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Abstract:

Proximity maps and (di)graphs are used in many
areas for various purposes. We introduce a
new type of proximity map (and the associated
(di)graph) and investigate its properties in De-
launay tessellations, and we propose an illustra-
tive application to support estimation.

1 Introduction

Proximity maps (and the associated graphs) are
used in disciplines where shape and structure are
important. Examples include computer vision
(dot patterns), image analysis, pattern recogni-
tion (prototype selection), geography and cartog-
raphy, visual perception, biology, etc. In this
paper, we define a new type of proximity map
and investigate its properties. We illustrate our
proximity map with an application to support
estimation.

Let (2, M) be a measurable space. The
prozimity map N(-) is given by N : Q — p(Q),
where p(-) is the power set functional, and the
prozimity region of z € Q, denoted N(z) is the
image of z € Q under N(-). The points in N(z)
are thought of as being “closer” to x € ) than
are the points in Q \ N(z). Proximity maps are
the building blocks of the prozimity graphs intro-
duced by Toussaint in [10]; an extensive survey
is available in [11].

If X, = {X1,...,X,} is a set of Q-valued
random variables then N(X;) are random sets,
and the associated digraph is a date random
prozimity digraph. If X; are independent iden-
tically distributed then so are the random sets

This work was partially supported by Office of Naval
Research Grant N00014-01-1-0011 and Defense Advanced
Research Projects Agency Grant F49620-01-1-0395.

N(X;). The prozimity digraph D has the ver-
tex set V = X, and the arc set A is defined by
X;X; € Aiff X; € N(X;).

The Delaunay tessellation in R? con-
structed by using a data set, B, is the dual of the
Voronoi diagram constructed by using the same
data set. This tessellation partitions the convex
hull Cx(B) of B. In R?, the tessellation is a tri-
angulation that yields triangles T3, j = 1,...,J
(see, e.g. [3]) provided that no more than three
points are cocircular. See Figure 1 (top) for an
example with n = 200 and |Y| = 20, where X
and Y are ¥ U((0,1) x (0,1)) and the Delaunay
triangulation is based on ).

The data random proximity digraphs are
introduced by Priebe et al. [5] in R! where
the Delaunay tessellation yields intervals. Sup-
pose, ¥ = {y1,y2} with g1 < y» and X; <
U(y1,y2), then X; can be transformed into iid
U(0,1) random variables, that is, we can as-
sume the support of X, to be S = (0,1). The
proximity map considered in Priebe et al. [5] is
N(z) := B(z,r(z)) = (x — r(z),z + r(x)), where
r(z) = min(z,1 — ). We note some of the ap-
pealing properties of this proximity region:

Pl z € N(z) for all z € S.
P2 z is at the center of N(z).

P3 N(z) and S are of the same type; they are
both intervals.

P4 N(z) mimics the shape of S; i.e., it is similar
to S.

P5 N(X) is a proper subset of the S a.s.
Note that P4 and P3 are equivalent when d =

1, but for d > 1 only P4 = P3. Two natural
extensions of N(z) = B(z,r(x)) in R! to R? with
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Figure 1: A realization of 200 X points and 20
Y points and the corresponding Delaunay trian-
gulation based on ) (top); and the associated
digraph (bottom).

d > 1 are the spherical proximity region Ng(z) =
B(z,r(x)) where r(z) = minyeyd(z,y) and the
arcslice proximity region Nas(z) = B(r,r(z)) N
T (x) where T (z) is the Delaunay tessellation cell
that contains z. However, Ng(-) satisfies only
P1 and P2, and Ny4g(-) satisfies only P1 and
P5. Below, we introduce a new type of proximity
map that satisfies all of the properties P1 — P5.

2 Central
Maps

Similarity Proximity

Let @ = R? and let YV = {y1,¥2,y3} C R? be
three non-collinear points. Let T'()) be the tri-
angle formed by these three points and e; be

the edge opposite vertex y; for j = 1,2,3. For
x € T(Y), the central similarity proximity re-
gion Ngog(z) is defined to be the triangle simi-
lar to T(Y) and adjacent to an edge e of T'())
with its centroid at x. To choose the adja-
cent edge in T(Y), we use centroidal edge re-
gions that are obtained by joining the centroid
(center of mass) Cys and vertices with straight
lines. So the similarity ratio is d(z,e)/d(Cp,e).
See Figure 2 (top) for Ngg(z) with e = es.
Furthermore, a quick investigation shows that
N¢s(-) satisfies all the properties P1-P5. The
digraph associated with the entire X,, and ) of
Figure 1 (top) using N¢s is depicted in Figure
1 (bottom). If the adjacent edge were picked
as argmin,c(,, ., .03 d(z,e), then we would have
been implicitly using incenter edge regions.

A prototype or representative set Bp of a
finite data set, B, is a set that depends on B
in such a way that Bp and B yield (nearly) the
same result after a particular procedure, say clas-
sification or support estimation. If Bp C B, then
|Bp| < |B|. When strict inequality holds, we say
that the associated procedure is edited or con-
densed. However, Bp C B is not required, see
for example learning vector quantization in [2].
A reasonable choice for the prototype set is a
minimum dominating set, which is often more
“central” than arbitrary sets of the same size in

).

In a digraph D a vertex v € V dominates
itself and all vertices of the form {u : vu € A}. A
dominating set Sp for the digraph D is a subset
of V such that each vertex v € V is dominated
by a vertex in Sp. A minimum dominating set
S} is a dominating set of minimum cardinality,
and the domination number v(D) is defined as
v(D) :=|S%| [1]- If a minimum dominating set
is of size 1, we call it a dominating point.

For Nos(+) and X, the associated digraph
and the domination number are denoted as D¢,
and 7y,, respectively. In particular, if ~,, = 1,
the prototype set of size one, namely one of the
dominating points in 7()). Next we define a
subset of T(Y) associated with 7, =1 case.

The I'1 -region associated with a proximity
map N(-) for a set @ € Q and is defined to be
I'(@Q,N) :={z € Q:Q C N(x)}; i.e., the I';-
region is the subset of 2 whose intersection with
@ yields the set of dominating point(s). For z €
2, we denote T'1({z},N) as 'y (z). If X € A,,
then I'1 (X)) and I'1(X,) are random sets.



Figure 2: Ngg(z) for an z € R(AB) (top); I'y
region for n = 9 for Nog(-) (bottom).

We present first a “geometry invariance”
result which will simplify our subsequent analysis
by allowing us to consider the special case of the
equilateral triangle.

Theorem 2.1. : Let Y = {y1,y2,y3} C R?
be three non-collinear points. For i = 1,--- n,
let X; W F = U(T(Y)), the uniform distri-
bution on the triangle T(Y). Then the dis-
tribution of v, and of A(Ncos(X))/A(T(Y)),
AT (X))/AT(Y)) and A(T1(X,))/A(T(Y)) are
independent of ), and hence the geometry of
TY).

Based on Theorem 2.1 and our unifor-
mity assumption, we may assume that T'())
is a standard equilateral triangle with )Y =
{(0,0), (1,0), (1/2,+/3/2)} henceforth.

3 T';-Regions

A median line in a triangle is the line join-
ing a vertex to the midpoint of the opposite
edge. The edge extremum for edge e;, denoted
Xe;, is the point closest to ej;; ie., X, :=
argminy .y d(X,e;) for j = 1,2,3. We use me-
dian lines and edge extrema to describe I'y (X},).
For each edge, drawing a line at X, parallel to e;
yields a new triangle with y;. The median lines
at the vertices (other than y;) of this new trian-
gle determine the I'y-region, I'y(X},). See Figure
2 (bottom).

Let F be the class of all distributions on
triangle T'()), and F¢ be the class of distribu-
tions with continuous density on T'(}). And let
X, = {X1,..., X} be a random set iid F' on
T(Y). Following are some results regarding the
I';-regions for N¢g.

Proposition 3.1. Let X, be from an F € F¢.
Then T'1(X},) is a conver hezagon a.s..

Lemma 3.2. Let X,, be from an F € F. Then
Ty (&X,) = N_ T1(X,,). But in general for any
prozimity map T'1(X,) = N7_ T'1(X;).

Theorem 3.3. For a sequence of random vari-

ables X1,X5,X3,... Y p e F, let X(n) :=
X(n — 1)U {X,}, and X(0) = 0. Then

Iy (X(n)) is mon-increasing in n, in the sense
that T'1 (X(n)) DT (X (n+1)) a.s.

Corollary 3.4. For X(n) defined as above for
the sequence from an F' € Fo, [1(X(n)) L {Cm}
as n — oo a.s., in the sense that I'1(X(n)) 2
I(X(n+1)) and A(T1(X(n))) 40 a.s.

Note however that I';(X,) is neither non-
increasing nor strictly decreasing, because we
might have I'y(X,) C T'1(X,,) for some m > n.
Nevertheless, Proposition 3.5 and Theorem 3.6
hold.

Proposition 3.5. For positive integers m > n,
let X,, and X, be from an F € F. Then
A(T1 (X)) <5T A(T1(X)-

Theorem 3.6. Let {X,}5°, be a sequence of
data sets from F € F. Then I'1(X,) = {Cum}
asn — 00 a.s.

Proposition 3.7. Let X, be a data set of size
n from an F € F¢, then P(y, = n) > 0 for all
n < o0.

Proposition 3.8. The expected area of the T';-
region, E[A(T'1(X,))] = 0 as n = oo.



Proposition 3.9. The domination number v, is
between 3 and 6 with probability 1 asn — oo, i.e.
PB <y, <6)—>1asn— .

For an F' € F¢, edge extrema are distinct
with probability 1 as n — 0o, so we use only the
asymptotically accurate joint density of the edge
extrema in propositions 3.8 and 3.9.

4 Support Estimation

Estimating the support of a distribution, espe-
cially in high dimensions, has received consider-
able attention in the statistical literature. For ex-
ample, in [8], Scholkopf et al. give a brief survey
and propose a new method to estimate a region
that has a high probability, say §. If a region
of minimum volume with some regularity condi-
tions has probability § = 1, this region yields an
estimate for the support of the density. We pro-
pose the use of Nog(+) in estimating the support
of X using Y, or vice versa where we implicitly
assume that min(n, |Y|) > d+ 1.

Let fx and fy be the densities and Sx
and Sy the supports of X and Y, respectively.
If d(Sx,Sy) = inf{d(z,y) : (z,y) € Sx x
Sy} = 6 > 0, we say Sx and Sy are §-
separable. Also let S, := [Uzex,nen ) Nes(z)]U
[Uecxncn (Vo) \ Cu(Y))], where Vo(a) is
the Voronoi cell of z constructed by using all X
and Y points shuffled together and for 8 > 0,
SX :={z: fx(z) > 0}. Then we have

Proposition 4.1. Suppose Sx and Sy are §-
separable with 6 > 0. Then for fized ||, S C

Sn a.s. for all 8 > 0 for sufficiently large n and
P(X ¢ S, andY € S,) — 0 (Bayes optimal
error for §-separable densities) as n — oc.

Recall the spherical proximity region

Ng(z) = B(z,r(z)) and arc-slice proximity
region Nag(z) = B(z,r(z)) N T(Y). Let
Sn(Ns) = Ugex,Ns(z) and S,(Nas) :=

[Urexunen () Nas(@)] U [Usexa\cn) (Vo (@) \
Cu(Y))], and S, (Ncs) be defined as above. Also
let I(N) := P(X ¢ S,(N)andY € S,(N)),
then

Proposition 4.2. For X,, and Y as above with
|| fized, I(Ncs) < II(Nas) < I(Ns) for suffi-
ciently large n and II(Ng) — 0 as n — oo.

For a realization of S, restricted to C 7))
with the same X,, and Y points of 1 (which are

not separable), see Figure 3 (top). For a real-
ization of S, restricted to Cy()) with separa-
ble X,, and Y with § = .01, see Figure 3 (bot-
tom). For the latter, 200 X points are gener-
ated from U(P;) and 50 Y points from U(P,),
where P; is the (convex) polygon with the ver-
tices (0)0)7 (%50)7 (%a %)7 (%) 1)7 (Oa 1) and P, is
the polygon with vertices (1446, 0), (3+4,3), (3 +
5,1),(1,1),(1,0).

Figure 3: S, NCp(Y) for the data sets in Figure
1 (top); the separable data sets (bottom).

As an experimental application, we use
a minefield data set from The Coastal Bat-
tlefield Reconnaissance and Analysis (COBRA)
Program [9], [12]. The observations are detec-
tions of mines and minelike targets obtained from
an unmanned aerial vehicle via a multispectral
sensor.



Figure 4: The Delaunay triangulation for the
minefield data (top); the associated S, N Ca(Y)
(bottom).

We treat true mines as X points and false
detections as Y points. In this data set, n = 12,
|Y| = 27. The original data set consists of 6-
dimensional imagery, but Priebe et al. [7] and
Olson et al. [4] demonstrate that dimensions 3
and 5 carry most of the relevant information for
our purposes, so the data can be viewed in R2.
See Figure 4 for the Delaunay triangulation and
the corresponding support estimate restricted to
Cu(Y), respectively.

As a final remark we note that, in the
above procedure, we obtain S:X, and if we switch
the roles of X,, and ) above, we obtain §Z also.
These estimates can then be used to build dis-

criminant regions for classification in a manner
analogous to the procedure proposed in [6].

5 Extension to Higher Dimensions

Let @ = R? with d > 1. The extensions of
Ng(-) and Ngs(-) are straightforward and de-
scribed above.

Let Y = {y1;y2;---;yd+1} CR*bed+1
non-collinear points. Let &(Y) be the simplex
formed by these d + 1 points and ¢; be the face
opposite vertex y; for j = 1,2,...,d+ 1. For
z € 6()), the central similarity proximity re-
gion Ngog(z) is defined to be the simplex simi-
lar to &()) and adjacent to a face ¢ of &())
with its centroid at z. To choose the adjacent
face in &()), we use centroidal edge regions that
are simplicies with the vertices of &()) adja-
cent to face ¢ and Cps. So the similarity ra-
tio is d(z,¢)/d(Cm, ). Ti-regions can be ex-
tended similarly. Moreover, the results in section
3 (except Proposition 3.9) and section 4 can be
extended mutatis mutandis to R? with d > 2.
Letting 7, (d) be the domination number for R?
with d > 1, we have lim,, 00 P(y5(d) > 1) = 1,
also we believe that there exist x1(d) > 1 and
ko(d) < m such that lim, o P(k1(d) < y,(d) <
k2(d)) = 1. We conjecture that x1(d) = (d + 1)
and ko (d) =d(d+1).
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