · dym

=

∫
S

∑
En∈Θ [n+1]

n,(m+1)

∑
Ek∈Θ [3]

k,(m+1)

P( EN = En) ζ(k1, n1) ζ(km+1, nm+1)

m∏
j=2

η(k j , n j ) f EY (Ey) dy1 · · · dym

where we have used the conditional pairwise independence of γ (D j ). The η terms are based on the compatibility of
pairs (n j , k j ) for j = 1, . . . , (m + 1) and pn j (F j ) = P(γ (D j ) = 2). �

For n, m < ∞, the expected value of domination number is

E[γ (Dn,m)] = P
(
X(1) < Y(1)

)
+ P

(
X(n) > Y(m)

)
+

m∑
j=2

n∑
k=1

P(N j = k) E[γ (D j )] (13)

where

P(N j = k) =

∫ d

c

∫ d

y( j−1)

f j−1, j
(
y( j−1), y( j)

) [
FX
(
y( j)

)
− FX

(
y( j−1)

)]k
×
[
1 −

(
FX
(
y( j)

)
− FX

(
y( j−1)

))]n−k dy( j)dy( j−1)

and E[γ (D j )] = 1 + pk(F j ).

Corollary 6.2. For FX,Y ∈ H (R) with support S(FX ) ∩ S(FY ) of positive measure, limn→∞ E[γ (Dn,n)] = ∞.
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Proof. Consider the intersection of the supports S(FX ) ∩ S(FY ) that has positive (Lebesgue) measure. For S(Y ) \

S(X); i.e., in the intervals I j falling outside the intersection S(FX )∩S(FY ), the domination number of the component
D j is γ (D j ) = 0 w.p. 1 but inside the intersection, γ (D j ) > 0 w.p. 1 for infinitely many j . That is,

E[γ (Dn,n)] = P
(
X(1) < Y(1)

)
+ P(X(n) > Y(n)) +

n∑
j=2

n∑
k=1

P(N j = k) E[γN j (F j )]

>

n∑
j=2

n∑
k=1

P(N j = k) E[γN j (F j )] =

n∑
j=2

n∑
k=1

P(N j = k) (1 + pN j (F j ))

>

n∑
j=2

n∑
k=1

P(N j = k) >

n∑
j=2

P(N j ≥ 1)

= O(n) (as n → ∞)

where E[γN j (F j )] = (1+ pN j (F j )) follows from the fact that γN j (F j ) ∼ 1+Bernoulli(pN j (F j )) from Theorem 4.2.
Furthermore, P(N j ≥ 1) ≈ 1 for sufficiently large n. Then the desired result follows. �

Theorem 6.3. Let Dn,m be an H (R)-random Dn,m-digraph. Then (i) for fixed n < ∞, limm→∞ γ (Dn,m) = n

a.s. (ii) for fixed m < ∞, limn→∞ γ (Dn,m)
d
= m + 1 +

∑m
j=1 B j , where B j ∼ Bernoulli(pF j ) where

d
= stands for

equality in distribution.

Proof. Part (i) is trivial. As for part (ii), first note that N j → ∞ as n → ∞ for all j a.s., hence limn→∞ γ (D1) =

limn→∞ γ (Dm+1) = 1 a.s. and limn→∞ γ (D j ) = 1 + Bernoulli(pF j ) a.s. for j = 2, . . . , m where

pF j =

∫ d

c

∫ d

y( j−1)

H∗
(
y( j−1), y( j)

)
f j−1, j

(
y( j−1), y( j)

)
dy( j)dy( j−1)

with H∗
(
y( j−1), y( j)

)
= limn j →∞(pn j (F j )) which is given in Theorem 5.1 for F j with density f j whose support is(

y( j−1), y( j)
)
. Then the desired result follows. �

So far, Ym is assumed to be a random sample, so P(γ (Dn,m) = k) includes the integration with respect to f EY (Ey)

which can be lifted by conditioning. Conditional on Ym =
{
y(1), . . . , y(m)

}
, by Theorem 6.1, we have

P(γ (Dn,m) = k) =

∑
En∈Θ [n+1]

n,(m+1)

∑
Ek∈Θ [3]

k,(m+1)

P( EN = En) ζ(k1, n1) ζ(km+1, nm+1)

m∏
j=2

η(k j , n j ),

where ζ(k j , n j ) and η(k j , n j ) are as in Theorem 6.1; and the expected domination number E[γ (Dn,m)] is as in Eq.

(13) with P(N j = k) =
[
FX
(
y( j)

)
− FX

(
y( j−1)

)]k [1 −
(
FX
(
y( j)

)
− FX

(
y( j−1)

))]n−k ; and limn→∞ γ (Dn,m)
d
=

m + 1 +
∑m

j=1 B j , where B j ∼ Bernoulli(pF j ) with pF j := limn j →∞ pn j (F j ).
Let FX be a distribution with support S(FX ) ⊆ (0, 1) and density fX (x). Conditional on Ym =

{
y(1), . . . , y(m)

}
,

let F j be the distribution with density f j (x) =
1

(y( j)−y( j−1))
fX

(
x−y( j−1)

y( j)−y( j−1)

)
for j = 2, . . . , m, and S(F j (x)) is non-

empty for j ∈ {1, (m + 1)}. By this construction, the independence of the distribution of γn(F j ) from I j obtains; i.e.,

γn(F j )
d
= γn(FX ) for all j ∈ {1, . . . , (m + 1)}. Now consider the family HU (R) defined as

HU (R) :=

{
FX,Y : (X i , Yi ) ∼ FX,Y , Y j

iid
∼ U(c, d) for (c, d) ( R, and X i |Ym

iid
∼ F j

}
.

Clearly HU (R) ( H (R).

Corollary 6.4. Suppose FX,Y ∈ HU (R). Then

P(γ (Dn,m) = k) =

∑
En∈Θ [n+1]

n,(m+1)

∑
Ek∈Θ [3]

k,(m+1)

P( EN = En) ζ(k1, n1) ζ(km+1, nm+1)

m∏
j=2

η(k j , n j )
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where ζ(k j , n j ) and η(k j , n j ) are as in Theorem 6.1.

Note that if in addition, PF j (X ∈ I j ) = PU (X ∈ I j ) for all j , then P( EN = En) =
( n+m

n

)−1
, since each En ∈ Θ [n+1]

n,(m+1)

occurs with probability
( n+m

n

)−1
. Moreover, F = U(c, d) is a special case of Corollary 6.4. For n, m < ∞, we have

the explicit form of pn j (F j ) for F j with piecewise constant density f j .
Here are some examples which are generalized from piecewise-constant densities so that now the distribution of

γ (D j ) is independent from the support (y( j−1), y( j)). Hence Corollary 6.4 applies to these examples.

Example 6.5. Let u j :=
(y( j−1)+y( j))

2 and v j := y( j) − y( j−1).

• If f (·) is of the form

f (x) =
1

(1 − 2 δ) v j
I
(
x ∈

(
y( j−1) + δ v j , y( j) − δ v j

))
with δ ∈ [0, 1/3]

then pn(F) is as in Eq. (7).
• If f (·) is of the form

f (x) =
1

(1 − 2 δ) v j
I
(
x ∈

(
y( j−1), u j − δ v j

)
∪
[
u j + δ v j , y( j)

))
with δ ∈ [0, 1/3],

then pn(F) is as in Eq. (8).
• If f (·) is of the form

f (x) =
(1 + δ)

v j
I
(
x ∈

(
y( j−1), u j

))
+

(1 − δ)

v j
I
(
x ∈

[
u j , y( j)

))
,

then pn(F) is as in Eq. (9).
• If f (·) is of the form

f (x) = f1(x) I
(
x ∈

(
y( j−1), t j

))
+ f2 (x) I

(
x ∈

[
t j , w j

))
+ f3 (x) I

(
x ∈

[
w j , y( j)

))
where t j =

y( j)+3 y( j−1)

4 , w j =
3y( j)+y( j−1)

4 , f1(x) =
(1+δ)

v j
, f2 (x) =

(1−δ)
v j

and f3 (x) =
(1+δ)

v j
, then pn(F) is as in

Example 4.9. �

Theorem 6.6. Let D be an HU (R)-random Dn,m-digraph with the additional assumption that PF j (X ∈ I j ) =

PU (X ∈ I j ) for all j . Then

E[γ (Dn,m)] =
2 n

n + m
+

n! m (m − 1)

(n + m)!

n∑
i=1

(n + m − i − 1)!

(n − i)!
(1 + pi (F))

where pi (F) = P(γ (Di,2) = 2).

Proof. Similar to the Proof of Theorem 4 in [10]. �

Furthermore, from Corollary 6.2, we have E[γ (Dn,n)] → ∞ as n → ∞.

Theorem 6.7. Let Dn,m be an HU (R)-random Dn,m-digraph. Then (i) for fixed n < ∞, limm→∞ γ (Dn,m) = n

a.s. (ii) for fixed m < ∞, limn→∞ γ (Dn,m)
d
= m + 1 + B, where B ∼ Binomial(m − 1, pF ) where pF =

limn→∞ P(γ (Dn,2) = 2).

Proof. Similar to the Proof of Theorem 5 in [10]. �

Remark 6.8 (Extension to Multi-dimensional Case). The existence of ordering of points in R is crucial in our
calculations. The order statistics of Ym partition the support (c, d) into disjoint intervals a.s. which can also be viewed
as the Delaunay tessellation of R based on Ym . This nice structure in R avails a minimum dominating set and hence
the domination number, both in polynomial time. Furthermore, the Γ1-region is readily available by the order statistics
of Xn ; also the components of the digraph restricted to intervals I j (see Section 4) are not connected to each other,
since NY (x)∩ NY (y) = ∅ for x, y in distinct intervals. The straightforward extension to multiple dimensions (i.e., Rd
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with d > 1) does not have a nice ordering structure; and Ym does not readily partition the support, but we can use
the Delaunay tessellation based on Ym . Furthermore, in multiple dimensions finding a minimum dominating set is an
NP-hard problem; and Γ1-regions are not readily available (in fact for n j > 3, complexity of finding the Γ1-regions
is an open problem). In addition, in multiple dimensions the components of the digraph restricted to Delaunay cells
are not necessarily disconnected from each other, since NY (x) ∩ NY (y) 6= ∅ might hold for x, y in distinct Delaunay
cells. These have motivated us to generalize the proximity map NY in order to avoid the difficulties above. See [2,3],
where two new families of proximity maps are introduced, and the generalization of CCCD are called proximity catch
digraphs. The distribution of the domination number of these proximity maps is still a topic of ongoing research. �

7. Discussion

This article generalizes the main result of Priebe et al. [10] in several directions. Priebe et al. [10] provided the
exact (finite sample) distribution of the class cover catch digraphs (CCCDs) based on Xn and Ym both of which were
sets of iid random variables from a uniform distribution on (c, d) ⊂ R with −∞ < c < d < ∞ and the proximity
map NY (x) := B(x, r(x)) where r(x) := miny∈Ym d(x, y). First, given Y2 = {y1, y2} ⊂ R, we lift the uniformity
assumption of Xn by assuming it to be from a non-uniform distribution F with support S(F) ⊆ (y1, y2). The exact
distribution of the domination number of the associated CCCD, γn(F), is calculated for F that has piecewise constant
density f on (y1, y2). For more general F , the exact distribution is not analytically available in simple closed form,
so we compute it by numerical integration. However, the asymptotic distribution of γn(F) is tractable, which is the
one of the main results of this article. Unfortunately, the distribution of γn(F) depends on Y2, hence the distribution
of the domination number of a CCCD, γ (Dn,m), for Xn and Ym with m > 2, for general F includes integration
with respect to order statistics of Ym . We provide the conditions that make γ (Dn,m) independent of Ym . As another
generalization direction, we also devise proximity maps depending on F that will yield the distribution identical to
that of γn(U(y1, y2)). Our set-up is more general than the one given in [10]. The definition of the proximity map is
generalized to any probability space and is only assumed to have a regional relationship to determine the inclusion of
a point in the proximity region.

The exact (finite sample) distribution of γn(F) characterizes F up to a special type of symmetry (see
Proposition 5.8). Furthermore, this article will form the foundation of the generalizations and calculations for
uniform and non-uniform cases in multiple dimensions. As in [3], we can use the domination number in testing one-
dimensional spatial point patterns and our results will help make the power comparisons possible for large families of
distributions.
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