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1. Introduction

The probabilistic behavior of random Class Cover Catch Digraphs (CCCDs) is of considerable recent interest, due to their
use in pattern classification methods involving proximity regions. Priebe et al. (2001) found the exact distribution of the
domination number of CCCDs for the uniform distribution in one dimension. Under the same conditions, DeVinney and
Wierman (2002) proved the SLLN for the domination number. Wierman and Xiang (2004) further extended the SLLN to a
class of continuous distributions in one dimension. Xiang (2006) calculated the variance of the domination number for the
uniform distribution in one dimension.
Solutions to the CCCD problem can be used to build classifiers. More details and examples of the application of CCCDs

to classification are presented in Priebe et al. (2003), Marchette and Priebe (2003), Ceyhan and Priebe (2005), Eveland et al.
(2005), Ceyhan and Priebe (2006), DeVinney and Priebe (2006), Ceyhan et al. (2006), and Ceyhan et al. (2007).

1.1. The class cover problem

The class cover problem (CCP) is motivated by its applications in pattern classification. The study of the CCPwas initiated
by Cannon and Cowen (2000), and has been actively pursued recently, because its solution can be directly used to generate
classifiers competitive with traditional methods.
For a formal description of the CCP, consider a dissimilarity function d : Ω × Ω → R such that d(α, β) = d(β, α) ≥

d(α, α) = 0 for ∀α, β ∈ Ω . We suppose X = {Xi : i = 1, . . . , n} and Y = {Yj : j = 1, . . . ,m} are two sets
of i.i.d. random variables with class-conditional distribution functions FX and FY , respectively. We assume that each Xi is
independent of each Yj, and all Xi ∈ X and all Yj ∈ Y are distinct with probability one. For each Xi, we define its covering
ball by B(Xi) = {ω ∈ Ω : d(ω, Xi) < minj d(Yj, Xi)}. A class cover of X is a subset of covering balls whose union contains
all Xi ∈ X. Obviously, the set consisting of all covering balls is a class cover. However, we want to choose a class cover
to represent class X that is as small as possible, to make the classifier less complex while keeping most of the relevant
information. Therefore, the CCP we consider here is to find a minimum-cardinality class cover.
Furthermore,we can convert the CCP to the graph theory problemof finding dominating sets. The class cover catch digraph

(CCCD) induced by a CCP is the digraph D = (V , A) with the vertex set V = {Xi : i = 1, . . . , n} and the arc set A such that
there is an arc (Xi, Xj) if and only if Xj ∈ B(Xi). It is easy to see that the CCP is actually equivalent to finding a minimum-
cardinality dominating set of the corresponding CCCD.
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1.2. Previous results

The domination number of a CCCD is the cardinality of the CCCD’s minimum dominating set. In the CCCD setting, we
denote the domination number by Γn,m(X,Y), or simply by Γn,m.
DeVinney and Wierman (2002) proved the Strong Law of Large Numbers (SLLN) for the special caseΩ = R, FX = FY =

U[0, 1]:

Theorem 1.1. If Ω = R, FX = FY = U[0, 1], and m = brnc, r ∈ (0,∞), then

lim
n→+∞

Γn,m

n
= g(r) ≡

r(12r + 13)
3(r + 1)(4r + 3)

a.s.

Wierman and Xiang (2008) generalized this result by proving the SLLN for general distributions in one dimension:

Theorem 1.2. If Ω = R, the density functions fX , fY are continuous and bounded on [a, b], and m/n→ r, r ∈ (0,∞), then

lim
n→∞

Γn,m(fX , fY )
n

=

∫ b

a
g
(
r ·
fY (u)
fX (u)

)
· fX (u)du a.s.,

where g(r) is the same as in Theorem 1.1.

As a first step in proving the Central Limit Theorem (CLT) for the domination number Γn,m, Xiang (2006) calculated the
limiting variance for Γn,m. The calculation is very technical and lengthy, but the final result can be simply stated as follows,
with an outline of the calculation given in Appendix A:

Theorem 1.3. If Ω = R, FX = FY = U[0, 1], and m/n→ r, r ∈ (0,∞), then

Var(Γn,m)
m

→ v(r) =
1536r5 + 6848r4 + 11536r3 + 8836r2 + 2793r + 180

9(r + 1)3(4r + 3)4
.

1.3. A central limit theorem

In this paper, we prove the CLT for the domination number generated by uniformly distributed data:

Theorem 1.4. If Ω = R, FX = FY = U[0, 1], and m/n→ r, r ∈ (0,∞), then

1
m1/2

(
Γn,m − E[Γn,m]

) L
→ N(0, σ 2),

where σ 2 = limm→∞ Var[Γ n,m]
m (the exact limiting value is given in Theorem 1.3).

In our proof of the CLT, we extensively use the concept of negative association, so in the next sub-section we introduce some
of its basic properties and consequences.

1.4. Negative association

The concept of negatively associated (NA) random variables was introduced and carefully studied by Joag-Dev and
Proschan (1983). Since then, limit theorems for this type of random variables have been well established. (See Newman
(1984) and Taylor et al. (2002).)

Definition 1.1. Random variables Xi, i = 1, . . . , k, are said to be negatively associated (NA) if for every pair of disjoint
subsets I, J of {1, . . . , k}, and any increasing functions fI and fJ the following covariance exists,

Cov
{
fI(Xi, i ∈ I), fJ(Xj, j ∈ J)

}
≤ 0,

‘‘NA’’ may also refer to the random vector (X1, . . . , Xk).

The following proposition is obvious from the definition.

Proposition 1.1. Increasing functions defined on disjoint subsets of a set of NA random variables are NA.

Furthermore, several types of random vectors were proven to be NA by Joag-Dev and Proschan (1983), particularly:

Proposition 1.2. A multinomial random vector is NA.
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Proposition 1.3. Let X1, . . . , Xk be k independent random variables with PF2 (log-concave) densities. Then, given
∑k
i=1 Xi, the

random vector (X1, . . . , Xk) is NA.

In some situations, a dependence condition called negative dependence, which is weaker than negative association, is used.

Definition 1.2. Random variables Xi, i = 1, . . . , k, are said to be negatively dependent (ND) if for any real numbers
xi, i = 1, . . . , k,

P(Xi > xi, i = 1, . . . , k) ≤
k∏
i=1

P(Xi > xi),

and

P(Xi ≤ xi, i = 1, . . . , k) ≤
k∏
i=1

P(Xi ≤ xi).

Note. By choosing the functions in Definition 1.1 to be indicator functions of the events {Xi > xi} and the events {Xi ≤ xi},
it is readily apparent that negative association implies negative dependence.

Taylor et al. (2002) proved that the SLLN holds for row-wise ND random variable arrays. We apply one part of their
theorem:

Theorem 1.5. Let {Xk,m : 1 ≤ k ≤ m,m ≥ 1} be row-wise ND random variable arrays such that E[Xk,m] = 0 for each k and m.
If |Xk,m| ≤ M for all k and m for some constant M <∞, then

1
m1/p

m∑
k=1

Xk,m
a.s.
−→ 0, 0 < p < 2.

Newman (1984, Theorem 11) established the CLT for ND sequences. First, a distributional limit theorem for row-wise ND
random variable arrays was proved:

Theorem 1.6. Suppose Xk,m and Yk,m, 1 ≤ k ≤ m,m ≥ 1, are triangular arrays such that for each m and k, random variable
Xk,m is equidistributed with Yk,m. Assume for each m, the random variables Xk,m, k = 1, . . . ,m are ND, but Yk,m, k = 1, . . . ,m
are independent. If in addition,

lim
m→∞

∑
1≤i<j≤m

Cov(Xi,m, Xj,m)

m
= 0,

then 1
m1/2

∑m
k=0 Xk,m converges in distribution if and only if

1
m1/2

∑m
k=0 Yk,m converges in distribution to the same limit

distribution.

By applying the classical CLT for bounded i.i.d. random variable arrays to the {Yk,m} in the theorem above, we conclude that:

Theorem 1.7. Let {Xk,m : 1 ≤ k ≤ m,m ≥ 1} be identically distributed row-wise ND random variable arrays such that
E[Xk,m] = 0 for each k and m. If |Xk,m| ≤ M, and

lim
m→∞

∑
1≤k<l≤m

Cov(Xk,m, Xl,m)

m
= 0,

then

1
m1/2

m∑
k=1

Xk,m
L
−→ N(0, σ 2),

where σ 2 = limm→∞
Var[∑mk=1 Xk,m]

m .

Remark. Since negative association implies negative dependence, Theorems 1.5–1.7 will all hold if the {Xk,m : 1 ≤ k ≤
m,m ≥ 1} are row-wise NA.

In Appendix B, we show that the {Nj,m : 0 ≤ j ≤ m,m ≥ 1} in the CCCD problem are row-wise NA.
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2. Proof of the CLT

2.1. Basic idea

For j = 1, 2, 3, . . . ,m, let Y(j) denote the jth order statistic of Y1, . . . , Ym, and define Y(0) = 0 and Y(m+1) = 1. Define αj,m
as the minimum number of covering balls required to cover the Nj,m X-points contained in [Y(j), Y(j+1)]. It should be noted
that Γn,m =

∑m
j=0 αj,m; thus, the original CCP is decomposed into m + 1 sub-CCPs of finding the domination number αj,m

in the interval [Y(j), Y(j+1)]. Since αj,m, j = 0, . . . ,m, are dependent, the classical CLT theorem cannot be directly applied.
However, given Nj,m, j = 0, . . . ,m, the domination numbers αj,m, 0 = 1, . . . ,m, are conditionally independent. Therefore,
we can calculate the conditional characteristic function fm for

∑m
j=0 αj,m on theσ -field generated byNj,m, j = 1, . . . ,m. Using

the Taylor expansion, a lengthy calculation shows that fm can be expressed in terms of E[αj,m | Nj,m] and Var[αj,m | Nj,m].
We prove that these two sequences of random variables are both negatively associated. Thus, applying limit theorems for
row-wise NA arrays, we conclude that fm converges to a constant almost surely. By the dominated convergence theorem, the
unconditional characteristic function E[fm] goes to the same constant, hence the result follows by the convergence theorem
for characteristic functions.

2.2. Detailed proof

Denote Fm = σ(N0,m, . . . ,Nm,m), the σ -field generated by Nj,m, j = 0, . . . ,m. Let

Zj,m =
1
m1/2

(
αj,m − E[αj,m]

)
and

fm(t) = E

eit m∑j=0 Zj,m | Fm
 .

By Lemma A.3, the Zj,m, j = 0, . . . ,m are conditionally independent given Fm, so

fm(t) =
m∏
j=0

E
[
eitZj,m | Fm

]
.

Again by Lemma A.3, we know that Zj,m only depends on Nj,m given Fm, so

fm(t) =
m∏
j=0

E
[
eitZj,m | Nj,m

]
.

Using the Taylor expansion

eiz = 1+ iz −
1
2
z2 + A(z), where |A(z)| ≤

|z|3

6
,

the conditional characteristic function of Zj,m can be written as

E
[
eitZj,m | Fm

]
= 1+ itE

[
Zj,m | Nj,m

]
−
t2

2
E
[
Z2j,m | Nj,m

]
+ r (1)j,m,

where

|r (1)j,m| = E
[
|A(tZj,m)| | Nj,m

]
≤ E

[
|tZj,m|3

6

∣∣∣∣Nj,m] .
Therefore, by substituting the formula for E

[
eitZj,m | Fm

]
into the expression for fm(t), we obtain

log fm(t) =
m∑
j=0

log E
[
eitZj,m | Fj,m

]
=

m∑
j=0

log
(
1+ itE[Zj,m | Nj,m] −

t2

2
E
[
Z2j,m | Nj,m

]
+ r (1)j,m

)
.

Again, by the Taylor expansion

log(1+ δ) = δ −
δ2

2
+ r(δ), where |r(δ)| ≤

|δ|3

24
for |δ| < 1, (1)
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log fm(t) can be further expanded as

log fm(t) =
m∑
j=0

(
itE
[
Zj,m | Nj,m

]
−
t2

2
E
[
Z2j,m | Nj,m

]
+ r (1)j,m

−
1
2

(
itE[Zj,m | Nj,m] −

t2

2
E
[
Z2j,m | Nj,m

]
+ r (1)j,m

)2
+ r (2)j,m

)
, (2)

where
∣∣∣r (2)j,m∣∣∣ ≤ 1

24

∣∣∣itE [Zj,m | Nj,m]− t2
2 E
[
Z2j,m | Nj,m

]
+ r (1)j,m

∣∣∣3 .
Recall that

∣∣∣r (1)j,m∣∣∣ is bounded by E [ |tZj,m|36 | Nj,m
]
. Since |αj,m| is bounded by 2 as shown in Priebe et al. (2001), |Zj,m| =∣∣∣ 1

m1/2
(
αj,m − E[αj,m]

)∣∣∣ ≤ 4
√
m . Thus∣∣∣r (1)j,m∣∣∣ ≤ |t|3436m3/2

≡ C1
1
m3/2

(3)

where C1 = C1(t) ≡ 32
3 |t|

3.

We now proceed to consider the quadratic term in Eq. (2). By the same reasoning used to derive the bound on
∣∣∣r (1)j,m∣∣∣, we

conclude that∣∣E[Zj,m | Nj,m]∣∣ ≤ 4
m1/2

, (4)∣∣E [Z2j,m | Nj,m]∣∣ ≤ 16m . (5)

Using Inequalities (3)–(5), we may write the quadratic term in Eq. (2) as

t2

2
E[Zj,m | Nj,m]2 + r

(3)
j,m, (6)

where ∣∣∣r (3)j,m∣∣∣ ≤ C3 1m3/2 . (7)

It remains to check
∣∣∣r (2)j,m∣∣∣. Based on the bound for ∣∣∣r (2)j,m∣∣∣ given in Formula (2), and Inequalities (3)–(5), whenm is sufficiently

large, ∣∣∣r (2)j,m∣∣∣ ≤ 1
24

∣∣∣∣itE[Zj,m | Nj,m] − t22 E [Z2j,m | Nj,m]+ r (1)j,m
∣∣∣∣3 ≤ C2 1m3/2 . (8)

Now we put all the pieces together. By substituting Formula (6) into Eq. (2), we have

log fm(t) =
m∑
j=0

(
itE[Zj,m | Nj,m] −

t2

2
E
[
Z2j,m | Nj,m

]
+
t2

2
E[Zj,m | Nj,m]2 + r

(1)
j,m + r

(2)
j,m + r

(3)
j,m

)

= it
m∑
j=0

E[Zj,m | Nj,m] −
t2

2

m∑
j=0

Var[Zj,m | Nj,m] +
m∑
j=0

(
r (1)j,m + r

(2)
j,m + r

(3)
j,m

)
, (9)

so

fm(t) = e
it
m∑
j=0
E[Zj,m|Nj,m]

· e
−
t2
2

m∑
j=0
Var[Zj,m|Nj,m]

· e

m∑
j=0

(
r(1)j,m+r

(2)
j,m+r

(3)
j,m

)
,

and taking expectations yields that the characteristic function E[fm(t)] equals

E

eit m∑j=0 E[Zj,m|Nj,m] · e− t22 m∑
j=0
Var[Zj,m|Nj,m]

· e

m∑
j=0

(
r(1)j,m+r

(2)
j,m+r

(3)
j,m

) . (10)

Note that by Lemma B.2, the random variable array {Nj,m} is NA. Because E[αj,m | Nj,m] − E[αj,m] is an increasing function of
Nj,m, by Proposition 1.1, the random variable array

{
E[αj,m | Nj,m] − E[αj,m]

}
is also NA. Hence, by the CLT for row-wise NA

arrays (Theorem 1.7), we get
m∑
j=0

E[Zj,m | Nj,m] =
1
m1/2

m∑
j=0

(
E[αj,m | Nj,m] − E[αj,m]

) L
−→ N(0, σ12),
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where

σ1
2
= lim
m→∞

{
Var

(
E[α1,m | N1,m]

)
+ (m− 1)Cov(α1,m, α2,m)

}
.

Therefore, by the convergence theorem of characteristic functions, we obtain

E

eit m∑j=0 E[Zj,m|Nj,m]
 −→ e−

t2
2 σ1

2
. (11)

Similarly, we can prove that the randomvariable array
{
Var[αj,m | Nj,m]

}
is also NA, hence by the SLLN theorem for row-wise

NA arrays (Theorem 1.5), we have

m∑
j=0

Var[Zj,m | Nj,m] =

m∑
j=0
Var[αj,m | Nj,m]

m
a.s
−→ σ2

2,

where σ22 ≡ limm→∞ E
[
Var[α1,m | Nj,m]

]
. Thus,

e
−
t2
2

m∑
j=0
Var[Zj,m|Nj,m] a.s

−→ e−
t2
2 σ2

2
.

From the bounds we obtained in (3), (7) and (8),

e

m∑
j=0

(
r(1)j,m+r

(2)
j,m+r

(3)
j,m

)
→ e0 = 1.

The two convergence results immediately above produce the following:

e
−
t2
2

m∑
j=0
Var[Zj,m|Nj,m]

· e

m∑
j=0

(
r(1)j,m+r

(2)
j,m+r

(3)
j,m

)
a.s
−→ e−

t2
2 σ2

2
. (12)

Therefore, by Eq. (10),∣∣∣∣∣∣E[fm(t)] − E
eit m∑j=0 E[Zj,m|Nj,m] · e− t22 σ22

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣e
it
m∑
j=0
E[Zj,m|Nj,m]

∣∣∣∣∣∣ ·
∣∣∣∣∣∣e
−
t2
2

m∑
j=0
Var[Zj,m|Nj,m]

· e

m∑
j=0

(
r(1)j,m+r

(2)
j,m+r

(3)
j,m

)
− e−

t2
2 σ2

2

∣∣∣∣∣∣


= E

∣∣∣∣∣∣e
−
t2
2

m∑
j=0
Var[Zj,m|Nj,m]

· e

m∑
j=0

(
r(1)j,m+r

(2)
j,m+r

(3)
j,m

)
− e−

t2
2 σ2

2

∣∣∣∣∣∣
 −→ 0

by the dominated convergence theorem.
Combining this with Formula (11), we obtain

lim
m→∞

E[fm(t)] = lim
m→∞

e
it
m∑
j=0
E[Zj,m|Nj,m]

· e−
t2
2 σ2

2
= e−

t2
2 σ1

2
· e−

t2
2 σ2

2
= e−

t2
2 σ
2
,

where

σ 2 ≡ σ1
2
+ σ2

2

= lim
m→∞

(
Var

[
E[α1,m | N1,m]

]
+ (m− 1)Cov(α1,m, α2,m)

)
+ lim
m→∞

E
[
Var[α1,m | Nj,m]

]
= lim
m→∞

Var[Γn,m]
m

.

Recalling the definitions of fm(t) and Zj,m given at the beginning of the proof, we finally obtain

E
[
eit

1
m1/2

(Γn,m−E[Γn,m])
]
→ e−

t2
2 σ
2
.

Thus, the result follows by the convergence theorem for characteristic functions.
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3. Further research

In this paper, we have established the CLT for the domination number of CCCDs in the case of the uniform distribution in
one dimension. Further research directions consist of extending the CLT tomore general distributions in one dimension, and
finally obtaining a similar result in higher dimensions. As many applications of CCCDs arise in higher dimensions, proving
the CLT in this situation would significantly benefit evaluation of CCCD-classifiers.
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Appendix A. Calculation of the variance of the domination number

In this appendix, we outline the calculation of the exact and limiting variance ofΓn,m. Recall that Y(0) ≡ 1, Y(m+1) ≡ 1, Y(j)
denotes the jth order statistic of Y1, . . . , Ym, and the random variable αj,m is the minimum number of covering balls needed
to cover theNj,m X-points located between Y(j) and Y(j+1). The random variables αj,m, j = 0,m, are referred to as the external
components, and αj,m, j = 1, . . . ,m− 1 as the internal components.

A.1. Expressions in terms of expectations

First, compute the conditional moments of αj,m, using the conditional distribution formulas given in the following
theorem by Priebe et al. (2001):

Theorem A.1. If FX = FY = U[0, 1], then

• for j ∈ {0, 1, . . . ,m}, if Nj,m = 0, then αj,m = 0;
• for j ∈ {0,m}, if Nj,m > 0, then αj,m = 1;
• for j ∈ {1, 2, . . . ,m− 1}, if Nj,m = nj,m > 0, then

P(αj,m = 1 | Nj,m = nj,m) = 1− P(αj,m = 2 | Nj,m = nj,m)

=
5
9
+
4
9

1
4nj,m−1

.

Based on the above formulas, straightforward calculations yield

E(αj,m | Nj,m) =


0 Nj,m = 0, j = 0, . . . ,m
1 Nj,m > 0, j = 0,m
13
9
−
16
9
1
4Nj,m

Nj,m > 0, j = 1, . . . ,m− 1,
(A.1)

and

Var(αj,m | Nj,m) =


0 Nj,m = 0, j = 0, . . . ,m
0 Nj,m > 0, j = 0,m
20
81
−
16
81

1
4Nj,m
−
256
81

1
42Nj,m

Nj,m > 0, j = 1, . . . ,m− 1.
(A.2)

To determine the marginal and joint distributions of {Nj,m}, we use the following two lemmas:

Lemma A.1. Given Lj,m ≡ Y(j+1) − Y(j) = lj,m, j = 0, 1, . . . ,m, the random vector {Nj,m} is multinomially distributed with
parameters {n, lj,m :

∑m
j=0 lj,m = 1}.

Lemma A.2. The density function of Lj,m is

f (lj,m) = m(1− lj,m)m−1,

and the joint density function of Lj1,m and Lj2,m is

f (lj1,m, lj2,m) = m(m− 1)(1− lj1,m − lj2,m)
m−2.
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Two consequences of these two lemmas are used repeatedly in our calculations:

P(Nj,m = 0) =
m
m+ n

P(Nj1,m = 0,Nj2,m = 0) =
m(m− 1)

(m+ n)(m+ n− 1)
.

Using the identity Var(αj,m) = E[Var(αj,m | Nj,m)]+Var[E(αj,m) | Nj,m], we can calculate Var(αj,m) from Eqs. (A.1) and (A.2):

Var(αj,m) =


mn

(m+ n)2
j = 0,m

20
81

n
m+ n

+
169
81

mn
(m+ n)2

−

(
16
81
+
416
81

m
m+ n

)
µn,m −

256
81
µn,m

2 j = 1, . . . ,m− 1,
(A.3)

where µn,m ≡ E
(

1
4Nj,m

I{Nj,m>0}
)
.

Similarly, we can calculate the covariance Cov(αj1,m, αj2,m) between any two components. An additional fact used in the
calculation is the following lemma:

Lemma A.3. For distinct j1, j2, given Nj1,m and Nj2,m, the corresponding components αj1,m and αj2,m are conditionally
independent. In addition, αj1,m is only dependent on Nj1,m.

Using Lemma A.3, we immediately obtain

Cov(αj1,m, αj2,m) = E(αj1,mαj2,m)− E(αj1,m)E(αj2,m)

= E
[
E(αj1,m | Nj1,m,Nj2,m)E(αj2,m | Nj1,m,Nj2,m)

]
− E

[
E(αj1,m | Nj1,m)

]
E
[
E(αj2,m | Nj2,m)

]
= E

[
E(αj1,m | Nj1,m)E(αj2,m | Nj2,m)

]
− E

[
E(αj1,m | Nj1,m)]E[E(αj2,m | Nj2,m)

]
.

The rest of the calculation of Cov(αj1,m, αj2,m) is similar to that of Var(αj,m), obtaining the formulas

Cov(αj1,m, αj2,m) =



−
mn

(m+ n)2(m+ n− 1)
j1 = 0, j2 = m

−
13
9

mn
(m+ n)2(m+ n− 1)

−
16
9
δn,m j1 = 0, j2 6= m

−
169
81

mn
(m+ n)2(m+ n− 1)

−
416
81
δn,m +

256
81
(νn,m − µn,m

2) j1, j2 = 1, . . . ,m− 1,

(A.4)

where

δn,m ≡ E
(
1

4Nj2,m
I{Nj1,m>0,Nj2,m>0}

)
−

n
m+ n

E
(
1

4Nj2,m
I{Nj2,m>0}

)
,

νn,m ≡ E
(

1

4Nj1,m+Nj2,m
I{Nj1,m>0,Nj2,m>0}

)
.

A.2. Expressions in terms of series

In the previous sub-section, we converted the variance and covariances of the components into expressions determined
by µm,n, δn,m and νn,m. Our next step is to compute series expressions for µm,n, δn,m and νn,m. For µn,m, we have

µn,m = E
[
1
4Nj,m

(
I{Nj,m≥0} − I{Nj,m=0}

)]
= E

(
1
4Nj,m

)
− P(Nj,m = 0) = E

(
1
4Nj,m

)
−

m
m+ n

.

From Lemma A.1, we have

E
(
1
4Nj,m

| Lj,m = lj,m

)
=

n∑
q=0

1
4q

(
n
q

)
lqj,m(1− lj,m)

n−q.

Use the distribution of Lj,m from Lemma A.2 to write µn,m as an integral:

µn,m =

∫ 1

0

∑
0≤q≤n

1
4q

(
n
q

)
lj,mq(1− lj,m)n−qm(1− lj,m)m−1dlj,m −

m
m+ n

.
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Interchange integration and summation, and integrate, to obtain

µn,m =
m
m+ n

(
n∑
q=0

1
4q
n!(m+ n− q− 1)!
(n− q)!(m+ n− 1)!

− 1

)
. (A.5)

Similarly,

δn,m =

n∑
q=0

1
4q
n!(m+ n− q− 2)!
(n− q)!(m+ n)!

mn−m2q
m+ n

−
mn

(m+ n)2(m+ n− 1)
,

and

νn,m − µn,m
2
=

mn
(m+ n)2(m+ n− 1)

m(m+ n− 1)n

 n∑
q=0

1
4q
n!(m+ n− q− 2)!
(n− q)!(m+ n− 2)!

·

(
q+ 1+

−2(m+ n)q
m2 +mn−m+ n

)
−

(
n∑
q=0

1
4q
n!(m+ n− q− 1)!
(n− q)!(m+ n− 1)!

)2
+

{
n∑
q=0

1
4q
n!(m+ n− q− 2)!
(n− q)!(m+ n− 2)!

·

(
q+ 1+

−2(m+ n)q
m2 +mn−m+ n

)
− 1

} . (A.6)

A.3. Asymptotic results

In the calculation of the exact limiting values µr , δr , νr , we rely heavily on the following version of the dominated
convergence theorem (DCT).

Theorem A.2. If Dn(q)
n→∞
−→ D(q), and |Dn(q)| ≤ D∗(q) where

∑
∞

q=0 D
∗(q) <∞, then

∑
∞

q=0 Dn(q)
n→∞
−→

∑
∞

q=0 D(q).

For µn,m, let Dn(q) =
{
(
1
4
)q
n!(m+ n− q− 1)!
(n− q)!(m+ n− 1)!

q ≤ n

0 q > n
, then µn,m can be written as m

m+n

(∑
∞

q=0 Dn(q)− 1
)
. Ifm/n→ r , then it

can be easily checked thatDn(q)
n→∞
−→

(
1

4(r+1)

)q
, and |Dn(q)| ≤ ( 14 )

q, where
∑
∞

q=0(
1
4 )
q
=
4
3 <∞. Therefore, by TheoremA.2,

asm/n→ r , the limiting value of µn,m is

r
r + 1

(
∞∑
q=0

(
1

4(r + 1)

)q
− 1

)
=

r
r + 1

(
1

1− 1
4(r+1)

− 1

)
,

thus,

µn,m =
r

(r + 1)(4r + 3)
+ o(1). (A.7)

By the same technique, but a more complicated calculation, we obtain

δn,m =
r(−4r2 + 3)

(r + 1)3(4r + 3)2
1
n
+ o

(
1
n

)
, (A.8)

νn,m − µn,m
2
= −

r(4r2 − 3)2

(r + 1)3(4r + 3)4
1
n
+ oo

(
1
n

)
. (A.9)

Recalling that Γn,m =
∑m
j=0 αj,m, we have

Var(Γn,m) = 2Var(α0,m)+ (m− 1)Var(α1,m)+ Cov(α0,m, αm,m)+ 2(m− 1)Cov(α0,m, α1,m)
+m(m− 1)Cov(α1,m, α2,m).

By plugging Formula (A.7)–(A.9) into Eqs. (A.3) and (A.4), and substituting the generated expressions for Var(αj,m) and
Cov(αj1,m, αj2,m) into the above equation, we can finally get the desired result stated in Theorem 1.3.



232 P. Xiang, J.C. Wierman / Statistics and Probability Letters 79 (2009) 223–233

Appendix B. Proof of negative association of {Nj,m : 0 ≤ j ≤ m,m ≥ 1}

To prove the random vector (N0,m, . . . ,Nm,m) is NA for anym ≥ 1, we need the following lemma:

Lemma B.1. If FX = FY = U[0, 1], then (L0,m, . . . , Lm,m) is NA.

Proof. Recall that Lj,m = Y(j+1) − Y(j) and suppose that Z0, . . . , Zm are i.i.d. random variables with an exponential
distribution, where {Z0, . . . , Zm} are independent of {L0,m, . . . , Lm,m}. Since the exponential distribution is log-concave, from
Proposition 1.3 we know that given

∑m
j=0 Zi, the random vector (Z0, . . . , Zm) is NA. Hence by Definition 1.1, we know that

for any pair of disjoint subsets I, J of {0, . . . ,m} and any increasing functions fI and fJ such that the following covariance
exists,

Cov

{
fI(Zi, i ∈ I), fJ(Zj, j ∈ J)

∣∣∣∣∣ m∑
k=0

Zk = a

}
≤ 0, where a > 0.

Since fI(
Zi
a , i ∈ I) and fJ(

Zj
a , j ∈ J) are still increasing functions of Zi, i ∈ I and Zj, j ∈ J , respectively, we have

Cov

{
fI

(
Zi
a
, i ∈ I

)
, fJ

(
Zj
a
, j ∈ J

) ∣∣∣∣ m∑
k=0

Zk = a

}
≤ 0,

i.e.,

Cov

 fI
 Zi

m∑
k=0
Zk
, i ∈ I

 , fJ
 Zj

m∑
k=0
Zk
, j ∈ J


∣∣∣∣∣∣∣∣

m∑
k=0

Zk = a

 ≤ 0.
Note that given

∑m
k=0 Zk = a, the distribution of

(
Z0∑m
i=0 Zi

,
Z1∑m
i=0 Zi

, . . . , Zm∑m
i=0 Zi

)
is independent of a, so the above inequality

yields

Cov

fI
 Zi

m∑
k=0
Zk
, i ∈ I

 , fJ
 Zj

m∑
k=0
Zk
, j ∈ J


 ≤ 0.

Therefore, the random vector Z0
m∑
i=0
Zi
,
Z1
m∑
i=0
Zi
, . . . ,

Zm
m∑
i=0
Zi


is NA. However,

(
Z0∑m
i=0 Zi

,
Z1∑m
i=0 Zi

, . . . , Zm∑m
i=0 Zi

)
and (L0,m, . . . , Lm,m) have the same distribution, so (L0,m, . . . , Lm,m) is also

NA. �

Lemma B.2. If FX = FY = U[0, 1], then the random vector (N0,m, . . . ,Nm,m) is NA.

Proof. It is easy to show that given Lj,m = lj,m, j = 1, . . . ,m, the random vector (N0,m, . . . ,Nm,m) is multinomially
distributed, hence it is NA (Proposition 1.2). From the definition of negative association, we know that for any disjoint subset
I, J of {0, . . . ,m} and increasing functions fI , fJ , the following inequality holds:

E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J) | Lk,m, k = 0, . . . ,m

]
≤ E

[
fI(Ni,m, i ∈ I) | Lk,m, k = 0, . . . ,m

]
· E
[
fJ(Nj,m, j ∈ J) | Lk,m, k = 0, . . . ,m

]
.

Note that given Lk,m = lk,m, k = 0, . . . ,m, the joint distribution of {Ni,m, i ∈ I} only depends on Li,m, i ∈ I , thus
E
[
fI(Ni,m, i ∈ I) | Lk,m, k = 0, . . . ,m

]
= E

[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]
; similarly, E

[
fJ(Nj,m, j ∈ J) | Lk,m, k = 0, . . . ,m

]
=

E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]
. Therefore,

E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J) | Lk,m, k = 0, . . . ,m

]
= E

[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]
· E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]
.
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Fig. B.1. A coupling argument with respect to Inequality (B.1).

Taking expectation on both sides of the above inequality yields

E
[
E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J) | Lk,m, k = 0, . . . ,m

]]
≤ E

[
E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]
· E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]]
.

Since Lemma B.1 showed that (L0,m, . . . , Lm,m) is NA, and E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]
and E

[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]
are

actually increasing functions of {Li,m, i ∈ I} and {Lj,m, j ∈ J}, respectively (see Remark B), applying the definition of NA
random vectors yields

E
[
E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]
· E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]]
≤ E

[
E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]]
· E
[
E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]]
.

Connecting the two inequalities above produces

E
[
E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J) | Lk,m, k = 0, . . . ,m

]]
≤ E

[
E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]]
· E
[
E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]]
,

thus

E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J)

]
≤ E

[
fI(Ni,m, i ∈ I)

]
· E
[
fJ(Nj,m, j ∈ J)

]
.

Remark B. It suffices to show that for any subset I = {i1, . . . , iI} of {0, . . . ,m}, if lit ,m < l′it ,m, t ∈ I , then

E[fI(Ni,m, i ∈ I) | Li,m = li,m, i ∈ I] ≤ E[fI(Ni,m, i ∈ I) | Li,m = li,m for i ∈ I − {it}, Lit ,m = l
′

it ,m]. (B.1)

As illustrated in Fig. B.1, suppose n X-points are independently uniformly distributed in [0, 1], and denote Ni,m, i ∈ I as
the number of X-points falling in the interval with length Li,m = li,m. If the length lit ,m of the most right interval increases
to l′it ,m, then Nit ,m will not decrease (possibly increase). This means that when

{
Li,m = li,m for i ∈ I − {it}, Lit ,m = l

′

it ,m

}
, the

random variable Nj,m is stochastically larger than the original one when Li,m = li,m, i ∈ I . By considering the fact that fI is an
increasing function of Ni,m, i ∈ I , it follows that Inequality (B.1) indeed holds. �
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