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Abstract

In this dissertation, we introduce proximity catch digraphs (PCDs) based on two sets of points,
X,, and Y,,, from classes X and ), respectively, in R? with d > 1, investigate their proper-
ties, and present examples in R? for illustrative purposes. PCDs are a generalization of the
class cover catch digraphs (CCCDs) introduced by Priebe et al. in [35]; a slight modification
of the CCCD yields a special case of PCDs. The PCDs are constructed based on the relative
positions of members of, say, class X points, with respect to the Delaunay tessellation of class
Y points. Our main motivation for introducing PCDs is that a direct extension of the CCCD
to multidimensional data lacks mathematical tractability of the distribution of the domination
number, moments of relative density, and geometry invariance for uniform X, in the convex
hull of Y,,. We investigate two major aspects of the PCDs, namely, the distribution of the
domination number and the relative density. In R?, we analyze these concepts for X, in one
triangle (formed by )s) and then generalize the analyses for X, in multiple triangles from the
Delaunay triangulation (assumed to exist) of Y, with m > 3. Our PCDs make tractable the
mathematics in multiple dimensions, thereby enhancing the applicability of the methodology to
statistical hypothesis testing and pattern classification. We compute the asymptotic distribu-
tion of the domination number of one of the PCDs. Furthermore, the relative density of the
PCDs is shown to be a U-statistic which avails the asymptotic normality of the relative density.
The domination number and relative density are both used to test a type of complete spatial
randomness against spatial point patterns of segregation and association. The power of the
tests is investigated by using asymptotic efficacy methods such as Pitman asymptotic efficacy,
Hodges-Lehman asymptotic efficacy, asymptotic power function analysis. Finite sample power
is analyzed by Monte Carlo simulations. The methods are illustrated in the two dimensional
case, but are applicable to higher dimensions as well as to other types of proximity maps.
Advisor: Carey E. Priebe

Readers: Carey E. Priebe and David J. Marchette

ii



Acknowledgments

First of all, I would like to express my gratitute and thanks to Carey E. Priebe for his wonder-
ful advising. His endurance, cheerful spirit, and perseverence were invaluable throughout this
process. He has been supportive in every way an advisor could be, and for that I can not really
thank him enough. A computational geometry problem that he has brought up to my attention
has blossomed into this dissertation. I would also like to thank the second reader David J.
Marchette and my other defense committee members John C. Wierman, Daniel Q. Naiman,
and Shih-Ping Han whose time and suggestions improved this thesis.

Special thanks to Professors Jim Fill and John C. Wierman for their enlightening discussions
and insightful comments and Prof. Goldman for his wisdom. Prof. Ed Scheinerman has been a
great department head during my education at Applied Mathematics and Statistics (formerly
Mathematical Sciences Department). I also need to thank the staff, especially, Mrs. Lutz,
Berdan, Kirt, and Bechtel, without whom this place would not exist, for everything they have
done for me.

Thanks to my fellow graduate students for making life more livable and enjoyable. Thank
you, Leslie Cope, for making your experience available any time I asked.

Finally, I wish to thank my brother Haci Ahmet for his continuous support and my family
abroad for providing me emotional and spiritual shelter in good and bad times. To them I owe

much.

Elvan Ceyhan

iii



Contents

Abstract

Acknowledgments

Contents

List of Figures

I Preliminaries

1 Introduction

1.1 Overview of the Proximity Maps and the Associated Digraphs. . . . . . . . ..

1.2

1.1.1 Data-random Proximity Catch Digraphs . . . . . .

Chapter Overview . . . . . . . . ... ... ... .....

2 Preliminary Tools and Foundation

2.1

2.2

2.3
2.4
2.5
2.6
2.7

Voronoi Diagrams and Delaunay Tessellations . . . . . . .

2.1.1 Poisson Delaunay Triangles . . . . . .. ... ...

Transformations Preserving Uniformity on Triangles in R?

2.2.1 Transformationof Ty to T, . . . . . . .. ... ..
Triangle Centers . . . . . . . ... ... ...
The Spatial Patterns of Segregation and Association . . .
U-Statistics . . . . . . . . oo o

Consistency of Tests . . . . . . .. ... ... ... ....

Comparison of Tests . . . . . ... ... ... ... ....
2.7.1 Asymptotic Power Function . . . . . ... ... ..

2.7.2 Asymptotic Relative Efficiency . . . ... ... ..

iv

ii

iii

iv

10
12
13
14
16
19
22
23
23
24



2.7.2.1 Pitman Asymptotic Efficacy . . ... ... ... ... ...,

2.7.2.2 Hodges-Lehmann Asymptotic Efficacy . . . . . ... ... ...

II Theory and Applications

3 Proximity Maps and the Associated [';-Regions

3.1
3.2

3.3

3.4

3.5

Preliminaries and Foundation . . . . . . .. ... ... ... ... ...
Vertex and Edge Regions . . . . . .. ... .. ... .. o .
3.21 VertexRegions . . . ... ... . ... ... . o o
3.21.1 CC-Vertex Regions . . . . ... ... ... ... .......
3.21.2 CM-Vertex Regions . . . . . .. .. ... .. ... ......
3.213 M-Vertex Regions . . . . . ... ... ... ...
3.22 EdgeRegions . . . . .. ..
3.221 CM-EdgeRegions . . . . . ... .. ... ...
Proximity Maps in Delaunay Triangles . . . . . . . ... ... ... . ......
3.3.1 Arc-Slice Proximity Maps . . . . . . . . .. oo
3.3.2 r-Factor Proportional-Edge Proximity Maps . . . . . . . ... ... ...
3.3.2.1 Extension of Npp to Higher Dimensions . . . . .. ... ...
3.3.3 7-Factor Central Similarity Proximity Maps . . . . . . . ... ... ...
3.3.3.1 Extension of N5g to Higher Dimensions . . . . ... ... ...
3.3.4 The Behaviour of Proximity Maps . . . ... ... ... .........
I'1-Regions and the Related Concepts for Proximity Maps . . . . .. ... ...
3.4.1 T;-Regions for Arc-Slice Proximity Maps . . . . . .. . ... ... ...
3.4.2 T';-Regions for r-Factor Proportional-Edge Proximity Maps . . . . . . .
3.4.3 T'i-Regions for 7-Factor Central Similarity Proximity Maps . . . . . . .
3.4.4 Characterization of Proximity Maps Using n-Values . . ... ... ...
3.4.5 The Behaviour of 'y (X,,, N) for the Proximity Maps in T'(}) . . .. ..
3.4.6 Expected Area of I'1-Regions Associated with N(-) . . . ... ... ...
3.4.6.1 Expected Area of 'y (X, Nag, M) . . . ... . ... ... ...
3.4.6.2 The Limit of Expected Area of I'y(X,,, N, M) for N and N/ ¢

k-Values for the Proximity Maps in T(Y) . . .. .. .. .. ... ... .....

29

30
30
33
33
34
35
36
36
37
38
39
40
44
45
48
48
51
53
57
63
65
67
70
71

75



3.5.1 Characterization of Proximity Maps Using x-Values . . ... ... ...

4 Distribution of the Domination Number of Proximity Catch Digraphs in
Delaunay Tessellations
4.1 Minimum Dominating Sets and Domination Number of Digraphs . . . . . . ..
4.2 The Asymptotic Distribution of Domination Number of the CCCD for Uniform
Data on Compact Intervalsin R . . . . .. ... ... .. ... ........
4.3 The Asymptotic Distribution of v(X,, Nag, M) . . . . . . .. .. ... ... ..
4.4 The Asymptotic Distribution of ¥ (X, Npg, M) . . . . ... .. ... ...
4.5 Summary of the Asymptotic Distribution of v (X, Npg, M) . . . . . . . . . ..
4.6 The Use of the Domination Number (X, Npg, M¢) for Testing Spatial Pat-
terns of Segregation and Association . . . . . ... ... L.
4.6.1 Null Distribution of Domination Number . . .. ... ... .......
4.6.2 The Null Distribution of Mean Domination Number in the Multiple
Triangle Case . . . . . . . . e
4.6.3 Segregation and Association Alternatives . ... ... ... .......
4.6.4 Monte Carlo Power Analysis . . . . ... .. ... ... .........
4.6.5 Asymptotic Efficacy Analysis . . . . ... ... ... ...
4.7 The Asymptotic Distribution of v (Xn, Nog, M) . . . . . .. ... ... ...

4.7.1 Summary of Asymptotic Distribution of y(X,,N) . ... .. ... ...

5 Relative Density of Proximity Catch Digraphs
5.1 Preliminaries and Foundation . . . . . ... ... .. ... ... ..
5.2 Relative Density of the CCCD Based on Ng and Uniform Data on Compact
Intervals in R . . . . . . . . L L

5.3 Relative Density of Proximity Catch Digraphs Based on Arc-Slice Proximity

5.4 Relative Density of Random Proximity Catch Digraphs for Testing Spatial

Patterns of Segregation and Association . . . . ... ... ... ... ... ...

78

80
80

81
83
93
101

103
103

104
106
108
108
109
114

116

124

5.4.1 Relative Density of Proximity Catch Digraphs Based in r-Factor Proportional-

Edge Proximity Maps . . . . . . .. . .. ..

5.4.2 Asymptotic Normality Under the Null Hypothesis . . . ... ... ...

vi

124



5.5

5.4.3 Asymptotic Normality Under the Alternatives. . . . . . . .. ... ...
5.4.4 The Test and the Analysis . . . . . . .. . ... ... ... ...,
5.4.5 Consistency . . . . . . . ... e e e
5.4.6 Monte Carlo Power Analysis Under Segregation . . . . . . .. ... ...
5.4.7 Monte Carlo Power Analysis Under Association . . . . . . .. ... ...
5.4.8 Pitman Asymptotic Efficacy . . . . . .. . ... oo
5.4.8.1 Pitman Asymptotic Efficacy Under Segregation Alternatives
5.4.8.2 Pitman Asymptotic Efficacy Under Association Alternatives
5.4.9 Hodges-Lehmann Asymptotic Efficacy . . . ... ... ... ... ....
5.4.9.1 Hodges-Lehmann Asymptotic Efficacy Under Segregation Al-
ternatives . . . . . ... Lo
5.4.9.2 Hodges-Lehmann Asymptotic Efficacy Under Association Al-
ternatives . . . . . ... L e
5.4.10 Asymptotic Power Function Analysis . . . . . .. ... .. ... .. ...
5.4.10.1 Asymptotic Power Function Analysis Under Segregation . . . .
5.4.10.2 Asymptotic Power Function Analysis Under Association . . . .
5.4.11 Multiple Triangle Case . . . . . . . . . . . ... ... ...
5.4.11.1 Related Test Statistics in Multiple Triangle Case . . . . . . . .
5.4.11.2 Asymptotic Efficacy Analysisfor J >1 . ... ... ... ...

Relative Density of Random 7-Factor Central Similarity Proximity Catch Di-

5.5.1 Asymptotic Normality Under the Null Hypothesis . . . ... ... ...
5.5.2 Asymptotic Normality Under the Alternatives. . . . . . .. . ... ...
5.5.3 The Test and Analysis . . . . . . . . . .. ... . .
5.5.4 Consistency . . . . . . . oo e e e e e
5.5.5 Monte Carlo Power Analysis Under Segregation . . . . . . .. ... ...
5.5.6 Monte Carlo Power Analysis Under Association . . . . . ... ... ...
5.5.7 Pitman Asymptotic Efficacy . . . . . . .. .. oL
5.5.7.1 Pitman Asymptotic Efficacy Under Segregation Alternatives
5.5.7.2 Pitman Asymptotic Efficacy Under Association Alternatives
5.5.8 Multiple Triangle Case . . . . . . . . . . . ... ... .

vii

149

154
160
160
162
163
167
169

172
172
176
177
178
178
183
191
191
193



5.5.8.1 Asymptotic Efficacy Analysisfor J >1 . ... ... ... ... 197

6 Conclusion 200
IIT Appendices and Bibliography 205
A Proofs of Some of the Theorems in Chapters 3 and 4 206
A.1 Proof of Theorem 3.4.30 . . . . . . . . . . . e 206
A.1.1 Proof of Theorem 3.4.30 . . . . . . . . . ... 206

A.2 Proofs of Some of the Theorems in Chapter 4 . . . . .. .. .. ... ...... 209
A.2.1 Proof of Proposition 4.3.4 . . . . . . ... ... 209

A.22 Proof of Theorem 4.3.5 . . . . . . . . ... .. 211

A.23 Proof of Theorem 4.4.8 . . . . . .. ... ... ... ... ... ... 213

A.24 Proof of Theorem 4.4.9 . . . . . . . .. ... . 215

A.25 Proof of Theorem 4.4.10 . . . . . . . ... .. . 218

A26 Proof of Theorem 4.4.11 . . . . . . . .. ... 223

A.27 Proof of Theorem 4.4.12 . . . . . . . .. ... ... 225

A28 Proof of Theorem 4.7.4 . . . . . . . .. ... 231

A.29 Proof of Theorem 4.7.6 . . . . . . . . .. .. 235

A.2.10 Proof of Theorem 4.7.7 . . . . . . . . .. e 237

A.2.11 Proof of Theorem 4.7.8 . . . . . . . .. ... 239

B Derivations of Mean and Variance Terms in Section 5.4.1 242
B.1 Derivation of u(Npp) in Theorem 54.2 . . . .. ... ... ... ... ..... 242
B.2 Derivation of ¥(NLg) in Theorem 5.4.2 . . . .. ... ... ... ... ..... 243
B.3 Derivation of u(Npg,€) - - - - o o o o i 258

B.3.1 Derivation of us(Npp,e) and vs(Nby,e) for Segregation with e = v/3/8 262

B.4 The Mean p(Npg,e) Under Segregation and Association Alternatives . . . . . 270
B.4.1 ps(Nhg,e) Under Segregation Alternatives . . . . . ... .. ... ... 271

B.4.2 pa(Npg,e) Under Association Alternatives . . . .. . .. .. ... ... 273

C Derivations of Means and Variances in Section 5.5 276
C.1 Derivation of I/(N(";S) ................................ 276



C.2 Derivation of ,u(N(T;S,E) ............................... 279

C.3 The Mean /L(NES,E) Under Segregation and Association Alternatives . . . . . 282
C.3.1 ps(NZg.€) Under Segregation Alternatives . . . . .. ... ....... 282

C.3.2 pa(NZg,€) Under Association Alternatives . . . . ... ... ...... 285
Bibliography 288
Vita 292

ix



2.1.1

2.1.2

221

23.1

2.3.2

3.2.1
3.2.2
3.2.3
3.3.1

3.3.2
3.3.3
3.34
3.3.5

3.3.6

3.3.7

3.4.1

3.4.2

List of Figures

The Voronoi diagram based on a realization of 10 Y points (left) and the asso-
ciated Delaunay triangulation (right). . . . . ... ... ... ... .. .. ....
A realization of 200 X points and the Delaunay triangulation based on 10 Y
points in Figure 2.1.1. . . . . . . ..o
The description of ¢.(x,y) for (z,y) € T (left) and the equilateral triangle
Ge(Tp) =Te (right). . . . o o o
The circumcenter, circumcircle, and circumradius of an acute triangle (top), an
obtuse triangle (bottom). . . . . . ... ... L
The incircle, incenter, inradius of a triangle (left), and the centroid (center of

mass) of a triangle (right). . . . . . .. ... ...

The CC-vertex regions in an acute triangle (left) and in an obtuse triangle (right).
The CM-vertex regions with median lines. . . . .. ... ... ... .......
CM-edge regions Rowm(e;), j € {1,2,3}. . . . . ... L
Nas(z, Moc) with an € Roc(y2) (left) and the superset region Zs(Nas, M¢)
in T(Y) (right). . . . o o e
Construction of r-factor proximity region, N3 (z) (shaded region). . ... ...
Superset region Zs (N2, Mcc) in an acute triangle . . . . ... ... ... ..
The triangle Tr=VE
Construction of 7-factor central similarity proximity region, Ng;l/ ?(z, M¢) (shaded
FEBION). © o L v i e e e e e e
NZ5'(z, M) with an = € Ry (es) (left); NZS! (z, M) with an z € Ry, (e3) (right)
The figure for z, y € Rps(e3) described in Theorem 3.3.8. . . . . ... ... ...
T'i(z,Nas, Mcc) and € Roc(y2) (left); the ball B(Ma,|ez|/2) that divides
the region Rco(y2) for which I'y-region is a hexagon or a pentagon (right). . . .

An empirical T'y-region, T'y (X, Nas, Moc) withn =10 . . . . . ... ... ...

10

14

17

18

34
35
38

39
41
43
44

46
47
50

54
55



3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

3.4.8
3.5.1

3.5.2

4.3.1

4.3.2

4.3.3

434

441

4.4.2

4.4.3

444

4.4.5

4.4.6

Figure for X, (n) = X,(n) = (z,y) (left) and B; for j € {1,2,3} for distinct
vertex extrema (right). . . . . . . ... L L L
Construction of the I'y-region, I'1 (z, N5z2, M¢) (shaded region). . . ... ...
The figure for X, (n) = Xe,(n) = (,y) .+« « o o o v i oo i
Examples of the four cases of the I'y-region, I'y (x, N(T;l/ 2, MC) with four dis-
tinct © € Rop(es) (shaded regions). . . . . . . . . .. . Lo
The T'y-region I'y (z, Nlg, Mc) with & € Ry(e2) (left) and T'y (X,, NZg, Mc)
withn > 1 (right). . . . . . . o
The smallest arc-circle S¢(T'(Y)) that contains T(Y) . . . . . . . ... ... ...
A vertex with inner angle equal to 7/3 (left), the domain of @ and g for which
K(Nag) =4 and k(Nas) =5 (right). . . . . . . . .. ... ...
The figure for K (NLg) =mn. . . . . . . . ...

A realization of H(X,,)) based on a given set of vertex extrema X, (n) = x,,
from X,. . . . . e e e e
A figure for the description of the event EZ, () (left) and the pdf of X, (n) (right)
given three distinct vertex extrema X, (n) = z,, for j € {1,2,3}.. . . . ... ..
The empirical estimates of P(y, = k) where v, = v(X,, Nas, Mcc) versus
various n values for T, (left) and for T}, = ((0,0),(1,0),(1/2,1/2)) (right). . . . .
The empirical estimates of P(vy, = k) where v, = v(Xn, Nas, Mcc) versus
various n values for T, = ((0,0),(1,0),(1/2,1/4)). . . .. ... ..........
The empirical estimates of P (y, = k) where v, = v (X, Npg, M) versus various
nvalueswithr=2and M =M¢g. . . . . .. . . . . o
The empirical estimates of P (v, = k) where vy, = v (X, Np g, M) versus various
nvalues withr =5/4and M =Mc. . . . .. ... o
The empirical estimates of P (v, = k) where v, = v (X, N5, M) versus various
n values with r =5/4 and M = (3/5,v/3/10). . . ... ... ... .. ......
Plotted is the probability p, = limy, oo P (7 (Xpn, Npg, M) = 2) as a function of
rfor r € [1,3/2) and M € {t1,t2,83}. . . . . . ..o
The empirical estimates of P (v, = k) where v, = v (X, Njy, M) versus various
n values with 7 = 5/4 and M = (7/10,4/3/10). . . . . . ... ... .. ...

The empirical values of P (v, = k) where v, = v (X,, Nbg, M¢) for various n.

xi

56

58

61

64

65
72

76
79

85

87

93

94

96

98



4.5.1
4.6.1

4.6.2

4.6.3

4.6.4

4.6.5

4.7.1

4.7.2

4.7.3

5.3.1
5.3.2

The empirical values of 7,, = k versus various n values where 7, =~y (Xn, N;/E3 , Mc). 103
Realizations of segregation (left), null case (middle), and association (right) for
Y|=10,J=13,and n=1000. . .. .. ... ... ... ... ... ... ... 104
Depicted are G; "R N (u ~ 2.2587,02/J ~ .1917/J) for J = 13, n = 100

(left); J = 13, n = 1000 (middle); and J = 30, n = 1000 (right). Histograms

are based on 1000 Monte Carlo replicates and the curves are the associated
asymptotic normal curves. . . . . . .. ..ol e e e e e e e 105
Depicted are Gy "R N (u ~ 2.2587,02/J ~ .1917/J) for J = 13, n = 1000

(left); J = 30, n = 3000 (middle); and J = 30, n = 5000 (right). Histograms

are based on 1000 Monte Carlo replicates and the curves are the associated
asymptotic normal CUrves. . . . . . . . ... .ol e e e e e e e 105

Two Monte Carlo experiments against the segregation alternatives H \S/g ie.,

/8
§ = 1/16. Depicted are kernel density estimates of G for J = 13 and n =
1000 with 1000 Monte Carlo replicates (left) and J = 30 and n = 5000 with
1000 Monte Carlo replicates (right) under the null (solid) and the segregation
alternative (dashed). . . . ... ... 109
Two Monte Carlo experiments against the association alternatives H \% /o1 ie.,
§ = 16/49. Depicted are kernel density estimates of G ; for J = 13 and n = 1000
with 1000 Monte Carlo replicates (left) and J = 30 and n = 5000 with 100 Monte
Carlo replicates (right) under the null (solid) and the association alternative
(dashed). . . . . o . . 110
The empirical estimates of P(y, = k) for k = 1,2 and k > 2 versus various n

values with 7 = 1 and M = M¢ where v, = v (X,, NG5, M). .. .. ... ... 113

The empirical estimates of P(y, = k) versus various n values with 7 = 1 and

M = M¢ where vy = Yina (X NTs, NGg, M). . . . . .. ... ... 114
The empirical estimates of P(vy, = k) versus various n values with 7 = 1 and

M = M¢ where ¥, = Yin (X,’;,Ngs, M) ....................... 115
The two regions in Ty for which Ty (z, N4g) is a pentagon or a hexagon. . . . . . 122

A sample figure for pentagonal T'y(z, Nag) (left) and a hexagonal Ty (z, Nas)
(CEHE). « o v e e e e 122

xii



5.4.1

5.4.2
5.4.3

5.4.4

5.4.5

5.4.6

5.4.7

5.4.8

5.4.9

5.4.10

5.4.11

Asymptotic null mean u(N}L ) (left) and variance v(Np ) (right) from Theorem
5.4.2 for r € [1,5]. The vertical lines indicate the endpoints of the intervals in the

piecewise definition of the functions. Notice that the vertical axes are differently

scaled. . .. 126
The plot of w(Npg) = Var [hi2(Npg)] as a function of r for r € [1,5]. . . . . .. 127
Depicted are the distributions of p,(N2,) R N (2, :2-) for 10,20, 100 (left

to right). Histograms are based on 1000 Monte Carlo replicates. Solid curves
represent the approximating normal densities given in Theorem 5.4.2. Note that
the vertical axes are differently scaled. . .. ... ... ... ... ........ 128
Depicted are the histograms for 10000 Monte Carlo replicates of p1o(Np ) (left)

and p1o(Npp) (right) indicating severe small sample skewness for extreme values

Kernel density estimates for the null (solid) and the segregation alternative

\/—/8 (dashed) for r € {1, 11/10, 6/5, 4/3, v/2, 3/2, 2,3} (left-to-right). . ... 132

Two Monte Carlo experiments against the segregation alternative H? V)8 De-
picted are kernel density estimates for p,(Np 1/ 10) for n = 10 (left) and n = 100
(right) under the null (solid) and alternative (dashed). . ... ... ... . ... 133

Kernel density estimates for the null (solid) and the segregation alternative

HS, 5,4 (dashed) for r € {1, 11/10, 6/5, 4/3, V2, 3/2} (left-to-right). . . .. ... 134
Kernel density estimates for the null (solid) and the segregation alternative
Hzf/7 (dashed) for r € {1, 21/20, 11/10, 6/5, 4/3, v/2} (left-to-right). . . . . . 135

Monte Carlo power using the empirical critical value against segregation alter-

natives H? V3/8 (left), H f 34 (middle), and H, 25 V3T (right) as a function of r for

Monte Carlo power using the asymptotic critical value against segregation al-
ternatives H \Sf 55 (eft), H f 5,4 (middle), and HY 37 (right) as a function of r
for n = 10. The circles represent the empirical significance levels while triangles
represent the empirical power values. . . . . . . .. ... ... ... 136
Kernel density estimates for the null (solid) and the association alternative
HA /324 (dashed) for 7 € {1, 11/10, 6/5, 4/3, V2, 3/2, 2, 3, 5, 10} (left-to-right).

138

xiii



5.4.12

5.4.13

5.4.14

5.4.15

5.4.16

5.4.17

5.4.18

5.4.19

5.4.20

5.4.21

5.4.22

5.4.23

Kernel density estimates for the null (solid) and the association alternative

H% /1, (dashed) forr € {1,11/10, 6/5, 4/3, /2, 3/2, 2, 3, 5, 10} (left-to-right).
139

Two Monte Carlo experiments against the association alternative H \% /1" De-

picted are kernel density estimates for p, (N 1131]510) for n = 10 (left) and n = 100

(right) under the null (solid) and alternative (dashed). . ... ..........

Kernel density estimates for the null (solid) and the association alternative

H\%/m (dashed) for r € {1, 11/10, 6/5, 4/3, V2, 3/2, 2, 3, 5, 10} (left-to-right).
141

Monte Carlo power using the empirical critical value against association alter-

natives H) 11 (left), H /1, (middle), and H/ - 124

forn=10. . . . L e

(right) as a function of r

Monte Carlo power using the asymptotic critical value against association alter-

A : A
7312 (middle), and H5\/§/24

for n = 10. The circles represent the empirical significance levels while triangles

natives H \% /21 (left), H (right) as a function of r
represent the empirical power values. . . . . . . . . .. .. ... ... ... ...
Pitman asymptotic efficacy against segregation (left) and against association
(right) asafunctionof r. . . . . . ... L Lo
Hodges-Lehmann asymptotic efficacy against segregation alternative HES as a
function of r for £ € {V/3/8,v/3/4,2v/3/7} (left to right). . . . . ... ... ...
The mean ps(Npg,€) (left) and asymptotic variance vg(Npg,e) (right) as a
function of r under segregation with e € {0,v/3/8,v3/4,2/3/7}. .. ... ...
Hodges-Lehmann asymptotic efficacy against association alternative HA as a
function of r for e € {V/3/21, v/3/12, 5/3/24} (left to right).. . . . . . .. ...
The mean pa(Npg,e) (left) and asymptotic variance va(Npg,e) (right) as a
function of r under association with e € {0,v/3/21,v3/12,5v/3/24}.. . . . . ..
Asymptotic power function against segregation alternative H \S/g /g 35 @ function
of r for m € {5,10,15,20,50,100} . . . . . . . .. ..
Asymptotic power function against segregation alternative H \% 14852 function

of r forn =3 (left) and n =5 (right). . .. ... .. ... ... .. .. ... ..

xiv

154



5.4.24

5.4.25

5.4.26

5.4.27

5.4.28

5.4.29

5.4.30

5.4.31

5.4.32

5.4.33

5.5.1

5.5.2

Asymptotic power function against segregation alternative H \% /7882 function

of r forn =3 (left) and n =5 (right). ... ... ... .. .. ... ... ...
Asymptotic power function against association alternative H \% /21 38 @ function
of r forn =5,10,100 . . . . . . . ..
Asymptotic power function against association alternative H \% /12 35 2 function
of r forn € {5,10,100} . . . . . .. ...
Asymptotic power function against association alternative H, 5‘4 V)2 252 function
ofrforne {5,10}. . ... ...
Realization of segregation (left), Hy (middle), and association (right) for |Y| =
10, J=13,and n =100. . . . . . . . L
Monte Carlo power using the asymptotic critical value against H \% /g7 38 & func-
tion of r, for n = 100 (left), n = 200 (middle), and n = 500 (right) conditional
on the realization of ) in Figure 5.4.28. The circles represent the empirical
significance levels while triangles represent the empirical power values. . . . . . .
Monte Carlo power using the asymptotic critical value against H \% /10 35 2 func-
tion of r, for n = 100 (left), n = 200 (middle), and n = 500 (right) conditional
on the realization of ) in Figure 4.6.1. The circles represent the empirical sig-
nificance levels while triangles represent the empirical power values. . . . . . ..
Pitman asymptotic efficacy against segregation (left) and association (right) as
a function of r with the realization of ) in Figure 5.4.28. Notice that vertical
axes are differently scaled. . . . . . . . . ... ... L
Hodges-Lehmann asymptotic efficacy against segregation alternative H? as a
function of r for ¢ € {V/3/8,/3/4,2/3/7} (left to right) conditional on the
realization of Y in Figure 5.4.28. . . . . . . . . ...
Hodges-Lehmann asymptotic efficacy against association alternative HA as a
function of r for ¢ € {v/3/21,+/3/12,5+/3/24} (left to right) conditional on the
realization of Y in Figure 5.4.28. . . . . . . . .. ..o
The asymptotic null mean p(NZg) for N5g(-, M) (left) and asymptotic null
variance v(NZg) from Equation 5.5.2 in Theorem 5.5.3 (right). . .. ... ...

The graph of w(NZg) = Var [h12(NZg, Mc)] as a functionof 7. . . . . .. ...

XV

171

171



5.5.3

5.5.4

5.5.5

5.5.6

5.5.7

5.5.8

5.5.9

5.5.10

5.5.11

Depicted are p, (NJg) PR N (&, 552-) for 10, 20, 100 (left to right). His-
tograms are based on 1000 Monte Carlo replicates. Solid curves represent the
approximating normal densities given in Theorem 5.4.2. Note that the vertical
axes are differently scaled. . . . .. ... .. ... ... . .
Depicted are the histograms for 10000 Monte Carlo replicates of pyg (N(lj/_.;4 ) (left),
plo (Ng/; ) (middle), and p1o(N}g) (right) indicating severe small sample skew-
ness for small valuesof 7. . . . . . ... o
Kernel density estimates for the null (solid) and the segregation alternative
H%/S (dashed) for 7 € {.2, 4, .6,.8,1.0}, n = 10, and N = 10000 (left-to-
right). . . e e
Kernel density estimates for the null (solid) and the segregation alternative
H\S/g/4 (dashed) for 7 € {.2, .4, .6, .8, 1.0}, n = 10, and N = 10000 (left-to-
right). . .o
Kernel density estimates for the null (solid) and the segregation alternative
Hf\/gﬁ (dashed) for 7 € {.2, 4, .6, .8, 1.0}, n = 10, and N = 10000 (left-
to-right). . . L L

Monte Carlo power using the empirical critical value against segregation alter-

natives H - /g (left), H N /4 (middle), and H} - ) (right) as a function of 7 for

Kernel density estimates for the null (solid) and the segregation alternative

H\%/s (dashed) for 7 € {.2, 4, .6, .8, 1.0}, n = 100, and N = 1000 (left-to-

right). . .o

Kernel density estimates for the null (solid) and the segregation alternative

H\S/g/4 (dashed) for 7 = .5 with n = 10 and N = 10000 (left) and n = 100, N =

1000 (right). . . . . . . . o

Monte Carlo power using the empirical critical value against segregation alter-

natives H\S/?:/8 (left), H\S/g/4 (middle), and H?

a3/ (right) as a function of 7 for

xvi



5.5.12 Monte Carlo power using the asymptotic critical value against segregation alter-

natives H \S/g /g (left), H \S/g /4 (middle), and H, N /37 (right) as a function of 7 for

n = 10 and N = 10000. The circles represent the empirical significance levels
while triangles represent the empirical power values. . . .. ... .. ... ...
5.5.13 Monte Carlo power using the asymptotic critical value against segregation alter-
native H\S/g/s, as a function of 7 for n = 10 and N = 10000 (left), n = 20 and
N = 10000 (middle), and n = 100 and N = 1000 (right). The circles represent
the empirical significance levels while triangles represent the empirical power
values. . . .o L e e
5.5.14 Kernel density estimates for the null (solid) and the association alternative

H\%/zl (dashed) for 7 € {.2, .4, .6, .8, 1.0} with n = 10 and N = 10000 (left-to-

right). . .o
5.5.15 Kernel density estimates for the null (solid) and the association alternative

H\%/u (dashed) for 7 € {.2, 4, .6, .8, 1.0} (left-to-right). . ... ........

5.5.16 Kernel density estimates for the null (solid) and the association alternative

HéA\/g/u (dashed) for 7 € {.2, 4, .6, .8, 1.0} (left-to-right). . .. ... ... ...

5.5.17 Monte Carlo power using the empirical critical value against association alter-

natives H \% /21 (left), H f}g 12 (middle), and HA (right) as a function of 7

5v/3/24
withn =10and N =10000. . . ... .. .. . ... . e

5.5.18 Kernel density estimates for the null (solid) and the association alternative
A
H\/§/21
right). . .o

(dashed) for 7 € {.2, 4, .6, .8, 1.0} with n = 100, N = 1000 (left-to-

5.5.19 Kernel density estimates for the null (solid) and the association alternative

H dashed) for 7 = .5 with n = 10 and N = 10000 (left) and n = 100, N =

G5 1a (
V3/12
1000 (right). . . . o o o e
5.5.20 Monte Carlo power using the empirical critical value against association alter-
f}g /12 (middle), and H/ vy (right) as a function of 7
withn =100 and N =1000. . . . . . . . .. ..

natives H\/}?j/m (left), H

xvii



5.5.21

5.5.22

5.5.23

5.5.24

5.5.25

5.5.26

A1l

A21
A22
A23
A24

A25

Monte Carlo power using the asymptotic critical value against association alter-

(left), H :‘}5 2 (middle), and H;‘ V324 (right) as a function of 7

for n = 10. The circles represent the empirical significance levels while triangles

natives H \% /21
represent the empirical power values.. . . . . . .. .. ... ... ... ......
Monte Carlo power using the asymptotic critical value against segregation alter-
native H\%/u , as a function of 7 for n = 10 and N = 10000 (left), n = 20 and
N = 10000 (middle), and n = 100, N = 1000 (right). The circles represent the
empirical significance levels while triangles represent the empirical power values.
Pitman asymptotic efficacy against segregation (left) and against association
(right) as a function of 7. . . . . .. Lo Lo
Monte Carlo power using the asymptotic critical value against H \5/5 /8 (left),
H \% 12 (right) as a function of 7 for n = 100 conditional on the realization of
Y in Figure 5.4.28. The circles represent the empirical significance levels while
triangles represent the empirical power values. . . . ... ... ... ... ....
Monte Carlo power using the asymptotic critical value against H \S/g /8 (left),
H f}g /12 (right) as a function of 7 for n = 500 conditional on the realization of
Y in Figure 5.4.28. The circles represent the empirical significance levels while
triangles represent the empirical power values. . . . ... .. ... ... .....
Pitman asymptotic efficacy against segregation (left) and association (right) as

a function of 7 with J = 13. Notice that vertical axes are differently scaled. . . .

The shaded regions are the triangular T'y (xej , NI?;/; , MC) NRcum(y;) regions for
J € {1,2,3} (left); the figure for the description of the pdf of X, (n), the shaded
region is T'(C) (right) given X, (n) = z,, = (z;,y;) for j € {1,2,3}. . ... ...
A figure for the description of the ball B(M¢g,€). - . -« o o o o oo oo oL
The vertex regions Rcc(y) in an obtuse triangle. . . . . . . . .. ... ... ...
A figure for the description of the pdf of X?f (n) with a given X?f (n) = :cg Ce e
The explanatory figure for Ny ((x1,91)) for (z1,y1) € Roc(y1) (left); the graph
of f(z) in Equation A.2.1 multiplied by A(Rcco(y1) U Roc(yz2)) (right). . . . . .
A figure for the description of the pdf of X, (n) (left) and I'y (X, Npg, M)

(right) given X, (n) = Tey = (Z,4). -+« o o o i o

xviii

190

192

197

198

199

207
210
211
212



A.2.6 A figure for the description of the pdf of Q1 (n) and Q3(n) (left) and the unshaded

region is Nbg(g1, M) U Npg(ds, M) (right). . . . . . . .. ..o oo 0oL 215
A.2.7 A figure for the description of the pdf of Q1 (n) and Q3(n) (left) and the unshaded

region is N (1, M) U Nhy(ds, M) (right) given Q;(n) = ¢; for j € {1,3}. ... 218
A.2.8 A figure for the description of the pdf of Q2(n) and Qs(n) (left) and unshaded

region is Nb(d2) U Nbg(ds) (right) given Q;(n) = g; for j € {2,3}. . . . . . .. 221
A.2.9 A figure for the description of the pdf of Q2(n) given Q2(n) = §». The shaded

region is T'(G2) (left). A figure for the description of the joint pdf of Q1 (n), Q2(n)

given Q;(n) = §; for j € {1,2}, and the event EL2. The unshaded region is

NYZ@G@)UNLZ (@) \[T(@)UT(@)] (ight). . . . .. oo 224
A.2.10 A figure for the description of the pdf of Q1(n),Q2(n),Qs(n) and the event

E}? N E}3. The unshaded region is N;/Ez (1)U [N3/2 (G2)N NI?;/E (@)]\[T(G)U

T(G2)] (left). A figure for the description of the event EL? N EL3 N E23. The

unshaded region is (N3 (1) UNgp (@)]N[Ngs (@) UNYE (@)]NINYE (@)U

N2 (@)D \[T(@) UT (@) UT(Gs)] (right). . . . oo 228
A.2.11 A figure for the description of the event Ej(n,e) (left) and Ex(n,e) (right).

The unshaded regions are the corresponding e-strips around the edges given

Xe;(n) =xe; = (wj,y;) for j€{1,2,3}. . .. ... ... .. oL 232
A.2.12 The Ty-region for NZ3! (-, M)(left) and NZ35* (-, M) (right) in T(Y). . . . . .. 233
A.2.13 A figure for the description of the pdf of X/, (n) (left) and NZg (X7, (n), Mc)

(right) given X/ (n) =zf, = (z3,y3). . ... ... ... ... ... .. .. .. 235
A.2.14 A figure for the description of the joint pdf of X/ (n), X/, (n) (left), and NG g (X (n), Mc)U

N (XZ,(n), Mc) (right) given X7 (n) = zf, = (;,y;) for j € {1,3}. . . . . .. 238
A.2.15 The triangle T (left) and a realization of the special extremum Z}, in Ty (right). 240

A.2.16 The explanatory figure forwggl (Z};) (left) and the asymptotically accurate

support for the pdf of Z}, (right) given Z3, = 21, = (z1,41). . . . . . . . . . .. 240
B.1.1 The cases for relative position of £s(r,z) with various r values. . . . . ... ... 243
B.2.1 The prototypes of the six cases of I'1 (21, N} ) for 21 € T; for r € [1,4/3). . . . 245

B.2.2 The regions corresponding to the prototypes of the six cases for r € [1,4/3) with
r=1.25. . e e e e e e e e e e 246

B.2.3 The prototype of the new case for I'y (z1, Np) for 1 € T, for r € [4/3,3/2). . . 250

Xix



B.24
B.2.5
B.2.6
B.3.1
B.3.2
B.3.3

C1l1
C.2.1

C.2.2

The regions corresponding to the six cases for r € [4/3,3/2) . . . . .. ... ...
The regions corresponding to the three cases for r € [3/2,2) with r =1.65. . . .
The regions corresponding to the two cases for Npg(z1) for r € [2,00) with r = 2.5
The support under H? for ¢ € (0,1/3/4) and the two types £,(z;, ) for ry < ry.

The partition of T, for different types of N5 (-, ) under HS with r € [2,1/3/(2¢)).

The regions corresponding to the seven cases for r € [1,4) withr=1.9 . .. ..

The regions corresponding to the prototypes of the four cases with 7 =1/2. . . .
The prototypes of the four cases of N (z) for four distinct z € Reops(es) (shaded
FEEIONS).  « o v it e e e e e e e e e e e
The regions corresponding to the prototypes of the four cases shown in Figure

C.2.1. . e

XX

253
257
258
259
265

277

280



The formulation of a problem is often more
essential than its solution which may be
merely a matter of mathematical or
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CHAPTER 1

Introduction

The proximity catch digraphs (PCDs) are a special type of proximity graphs. In this chapter,
we provide the development of proximity graphs in the literature, with various examples. Then
we define the PCDs together with their closest relative in literature, namely, class cover catch

digraphs (CCCDs).

1.1 Overview of the Proximity Maps and the Associated Digraphs

Proximity maps and the associated (di)graphs are used in disciplines for which shape and struc-
ture are crucial. Examples include computer vision (dot patterns), image analysis, pattern
recognition (prototype selection), geography and cartography, visual perception, biology, etc.
Prozimity graphs were first introduced by Touissaint, who called them relative neighborhood
graphs in [41]. The notion of relative neighborhood graph has been generalized in several di-
rections and all of these graphs are now called proximity graphs. From a mathematical and
algorithmic point of view proximity graphs fall under the category of computational geometry.

A general definition of proximity graphs is as follows:

Definition 1.1.1. Let V be any finite or infinite set of points in R?. Each (unordered) pair
of points (p,q) € V x V is associated with a neighborhood 9(p,q) C R?. Let B be a property
defined on N = {MN(p,q) : (p,q) € V x V}. A prozimity (or neighborhood) graph G g (V, E)
defined by the property 8 is a graph with the set of vertices V and the set of edges E such that

(p,q) € E iff N(p, q) satisfies property L.

Examples of most commonly used proximity graphs are the Delaunay tessellation, the bound-
ary of the convex hull, the Gabriel graph, relative neighborhood graph, Euclidean minimum

spanning tree, and sphere of influence graph of a finite data set. See, e.g., [19].



The Delaunay tessellation of a finite set of points V', D(V'), is the dual of the Voronoi diagram
generated by V. See Section 2.1 for further details.

The convez hull of a set V C R?, denoted Cg(V), encircles V as if by a rubber band so that
the region inside is Cy (V). More formally, Cy (V) is the intersection of all convex sets (there
exists infinitely many of them) that contain V. The boundary of Cgx (V) can be viewed as a
proximity graph which is also a subgraph of D(V).

The Gabriel graph of V, denoted GG(V), is defined as the graph in which (p, ¢) is an edge of
GG(V) iff the circle centered at the midpoint of the line segment pg and with diameter d(p, q),
the distance between p and ¢, does not contain any other points from V.

The relative neighborhood graph of V is a prominent representative of the family of graphs
which are defined by some sort of neighborliness. For a set of points V C R?, the relative
neighborhood graph of V, denoted RNG(V), is a graph with vertex set V' and edge set which
are exactly the pairs (p,q) of points for which d(p,q) < min,cy max(d(p,v),d(q,v)). That
is, (p,q) is an edge of RNG(V) iff Lune(p,q) does not contain any other points of V', where
Lune(p, q) is defined as the intersection of two discs centered at p, ¢ each with radius d(p, q) (see,
e.g., [19]).

The FEuclidean minimum spanning tree of V', denoted EM ST (V'), is defined as the spanning
tree in which the sum of the Euclidean lengths of the edges yield the minimum over all spanning
trees with vertex set V.

Note that EM ST (V) is a subgraph of RNG(V) which is a subgraph of GG(V) which is
subgraph of D(V) (see [30]).

The sphere of influence graph on V, denoted SIG(V), has vertex set V and (p,q) as an
edge iff the circles centered at p and ¢ with radii min,cy\py d(p,v) and min,ey g4y d(q,v),
respectively, have nonempty intersection.

In the examples above, d(x, ), can be any distance in R?. Furthermore, the distance between
a point z and a set A is defined as d(z, A) := infyc 4 d(z,y), and the distance between two sets
A and B is defined as d(A, B) := inf(, ,ycax B d(z,y).

A digraph is a directed graph, i.e., a graph with directed edges from one vertex to another
based on a binary relation. Then the pair (p,q) € V x V is an ordered pair and (p, ¢) is an arc
(directed edge) denoted pq to reflect the difference between an arc and an edge. For example,

the nearest neigbor (di)graph in [32] is a proximity digraph. The nearest neighbor digraph,



denoted NND(V), has the vertex set V and pq as an arc iff d(p, q) = min,ey\ {p} d(p,v). That
is, pq is an arc of NND(V) iff ¢ is a nearest neighbor of p. Note that if pq is an arc in NND(V),
then (p,q) is an edge in RNG(V).

Our proximity catch digraphs are based on the property 3 that is determined by the following

mapping which is defined in a more general space than R¢.

Definition 1.1.2. Let (2, M) be a measurable space. The prozimity map N(-) is given by
N : Q = p(RN), where p(-) is the power set functional, and the prozimity region of x € ,

denoted N(z), is the image of z € Q under N(.).

The points in N(x) are thought of as being “closer” to z € 2 than are the points in Q\ N(z).
Proximity maps are the building blocks of the prozimity graphs of Toussaint in [41]; an extensive

survey is available in [19].

Definition 1.1.3. The prozimity catch digraph D has the vertex set V = {pl, ceny pn} and the
arc set A is defined by p;p; € A iff p; € N(p;) for i # j.

Notice that the proximity catch digraph D depends on the prozimity map N(-), and if
pj € N(p;), then we call N(p;) catches p;. Hence the name prozimity catch digraph.
If arcs of the form p;p; (i-e., loops) were allowed, D would have been called a pseudodigraph

according to some authors (see, e.g., [4]).

1.1.1 Data-random Proximity Catch Digraphs

Classification and clustering have received considerable attention in the statistical literature. In
recent years, a new classification approach has been developed which is based on the relative
positions of the data points from various classes. Priebe et al. [35] introduced the class cover
catch digraphs (CCCDs) and gave the exact and the asymptotic distribution of the domination
number of the CCCD based on two classes X, and ), both of which are random samples from
uniform distribution on a compact interval in R. DeVinney and Priebe [9], DeVinney et al. [10],
Marchette and Priebe [29], Priebe et al. [37], [36] applied the concept in higher dimensions and
demonstrated relatively good performance of CCCD in classification. The methods employed
involve data reduction (condensing) by using approximate minimum dominating sets as proto-
type sets (since finding the exact minimum dominating set is in general an NP-hard problem —

In particular, for CCCD — (see [8]). Furthermore, the exact and the asymptotic distribution of

4



the domination number of the CCCDs are not analytically tractable in dimensions greater than
1.

Let (2, M) be a measurable space and X, = {X1,..., X} and YV, = {V1,..., Y} be two
classes of (2-valued random variables whose joint pdf is Fx y. For simplicity in notation, we will
use ) instead of ), henceforth. Let d(-,-) : 2 x Q@ — [0, 00) be a distance function. The class
cover problem for a target class, say X, refers to finding a collection of neighborhoods, N(X;)
around X; € X, such that (i) X, C (U;N(X;)) and (ii) ¥ N (U;N(X;)) = 0. A collection of
neighborhoods satisfying both conditions is called a class cover. A cover satisfying condition (i)
is a proper cover of class X, while a collection satisfying condition (ii) is a pure cover relative to
class Y. From a practical point of view, for example for classification, of particular interest are
the class covers satisfying both (i) and (ii) with the smallest collection of neighborhoods, i.e.,
minimum cardinality cover.

This class cover problem is a generalization of the set cover problem in [14] that emerged in
statistical pattern recognition and machine learning, where an edited or condensed set (prototype
set) is selected from X, (see, e.g., Devroye et al. [11]).

In particular, we construct the proximity regions using two classes of data sets. Given ) C (2,
the prozimity map Ny(-) : Q = p(Q) associates a proximity region Ny(x) C Q with each point
z € . The region Ny(z) is defined in terms of the distance between x and ). More specifically,
our proximity maps will be based on the relative position of points from class X,, with respect
to the Delaunay tessellation of the class ). See Section 2.1 for more on Delaunay tessellation.

If X, = {X1,...,Xn} is a set of Q-valued random variables then Ny(X;) are random
sets. If X; are independent identically distributed then so are the random sets Ny (X;). We
define the data-random proximity catch digraph D — associated with Ny (-) — with vertex set
X, ={X1,---,X,} and arc set Aby X;X; € A <= X; € Ny(X;). Since this relationship is
not symmetric, a digraph is needed rather than a graph. The random digraph D depends on
the (joint) distribution of the X; and on the map Ny(-).

The PCDs are closely related to the prozimity graphs of Toussaint and Jaromczyk [19] and
might be considered as a special case of covering sets of Tuza [42] and intersection digraphs
of Sen et al. [39]. This data random proximity digraph is a vertex-random prozimity digraph
which is not of standard type (see, e.g., Janson et al. [18]). The randomness of the PCDs lies

in the fact that the vertices are random with joint pdf Fx )y, but arcs X;X; are deterministic



functions of the random variable X; and the set Ny(X;).

For example, the CCCD of Priebe et al. [35] can be viewed as an example of PCD with
Ny(z) = B(z,r(x)), where r(z) := minycy d(z,y). The CCCD is the digraph of order n with
vertex set X, and an arc from X; to X; iff X; € B(X;,r(X;)). That is, there is an arc from X;
to X iff there exists an open ball centered at X; which is “pure” (or contains no elements) of
Y, and simultaneously contains (or “catches”) point X;.

Notice that the CCCDs are defined with (open) balls only, whereas PCDs are not based
on a particular geometric shape or a functional form; that is, PCDs admit Ny(-) to be any
type of region, e.g., circle (ball), arc slice, triangle, a convex or nonconvex polygon, etc. In this
sense, the PCDs are defined in a more general setting compared to CCCD. On the other hand,
the types of PCDs we introduce in this dissertation are well-defined for points restricted to the
convex hull of Y, Cy (). Moreover, the three families of proximity maps we introduce will yield
closed regions.

Furthermore, the CCCDs based on balls use proximity regions are defined by the obvious
metric, while the PCDs do not suggest an obvious metric. In particular, our PCDs will be based
on some sort of dissimilarity measure, but no metric underlying this measure will exist.

In this dissertation, we have three major result categories:

— Introduction of three families of PCDs, where one is a modification of CCCD based on

the balls, the other two are parametrized families.

— Investigation of the domination number of the PCDs.

— Investigation of the relative density of the PCDs.

Schematically, the major result categories are depicted as

New Families of PCDs based on Delaunay cells

Domination Number of PCDs Relative‘ ]Séﬁzity of PCDs

The domination number and the relative density of PCDs are first investigated for data in
one Delaunay cell (triangle in R?) and the analyses are generalized to data in multiple Delaunay

cells.



1.2 Chapter Overview

In this thesis, we provide the preliminary tools and the foundation in Chapter 2. A proximity
catch digraph which is a modification of the CCCD, and two parametrized families of PCDs in R?
and the related concepts are introduced in Chapter 3. In Chapter 4, the asymptotic distribution
of the domination number of one family of PCDs is computed. The domination number is then
used in testing for the spatial patterns of segregation and association. Furthermore, lower
and upper bounds are provided for other two families. In Chapter 5, the asymptotic (normal)
distribution of the relative density of the parametrized PCDs is computed by using the central
limit theory of U-statistics. Furthermore, relative density is also used in testing for the spatial
patterns of segregation and association. Asymptotic relative efficacy methods such as Pitman
asymptotic efficacy, Hodges-Lehmann asymptotic efficacy, asymptotic power function analysis,
and Monte Carlo simulations are employed in the selection of optimal proximity parameters.
In Chapter 6, we compare the proximity maps and the associated PCDs in terms of some
appealing properties, asymptotic behaviour and tractability of the distributions of the domina-
tion number and relative density of the PCDs, as well as their performance in testing for the
spatial patterns. Also provided are open problems and directions for prospective research.

In Appendices A, B, and C we provide details of lengthy proofs and expressions.



CHAPTER 2

Preliminary Tools and Foundation

2.1 Voronoi Diagrams and Delaunay Tessellations

Our proximity catch digraphs will be based on the relative location of points from one class with
respect to the Delaunay tessellation of points from another class. In this section, we provide a
brief description of Delaunay tessellations and related concepts.

A tessellation is a partition of a space into convex polytopes; tessellation of the plane (into
convex polygons) is the most frequently studied case.

Given 2 < n < oo distinct points in R?, we associate all points in the space with the closest
member(s) of the point set with respect to the Euclidean distance. The result is a tessellation of
the plane into a set of regions associated with the n points. We call this tessellation the planar
ordinary Voronoi diagram generated by the point set and the regions ordinary Voronoi polygons.
See Figure 2.1.1 (left) for an example with m = |Y| =10 Y points iid from &/ ((0,1) x (0,1)).

In general, let P = {p1,pa,-..,pn} be n points in R? where 2 < n < oo and p; # p; for
i#j,i,j €[n]:={1,2,...,n} and let || - || denote the norm functional. We call the region
Vo(pi) = {z € R : ||z — pi|| < ||z — pj]| for j # i, j € [n]} the (ordinary) Voronoi polygon or
cell associated with p; and the set B = {Vc(p1),..., Vo (pn)} the Voronoi diagram or Dirichlet
tessellation generated by P. We call p; the generator of V(p;). The Voronoi diagram partitions
the space into disjoint regions (which are also called tiles or Thiessen polygons in R?). Notice
that we still say 8 partitions the space R¢, although V¢ (p;) are not necessarily disjoint, but
if nonempty the intersection lies in a lower dimension, or equivalently, has zero R¥~!-Lebesgue
measure. We stick to this convention throughout this dissertation. The intersection of two
Voronoi cells, if nonempty, i.e., for ¢ # j, Vo(pi) N Ve (p;) # 0, is called a Voronoi edge. If a
Voronoi edge is not a point, then Vo (p;) and Ve (p;) are said to be adjacent. An end point of a
Voronoi edge is called a Voronoi vertez.

If at a Voronoi vertex, more than three Voronoi polygons intersect, we say U is degenerate;



otherwise, U is non-degenerate. A detailed discussion including the history of Voronoi diagrams

is available in [30].

Voronoi Diagram Delaunay Triangulation
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0.8

0.6
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0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

Figure 2.1.1: The Voronoi diagram based on a realization of 10 Y points (left) and the associated
Delaunay triangulation (right).

Given a Voronoi diagram with n > d+ 1 non-coplanar (i.e., not all the points lie on a (d—1)-
dimensional hyperplane) generators, P, in R?, we join all pairs of generators whose Voronoi cells
have a common Voronoi edge. The resulting tessellation is called the Delaunay tessellation of
P. See Figure 2.1.1 (right) for the Delaunay triangulation associated with the Voronoi diagram
in Figure 2.1.1 (left) based on 10 points iid from #/((0,1) x (0,1)). By definition a Delaunay
tessellation of a finite set, P, is the dual of the Voronoi diagram constructed by using the same
set. The tessellation yields a (unique) polytopization provided that no more than (d + 1) points
in R? are cospherical (i.e., no more than (d+ 1) points lie on the boundary of a (hyper)sphere in
R?). Moreover, the circumsphere of each Delaunay polytope (i.e., the sphere that contains the
vertices of the Delaunay polytope on its boundary) is pure from the set P, i.e., the interior of
the circumsphere of the Delaunay polytope does not contain any points from P. The Delaunay
tessellation partitions the convex hull, Cg(P), of P. In particular, in R?, the tessellation is
a triangulation that yields triangles T (including the interior), j = 1,...,J (see, e.g., [30])
provided that no more than three points are cocircular (i.e., no more than three points lie on
the boundary of some circle in R2). In this dissertation we adopt the convention that a triangle

refers to the closed region bounded by its edges. See Figure 2.1.2 for an example with n = 200



X points “uy ((0, 1) x (0, 1)), the uniform distribution on the unit square and the Delaunay

triangulation is based on Y points in Figure 2.1.1.
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Figure 2.1.2: A realization of 200 X points and the Delaunay triangulation based on 10 Y points
in Figure 2.1.1.

2.1.1 Poisson Delaunay Triangles

The Delaunay triangles are based on a given set of points ). The set ) can be assumed to
come from a Poission point process on a finite region, and in the application of PCDs, to
remove the conditioning on Y, it is suggested that ) comes from a Poisson point process for
prospective research directions. We briefly describe the Poisson point processes and Poisson
Delaunay triangles.

A stochastic point process on R? is defined to be a process in which points are generated
according to a probability distribution P (|y NB|= k), k=0,1,2,..., over any B C R?. For
example, a binomial point process is a stochastic point process in which n points are generated
over a bounded set S C R? according to the uniform distribution.

In particular, if d = 2 the process is called a planar stochastic point process. If two points

10



coincide with probability zero, then it is a simple stochastic point process. A stochastic point
process is said to be locally finite if any finite region B C R? contains a finite number of points
with probability 1 under the process (see [30]).

We have built the Delaunay tessellation using ) with finite sample size. Suppose Y is from
a stochastic point process. One of the most fundamental locally finite stochastic point processes
is the Poisson point process, which is defined as the process that satisfies

A-V(B)-e A VB K
k!

P([YNB|=k) = , k=0,1,2,...

for any B C RY, where V(-) denotes the d-dimensional volume functional and A > 0 is the
intensity of the process. We can also define the Poisson point process as the limit of the binomial
point process in the sense of expanding the finite region S to an infinite region while keeping
A= ﬁ constant. We call the Delaunay tessellation based on a finite data set from a Poisson
point process Poisson Delaunay tessellation and denote it Dp. The associated Voronoi diagram
is called the Poisson Voronoi diagram and denoted Vp. For more details on the properties of
Vp (see, for example, [30]).

A simplez in R? is the convex hull of any (d+ 1) points in general position, i.e., no (d+ 1) of
the points lie in a (d— 1)-dimensional hyperplane in R?. The simplex is the point itself for d = 0,
the line segment joining the two points for d = 1, a triangle for d = 2, a tetrahedron for d = 3,

and so on. Each Poisson Delaunay cell of Dp is a (d + 1)-dimensional simplex whose vertices

are xg, Z1,...,T, from the Poisson point process. Any s-face of Dp is an (s + 1)-dimensional
simplex with vertices xg,...,Ts, also points from the Poisson point process. There are (‘:_tf)

many s-faces contained in a Poisson Delaunay cell for 0 < s < d.

Let ¢ and r be the circumcenter and circumradius, respectively, of a (d 4+ 1)-dimensional
Poisson Delaunay cell in R?. Then the (d+ 1) vertices of the cell are the points {c¢ +ru;} where
{u;} are the unit vectors for i = 0,1,...,d. The ergodic joint probability density function of
Dp, the probability density function of r, and k** moment of the volume of a typical Poisson
Delaunay cell are provided in [30].

In R?, the probability density function (pdf) of a pair of inner angles arbitrarily selected

from an arbitrary triangle in Dp is given by

8
flz,y) = 3—(sinm)(siny) sin(z +y), for z,y >0 and z +y < 7.
73

11



Notice that the mode of this density is at £ = y = 7/3, which implies that the most frequent
triangles in a Dp are nearly equilateral triangles.
By integrating over y, we obtain the pdf of a randomly selected inner angle of an arbitrary

triangle from Dp:

flx) = % ((m—x)cosz +sinz)sinz| I(0 <z < 7)

where I(-) is the indicator function. Then the expected value of X is E [X] = 7/3 and E [X?] =
272/9 — 5/6.

The pdf of the minimum angle and the pdf of the maximum angle, and the distribution of
the length of an arbitray edge of an arbitrary triangle from Dp, are also provided in [30] with

relevant references.

2.2 Transformations Preserving Uniformity on Triangles in R?

We will assume X, is a set of iid uniform random variables on the convex hull of }Y; i.e., a
ramdom sample from Cy(Y'). In particular, conditional on |, N T};| > 0 being fixed, X, N T}
will also be a set of iid uniform random variables on T; for j € {1,2},...,J, where Tj is the
4t Delaunay triangle and .J is the total number of Delaunay triangles. Reducing the triangle
T; as much as possible while preserving uniformity and the probabilities related to PCDs will
simplify the notation and calculations. Below, we present such a transformation that reduces a
single triangle.

Let Y = {y1,y2,y3} C R? be three non-collinear points and 7'()) be the triangle (including
the interior) with vertices yi,y2,ys. Let X; “u (T'())), the uniform distribution on 7'(Y), for

i =1,...,n. The probability density function (pdf) of U(T(})) is

flu) = muu eT(Q)),

where A(-) is the area functional.

The triangle T'()) can be carried into the first quadrant by a composition of transformations
in such a way that the largest edge has unit length and lies on the z-axis, and the z-coordinate
of the vertex nonadjacent to largest edge is less than 1/2. We call the resultant triangle the

basic triangle and denote it as Tj.

12



Although such transformations are simple, we will describe them in prose only, due to the
complexity of notation.

Let e; be the edge opposite vertex y; for j € {1,2,3}. To transform T'(}) to the corre-
sponding basic triangle Ty, first find the lengths of the edges; suppose e3 is of maximum length.
Then scale the triangle so that ez is of unit length. Next translate y; to (0,0), and rotate (if
necessary) the triangle so that yo = (1,0). If the y-coordinate of y3 is negative reflect around the
x-axis, then if z-coordinate of y3 is greater than 1/2, reflect around = = 1/2, then the associated
basic triangle T; is obtained. That is, the basic triangle T3 can be obtained by a composition
of rigid motion transformations: scaling, translation, rotation, and reflection. Hence if T'())
is transformed into T3, then T'()) is similar to Tp. Thus the random variables X; “u (T))
transformed along with 7'())) in the described fashion are “u (Tp)- So, without loss of general-
ity, we can assume T'()) to be the basic triangle, T, = ((0,0), (1,0), (c1,¢2)) where 0 < ¢; < 1/2,

and ¢ > 0 and (1 — ¢;)? + ¢ < 1. The functional form of T} is
Ty={(z,9) € :y > 0; y < (c22)/c1; y <2 (1—2) /(1= 1)}

The basic triangle T} is an equilateral triangle, if ¢; = 1/2 and ¢o = v/3/2; an obtuse triangle,
if cg < \/m; a right triangle, if ¢; = m; is an acute triangle, if ¢co > m If
¢y = 0, then the T} reduces to the unit interval (0,1).

Note that there are also transformations that preserve uniformity of the random variable,
but not similarity of the triangles. We only describe the transformation that maps T(Y) to the
standard equilateral triangle, T. = T ((0,0), (1,0), (1/2,v/3/2)) for exploiting the symmetry in

calculations using Tk.

2.2.1 Transformation of T} to T,

Let ¢ : (z,v) = (u,v), where u(z,y) = z + % y and v(z,y) = % y. Then y; is mapped to

(0,0), y» is mapped to (1,0), and y3 is mapped to (1/2,4/3/2). See also Figure 2.2.1.

Note that the inverse transformation is ¢, !(u,v) = (z(u,v),y(u,v)) where z(u,v) = u —

% v and y(u,v) = % u. Then the Jacobian is given by
oz oz 1 2c¢1—1 2¢
J z, — ou v | _ V3 — _2
(2:9) oy oy 0 22 V3
u Ov V3
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de(y3)

y3 = (c1,¢9)

Azy) %(x g

7 =007 - T=110) PEITT=T00) ‘ Pethp) = (1,0)
xr u

Figure 2.2.1: The description of ¢.(z,y) for (z,y) € Tp (left) and the equilateral triangle
Pe (Tb) =Te (I‘ight).

So fu,v(u,v) = fx,y (¢ (u,v))|J| = 5= I((u,v) € T.). Hence uniformity is preserved.

Sl

2.3 Triangle Centers

Our PCDs will be defined using the vertex and edge regions, which will be constructed using a
point, preferably, in the interior of the triangle, e.g., a triangle center.

Let Y = {y1,y2,y3} C R? be non-collinear and T()’) be the corresponding triangle. The
trilinear coordinates of a point P with respect to T'()’) are an ordered triple of numbers, each
of which is proportional to the distance from P to one of the edges. Trilinear coordinates are
denoted as (a : 8 : ) and also are known as homogeneous coordinates or trilinears. Trilinear
coordinates were introduced by Pliicker in 1835 (see [43]). The triplet of trilinear coordinates
obtained by multiplying a given triplet by any nonzero constant k describes the same point, i.e.,
(a:8:7)=(ka:kB:kv), for any k > 0.

By convention, the three vertices y, ys, and y3 of T'()) are commonly written as (1:0: 0),

(0:1:0), and (0:0: 1), respectively (see [43]).

Definition 2.3.1. A triangle center is a point whose trilinear coordinates are defined in terms of
the edge lengths and (inner) angles of a triangle. The function giving the coordinates (a : 8 : 7)

is called the triangle center function.

Kimberling enumerates 360 triangle centers in [23], among which four have been widely

known since the ancient times; namely, circumcenter (C'C), incenter (IC), center of mass or

14



centroid (CM), and orthocenter (OC). The point where the center is located in T'()) will be
labeled accordingly; e.g., Mcc will denote the circumcenter of T'()).

The circumcircle is a triangle’s circumscribed circle; i.e., the unique circle that passes through
each of the triangle’s three vertices y;, y2, y3. The center of the circumcircle is called the
circumcenter, denoted Mo, and the circle’s radius is called the circumradius, denoted r... By
construction, the distances from circumcenter to the vertices are equal (to r..). Furthermore,
the triangle’s three edge bisectors perpendicular to edges e; at M; for j € {1,2,3} intersect at
Mcc. See Figure 2.3.1. The trilinear coordinates of Mcc are (cosf; : cosfs : cosf3) where 6;
is the inner angle of T'(Y) at vertex y; for j € {1,2,3} and the trilinears for M., can also be
written as (ree cosy : rec cosbs : re. cosbs).

The circumcenter of a triangle is in the interior, at the midpoint of the hypotenuse, or in the
exterior of the triangle, if the triangle is acute, right, or obtuse, respectively. See Figure 2.3.1
where an acute and an obtuse triangle are depicted. Using the pdf of an arbitrary angle of a

triangle T; from Poisson Delaunay triangulation Dp, we see that,

P(Tj is a right triangle) = P(8 = n/2) =0,

hence P(M¢c is the midpoint of the hypothenuse) = 0. Furthermore,

P(T} is an obtuse triangle) = P(Mcc € T;) = P(max > 7/2) = n (o)
/2
_ (3f5 (\/ﬂ) - fe (\/ﬁ) -3 fs (\/g) + fo (\/g))
. Vi
~ 03726 (2.3.1)
where

f3(x) = l%(Sx(Sin 2z) — cos 2z + cosdx — wsin2z) | I(n/3 <z < w/2))+

ll(éhr(cos z)(sinz) + 3sinz? — cosz? — 4z(cosz)(sinz) + 1) | I(n/2 < = < 7).
T

is the pdf of the maximum angle, fo(z) = [ cos( t?/2)dt, and fs(z) = [;"sin(w t?/2)dt are the

Fresnel cosine and sine functions, respectively. The coordintates of M¢c¢ in the basic triangle
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2 2ca

T, are (1 M)

The incircle is the inscribed circle of a triangle, i.e., the unique circle that is tangent to the
edges e; at P; for j € {1,2,3}. The center of the incircle is called the incenter, denoted My, and
the radius of the incircle is called the inradius, denoted r;.. Incenter has trilinear coordinates
(1 :1:1). The incenter is the point where the triangle’s inner angle bisectors intersect. See
Figure 2.3.2 (left).

The coordinates of My for the basic triangle T} are (., ¥;.), where

c1 — /2 + c3 Co

sy Yie = - .
2 T/ E+ VIl + &

Tin =
i+ /E+E+ V0 -a)r+E

The distance between Moe and My is d(Moco, M1) = \/rcc(rcc——er) . Unlike the circum-
center, the incenter is guaranteed to be inside the triangle.

The median line of a triangle is the line from one of its vertices to the midpoint of the opposite
edge. The three median lines of any triangle intersect at the triangle’s centroid, denoted M¢.
The centroid is the center of mass of the vertices of a triangle. Since M¢ is also the intersection
of the triangle’s three median lines, it is sometimes called the median point. It has trilinear
coordinates (1/]e1| : 1/|ea| : 1/|es|) or (cscby : cscy : cschy) where e; denotes the edge opposite
vertex y; for j € {1,2,3}. The centroid is also guaranteed to be in the interior of the triangle.
See Figure 2.3.2 (right). The coordinates of M¢ for the basic triangle are ((1+ ¢1)/3,c2/3).

The intersection of the three altitudes of a triangle is called the orthocenter, Mo, which has
trilinear coordinates (cos 62 cosfs : cosfy cosfs : cos by coshy). The orthocenter of a triangle is
in the interior, at vertex ys, or in the exterior of the basic triangle, Ty, if T} is acute, right, or
obtuse, respectively. The functional form of Mo in the basic triangle is (¢1,¢; (1 — ¢1)/ca).

Note that in an equilateral triangle, M; = Moo = Mo = M¢ (i.e., all four centers we have

described coincide).

2.4 The Spatial Patterns of Segregation and Association

The PCDs are used in testing spatial patterns of segregation and association. We present a brief
overview of these patterns and the related tests in the literature.
The spatial relationships between two or more classes have important consequences in many

areas of science, especially, ecology and species population biology. Most of the early work
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Figure 2.3.1: The circumcenter, circumcircle, and circumradius of an acute triangle (top), an
obtuse triangle (bottom). 17
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Figure 2.3.2: The incircle, incenter, inradius of a triangle (left), and the centroid (center of
mass) of a triangle (right).

in spatial patterns of observations (e.g., species of plants) was done one class (or species) at
a time only. In 1961, Pielou [33] considered the relative position of the species with respect
to each other by describing the spatial patterns in two categories: two species of similar size
are “unsegregated” if a member of a species is equally likely to be the nearest neighbor of a
member of same species or a member of the opposite species; two species are “segregated” if
the species tend to exist in clumps or clusters, or it is more likely for a member to be located
near a member of its own kind. Over the years, the relative spatial patterns of two classes, have
been divided into three categories: segregation, association, or neither (e.g., complete spatial
randomness). These three categories are also called positive segregation, negative segregation, or
unsegregation by some authors (see, e.g., [33]). The phenomenon known as segregation involves
members from different classes having a tendency to repel each other, which in return implies
that members of a species tend to be found near conspecifics (i.e., members of the same species).
Association involves members from different classes having a tendency to attract one another.
See for instance, Coomes et al. [6].

One straightforward approach to testing spatial patterns is to partition the spatial region
into rectangular or square quadrats and compare the intensity of each species in quadrats to the
chance expectation and decide for the existence or non-existence of segregation. However, this
procedure is inevitably dependent on the quadrat size, which usually is arbitrary. There are
many possible patterns for segregation. Rather than testing against these particular patterns,

Pielou’s test is based on the investigation of the nearest neighbor relationships of the populations.
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In her approach, a 2 x 2 nearest neighbor contingency table is constructed by recording the class
of each observation and the class of its nearest neighbor; that is, a 2 x 2 contingency table
C = [ci,4] is constructed, where ¢; ; is the number of individuals from class j that are nearest
neighbors of class i. The resulting test is a x2-test of independence with 1 degree of freedom,
which compares the observed cell counts to the expected cell counts. Pielou’s method, which
has been frequently used in ecological studies, tests whether two species have the expected
proportion of the same species as the nearest neighbor under independence.

Many other tests have been proposed to test segregation in spatial data. These include
the comparison of nearest neighbors (Diggle, 1983; Cuzick and Edwards, 1990), comparisons of
Ripley’s K (t) or L(t) functions (Ripley 1981), formal testing of the difference between two K (t)
curves (Diggle and Chetwynd, 1991). See Dixon [12] for a broader discussion and the references
mentioned in this paragraph.

A test of segregation depends on the distribution of the cell counts under a null hypothesis
of non-existence of segregation. The null hypothesis here can be formulated in two slightly

different forms:

(i) Complete spatial randomness occurs when each class is randomly distributed throughout
the area of interest. Complete spatial randomness not only describes the association

between species but also arrangement, of locations.

(ii) Random labeling, on the other hand, is less restrictive in the sense that locations may
have any particular arrangement (perhaps clustered or spread in a particular pattern) but

labels, e.g., species names, are randomly assigned to locations (see [12]).

2.5 U-Statistics

The relative density of the PCDs is shown to be a U-statistic. Here we describe U-statistics,
and the related asymptotic results.

U -statistics are a class of unbiased estimators of characteristics (or parameters) of one or
more populations. The basic theory of U-statistics was developed by W. Hoeflding in 1948 (see
[17]). Let F be a family of probability distributions on an arbitrary measurable space and 6(F)
be a real-valued function depending on F' € F. We start with one-sample U-statistics. A param-

eter O(F') is said to be estimable of degree m for the family of distributions F, if m is the minimum
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sample size for which there exists a function h(z1,...,Tm) such that E [h(X1,...,Xn)] = 0(F)
for every distribution F € F, where {X1,...,X,,} is a random sample (i.e., set of iid random
variables) from F and h(Xy,...,X,,) is a statistic that does not depend on F. The function
h(-) is called the kernel of the parameter §. A random sample from a distribution refers to a
set of iid random variables from the same distribution throughout the dissertation.

The function h(-) can be assumed to be symmetric in its arguments, since for any given

kernel g(z1,...,%y,), we can always construct one that is symmetric in its arguments as

1
h(zy,...,2m) = o Z 9(@r(1)s- - Tr(m))

T m€llm
where the summation is over II,, = {7 : 7 is a permutation of integers 1,...,m}. Obviously,
h(-) is symmetric in its arguments since h(z1,...,2Zm) = h(Tx(1),- -, Tx(m)) for every permuta-
tion (w(1),...,m(m)) of the integers [m] and h(z1,...,2,,) is an unbiased estimator of 8(F') for
any F € F.
For a real-valued kernel function h(z1,...,2,) and for a sample X1,..., X, of size n > m
from a distribution F', a one-sample U-statistic for the estimable parameter § = 0(F') of degree

m constructed by h(-) is given by
Up=U(Xy,...,Xp) = Z b (Xi1y,--->Xim)) »

where the summation is over the set P, , of all n!/(n — m)! permutations of (i(1),...,i(m))
of size m chosen from [n]. If the kernel h(-) is symmetric in its arguments, then U,, has the

equivalent form

U, =U(Xy,...,X,) T Z h(Xi)s-- - Xigm)) »
where Cp,, is the set of all () combinations of m integers i(1),i(2),...,i(m) chosen from [n].

Note that a U-statistic is an unbiased estimator of 8 for every F' € F and is symmetric in
its arguments. In fact, when F includes all continuous distributions, it can be shown that a
U-statistic is the unique minimum variance unbiased estimator of 6 (see [40]).

The asymptotic distribution of U, is given below.

Lemma 2.5.1. (Theorem 3.3.13 in [38]) Let {X1,...,X,} denote a random sample from some
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population. Let 6 be an estimable parameter of degree m with symmetric kernel h(x1,...,Tm).

FE[R(X1,...,Xn)] < oo and if
U(Xl,...,Xm)z(T > h(Xpay - Xam)

where Cp, n, consists of the subsets of m integers chosen without replacement from [n], then
vn [Un — 0] has a limiting normal distribution with mean 0 and variance & - m?, provided

61 =E [h(Xl, e ,Xm) h(X1, Xm,Xm+1 ey X2 mfl)] —02 ] positi'ue.

The sharpest rate of convergence in the asymptotic normality of U-statistics in the literature

is provided in [2] as follows.

Lemma 2.5.2. If v = E|h|? < 0o and & > 0 then

sup

teR m /&1

P (7‘/5([]”_0) §t> —@(t)‘ <C-v-(m2g) P on

where C is a constant and ®(-) is the standard normal distribution function.

A parameter 8(F1, F») is said to be estimable of degree (r, s) for the family of distributions F,
if 7+ s is the minimum sample size for which there exists a function h(z1,...,Zr;y1,---,Yys) such
that E [h(X1,..., X3 Y1,...,Y,)] = 6(F1, F) for distributions Fy, F, € F, where {X1,..., X, }
and {Yl, . ,Ys} are random samples from F; and F5, respectively, and h(X1,..., X,; Y1,...,Ys)
is a statistic that does not depend on Fi, F5.

For an estimable parameter 8 of degree (r,s) with a symmetric kernel hA(-), a two-sample

U -statistic has, for 1 <r <mn and 1 < s < m, the form

1
U(Xlu---aXn;lfla---;Ym):W Z Z h(Xaqys - Xa@r); Ya)s- -+ Ya(s))

r/ \s/) a€Crn BECs,m
where C,. ,, (Cs,m) is the collection of all subsets of  (s) integers chosen without replacement from
integers [n] ([m]). The variance expression for the two-sample U-statistics is often considerably
more complicated than that of one-sample case. For the limiting distribution see Theorem
3.4.13 of Randles and Wolfe [38] and for the rate of convergence see [15]. For more theory of

U-statistics, see [25] and [28].
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2.6 Consistency of Tests

The statistics based on our PCDs will be used in testing spatial point patterns. Consistency is
a reasonable property a test should enjoy.

Let X, = {Xi,...,X,,} be a random sample from a distribution F. As the sample size
n increases, we obtain more information about the precise value of the parameter § = (F).
Reasonable procedures should reflect this fact. In estimation, if a sequence of estimators, T;, =
Tn(X,) is a “reasonable” estimator of #, then T, should be close to 8 with higher probability as n
increases. More precisely, T, is called a weakly consistent estimator of 6 iff P(|T,—6| >¢) — 0
as n — oo for all € > 0 (i.e., T, — 6 in probability). If T,, — 6 a.s., then T, is called a strongly
consistent estimator of 6.

In a hypothesis testing format, a roughly corresponding property may be defined for a-level
tests for @ € (0,1). Suppose the joint distribution of X, is F' = F,(&,0) for § € ©, a general

parameter space, and the hypothesis of interest is
Hy: 0 €0y C O versus Hy: 0 € ©, =0\ 0Oy.

If {6(X)}n>1 is a sequence of a-level tests for testing the above hypothesis, then 6(A},) is said
to be consistent against 8; € O, if 8(01,5(X,)) = 1 as n — oo, where §(6,8) = P(reject Hylh).
In particular, if 8 € ©g, 3(6,0) is the probability of Type-I error; if 8 € ©,, then 3(6,0) is the
power against 6. For further details on consistency of tests, see [1] and [22].

For example, for a one-sided test with @ C R, Hy : § < 6 versus H, : § > 6y, where
0,6y € O, if 6, > 6y, the sequence of tests T), is consistent if Py, (T, > cp(a,6y)) — 1 where
cn(a, 8p) is the a-level critical value based on n observations. For Hy : 6 > 6y versus H, : 6 < 6,
where 0,60 € O, and if §, < 6y, the sequence of tests T}, is consistent if Py, (T, < cn(a,60)) = 1

where ¢, (a, 0y) is the a-level critical value based on n observations.

Lemma 2.6.1. Suppose T,, is a sequence of test statistics for testing Ho : p < po versus H, :
u > po with mean p, = E[T,] and variance o2 = Var (T,,) (both of which are assumed to exist)
where i, — p and \/no, — o in probability. Suppose also that \/n (T, — pn)/on 5 N(0,1),

the standard normal distribution. Then {Tn} is consistent for all p > po.

Proof: Under both the null and alternative hypotheses 02 — 0 as n — oo. Let c,(a, o)

be the a-level critical value. Then c¢,(a, o) — po in probability as n — oo . If u > po,
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P, (T, > cn(a, po)) — 1 since 02 — 0; consistency follows. B

2.7 Comparison of Tests

The test statistics based on the relative density of the PCDs are parametrized. The optimal
parameter for the hypothesis testing is selected by using asymptotic relative efficacy analysis
of the tests. Note that throughout this dissertation relative efficacy and relative efficiency are
used interchangably.

Consider the problem of testing Ho : § € ©¢ C © versus H, : § € ©, = © \ ©¢ with two se-
quences of test statistics {Tn} and {Sn} Let 6, be an arbitrary element in the alternative space
0., and ¢,(a,S) and ¢,(a,T) denote the a-level critical regions for S, and T, respectively.
That is,

Py (Sn € cn(a,S)) <a, and Py (Tn € cn(a,T)) <a

for all 8 € ©g and all n. Let 8 be fixed in (a, 1) and define n’ and m' to be the minimum sample

sizes for which S,, and T,, attain a power of at least § against the alternative 6,. So
Py, (Sw € ew(a,S)) > B, and Py, (T € ey (e, T)) > B.

Note that n' = n'(a, 8,0,) and m' = m'(«, 3,6,) depend on «, 3,6, and the underlying distri-
bution.

The relative efficiency of {Sn} with respect to {Tn} for 6, € ©, is defined to be

es,T := es,r(a, 3,6,) := W'

By the nature of the definition, es 7 > 1 means that S, should be preferred over T},, because it

requires fewer observations to get the same power compared to 7T, at level a.

2.7.1 Asymptotic Power Function

The relative efficiency of two tests depends on three arguments — the size of the test «, the
“distance” (in terms of some parameter 6) between the null and alternative hypotheses, and the
sample size n required by the “efficient” (i.e., the most powerful test in the class considered)

test. Even if we consider only a few typical values of «, we still need a table of two entries for
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the comparison of tests by relative efficiency. To achieve a single quantity to assess efficiency,
we must resort to asymptotics.

One straightforward approach involves letting the sample sizes of the two tests considered
go to infinity and then take the ratio of the power functions as a measure of relative efficiency.
However, if the tests are a-level consistent tests (which is a reasonable requirement) then by
definition the power converges to 1, hence the ratio of powers tends to 1 also, as the sample
sizes tend to infinity. Thus, for any fixed alternative value 6,, the relative efficiency will always
be 1 as n — o0. Hence the asymptotics in this sense is quite useless. Thus statisticians consider
limiting results of other parameters (together with letting the sample size tend to infinity) which
give rise to the asymptotic relative efficacy (ARE) measures discussed in section 2.7.2.

However, we can still make use of asymptotic critical values for finite sample size tests. Let
T: and T> be two consistent test statistics for the hypotheses Hy : § = 6y versus H, : 6 > 6.
Suppose T and T, are asymptotically normal for all values of 8. Let pjo = E [T;|Ho], 0'J2-0 =
Var [T |Hyl, pjo = E[T}|H,], and 03, = Var [T;|H,] for j € {1,2}. Then large sample a-level
tests have the critical region ¢ = {t € R : ¢ > pjo + za - 0jo/y/n}, where 2z, = ®7'(1 — a).

Therefore the asymptotic power function for T} is

P,i(0) = @ (vn [pjn — (jo + 2a - 0jo/V/n)] [oj1) for j € {1,2}.

(See, e.g., Kendall and Stuart, [22].) Note that this power expression is calculated with an
appeal to asymptotic normality using the asymptotic critical value, but is still a function of the

sample size.

2.7.2 Asymptotic Relative Efficiency

To evaluate the relative efficiency of two test procedures for large samples, a variety of approaches
exist in the statistical literature. The earliest investigation of asymptotic relative efficiency is
due to Pitman [34]. These approaches differ depending on the constraints on Type-I and Type-
IT errors for large samples and/or alternatives. Many statisticians worked in this area, owing
to the variety of these constraints; some of these statisticians who introduced new techniques
include Pitman, Chernoff, Bahadur, Hodges, Lehmann, Hoeffding, Rubin, and Sethuraman. We
summarize their work below.

Under a specified distribution, es (e, 8, 0,) has three arguments, so the optimum efficiency
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on the entire space of (a, 5, 6,) is usually too difficult, if not impossible, to calculate. Hence,
limiting values of es r(c, 8,6,) are proposed to compare the efficiency of test statistics. Following

are five widely known asymptotic (relative) efficiency measures.

1. Bahadur Asymptotic Relative Efficiency (ARE) of {Sn} with respect to {Tn} is defined

to be

eg,T(/Ba 00,) = tllg%) CS’T(Oé, ﬂ: 0&)7
if the limit exists for 8 € (0,1) and 6, € ©,.
2. Hodges-Lehmann ARE of {S,} with respect to {T,} is defined to be
eg%‘(aa 0&) = lim eS,T(aa B7 90.)7
B—1
if the limit exists for a € (0,1) and 4, € ©,.

3. Pitman ARFE of {Sn} with respect to {Tn} is defined to be

eISD,T(aa 57 00) = aliif.lgo ES,T(OL, /87 0(1)7

if the limit exists for 0 < a < 8 < 1 and 0, — 6y € 9(0q), the boundary of the null space
Oo.

4. Chernoff ARE of {S,} with respect to {T},} is defined to be

[e3
B—1

e§x(6a) = lim esr(a; B,6a),

if the limit exists for 0 < a < < 1 and 8, € ©,.
5. Rubin-Sethuraman ARFE of {Sn} with respect to {Tn} is defined to be

ed(6o) == Jim es,r(a,B,0a),

B—1,
aa—>90

if the limit exists for 0 < a < 8 < 1 and 8, — 8y € 9(Oy).

Bahadur ARE usually does not depend on 3, Hodges-Lehmann ARE does not depend on «, and

Pitman ARE usually does not depend on a or §. Chernoff ARE falls somewhere intermediate
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among the above ARE’s. Rubin-Sethuraman ARE uses the concept of Bayes risk. (See [45] for
the details.) Each type of asymptotic relative efficiency has appeal and motivation of its own.
From a practical point of view, tests with small levels, high power, and alternatives close to
the null are important, so Pitman ARE is widely used in the literature. Hodges-Lehmann ARE
is also desirable, because it is of practical interest to compare the power under fixed alternatives

in some contexts.

2.7.2.1 Pitman Asymptotic Efficacy

Suppose that the distribution F' under consideration may be indexed by a set ® C R and
consider Hy : 8 = 6y versus H, : 6 > 6.

Consider the test sequence S = {Sn} satisfying the following conditions for 6 in a neighbor-
hood [y, 8y + ] of the null parameter for some § > 0.

Pitman’s Conditions:

(PC1) For some functions p,(8) and o, (6), the distribution Fy of [S,, — pn(8)]/on(6) converges
to N(0,1) uniformly on [, 00 + 6]; i.e.,

sup sup
00<0<0o+5 teR

P(%St)—@(t)‘—)Oasn—)oo.

(PC2) For 8 € [6y,00 + 6], pn(0) is differentiable with pu! (6p) > 0.

(PC3) For 6, = g + O (n=1/2), lim,, 00 492 — 1.

(PC4) For 8, = o + O (n~1/2), limy, 00 202} = 1.

(PC5) For some constant Cg > 0,

'
n—o0 \/n oy, (6p)

= (Cs.

Condition (PC1) is equivalent to

(PC1)" For some functions pi,(f) and 0,(f) and 6, = 6y + O (n~'/2), the distribution Fy of

[Sn — pn(0n)] /on(8n) converges to a standard normal distribution uniformly (see [13]).

Note that if u\ (6g) > 0 and p\(6g) = 0, for all { = 1, 2,...,k — 1, then 4/ (o) > 0 in (PC2)
can be replaced by u%k) (60) > 0 and p!,(6,) in (PC3) and (PC5) can be replaced by u,(lk) (0,)
(see [22]).
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Lemma 2.7.1. (Pitman-Noether)

(i) Let S = {Sn} satisfy (PC1)-(PC5). Consider testing Hy : 6 = 6y versus H, : 6 > 6y by
the critical regions Sy > ca, with oy, = Pay(Sn > ¢a,) = @ as n — co where a € (0,1).

For B € (0,1) and 0, = 8y + O(n~'/?), we have

Ba(0n) = Py, (Sn > ca,) = B iff Cs /(6 —0) » & (1 —a) — 37(B)

where Cgs is defined in (PC5).
(ii) Let S = {S,} and Q = {Qn.} each satisfy satisfy (PC1)—(PC5). Then the asymptotic

relative efficiency of S relative to Q is given by ARE(S,Q) = (CS/CQ)Z.

Thus, to evaluate ARE(S, Q) under the conditions (PC1)—(PC5), we need only calculate the
quantities Cs and Cg, PAE(S) = C% is called the Pitman Asymptotic Efficacy (PAE) of the

test based on S,,. Using similar notation and terminology for @,

PAE(S)
Let {X1,...,Xn} be arandom sample (i.e. a set of iid random variables) from a distribution

F(z — §), which is continuous and symmetric around 6 with the additional assumption that
F(z) + F(—z) = 1 for all z. The hypothesis test of interest is Hy : § = 0 versus H, : 6 > 0.
The Pitman alternatives are 8; = 6y + ¢/./n;, which implies F(xz — ;) = F(x — 0y — (¢//n3))
for i = 1,2,3,... where ¢ is a constant. We compare the Student’s t-test T,, = 7/3 with s2 =

(ann Y1 (Xi — X)? to the sign test statistic, S, = £ 3" | I(X; > 0). The ARE(T,, Sn) =

gﬁgg:g = . See [13] for the details.

2.7.2.2 Hodges-Lehmann Asymptotic Efficacy

In 1956, Hodges and Lehmann proposed a comparison of the speed at which the power tends to 1
under a fixed alternative (see [16]). With the same test setting as above, consider the comparison
of test sequences S = {S, } and T = {T.,} for a fixed 6, > 6o. Let Bs(n,a,6,) and Br(n,a,b,)
be the power at level a for test S and T, respectively. Suppose (1—8s(n,a,8,))/™ = As(a,8,)

and (1 — fBr(n,a,0,))'/" = Ar(a,0,) as n — co. Then it is easy to see that Ny/Ng =
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log(Ar(a,8,))/log(As(a,8,)), where Ny and Ng are the sample sizes required by the tests T'

and S to attain the same power.

Example 2.7.2. For testing Hy : § = 0 versus H, : § > 0 for X; u N(0,1) using S, := X,
reject Hy when /n- S, > z, where ®(z,) = 1 —a, and power is 8(n,a,0,) = 1 — ®(zo — /1 0,)
where 6, > 0 is a fixed alternative. Now, let n — 0o when « and 6, are fixed; 1 — 8 = Pyy

(probability of Type II error) is equivalent to

1 1
\/ﬁea ‘ \/277

exp (—62/2) .

Then lim, oo ¥/Prr = exp (—62/2).
With the sign test, Ty, := Y| I(X; > 0), reject Hy for high number of positive X;. The test

statistic Ty, is distributed as a binomial with p = 1/2 under Hy and p = ®(,) under H,. There-

_62
fore, (1 — Br(n,a,604))'/" — 2,/®(6.) (1 — ®(6,)). Hence ef} = 3Tog 2+1og B(0.) +Hog(1—-3(0.)) °
Notice that this quantity is independent of a, but not 8,. As §, — 0, eIS{,If — /2, which is the

Pitman ARE. See [16] for further details. O

Notice that the idea behind this example can be generalized as follows. Let S,, be a se-
quence of test statistics used to test Hy : 8 = 6y versus H, : § > 6y. Given Ag(a,8,) =
limy, 00 /1 —Bs(n,a,8,), we call 2|log(As(a,,)| the Hodges-Lehmann Asymptotic Efficacy

(HLAE) of Sy, and let ¢p o be the critical value for finite sample size n at level a.

Proposition 2.7.3. Suppose S, is a sequence of test statistics that converges in law to a normal

distribution, i.e., /Sy 5 N(8,0%) for 0 € R and 0 € Ry. Let Bs(n,a,0) := Py(Sp > cn,a) be

the power of Sy, at the given level a. Then Ag(a,8,) = exp (— ((0“2;020)2)); i.e., HLAFE of S,
is (6, — 00)%/0>.

Proof: Let S, := (Sn—6o)/o. Then S, A N((G — 00)/0, 1), and lim,,—,c0 Cn,a = Za- SO the
hypotheses become Hy : E [§n] =0 versus H, : E [§n] > 0. Let 8§ = (6, —00)/o for some 6, > 6.
Then for sufficiently large n, f(n,a,0) =~ 1 — ®(z, — y/n ). Now, letting n — oo for fixed a
and 6,, P;; = 1 — 8 in asymptotics as in Example 2.7.2. Then lim,,_,o, {/Pi1 = exp (—62/2).
Hence HLAE of S, is 62 = (8, — 69)?/o%.
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Part 11

Theory and Applications
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CHAPTER 3

Proximity Maps and the Associated I'i-Regions

In this chapter, we note some appealing properties of the proximity map associated with CCCD
for data in a compact interval in R and use them as guidelines for defining new proximity maps
in higher dimensions. Furthermore, we introduce the auxiliary tools used for the construction of
the new proximity maps, as well as some related concepts that will be used in the investigation

and comparison of the proximity maps.

3.1 Preliminaries and Foundation

Let Y = {y1,.-.,¥m} C R. Then the proximity map associated with CCCD is defined as the
open ball Ng(z) := B(z,r(z)) for all x € R\ Y, where r(z) = minycyd(z,y) (see Section
1.1.1 and [35]) with d(z,y) being the Euclidean distance between z and y. For z € ), define
Ng(z) = {z}. Notice that a ball is a sphere in higher dimensions, hence the notation Ng.
Furthermore, dependence on Y is through r(x). Note that, this proximity map is based on the
intervals I; = (Y(j_1):m,Yj:m) for j = 0,...,m + 1 with yo.;n, = —00 and y(,;11):m = 00 where
Yj:m is the j** order statistic in . Our next goal is to extend this concept to higher dimensions
and investigate the properties of the associated PCDs.

A natural extension of the proximity region Ng(z) to multiple dimensions (i.e., to R? with
d > 1) is obtained by the same definition as above; that is, Ng(z) := B(z,r(z)) where r(z) :=
minycy d(z,y). We will call it spherical prozimity map. The spherical proximity map Ng(x)
is well-defined for all z € R? provided that ) # (). Extensions to R? and higher dimensions
with the spherical proximity map — with applications in classification — are investigated in [9],
[10], [29], [36], [37]. However, finding the minimum dominating set of the PCD associated with
Ng(-) is an NP-hard problem and the distribution of the domination number is not analytically
tractable for d > 1. This drawback has motivated us to define new types of proximity maps

in higher dimensions. Note that for d = 1, such problems do not occur. Hence we state some
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appealing properties of the proximity map Ns(z) = B(z,7(z)) in R and use them as guidelines
for our definition of new proximity maps.

Some appealing properties of the proximity map Ng(z) in R are noted below.
P1 Ng(z) is well-defined for all z € Cu(Y) = [y1.m, Ym:m)-
P2 z € Ng(x) for all x € Cy(Y).
P3 The point z is at the center of Ng(z) for all z € Cyx(Y).
P4 For z € I; CCy(Y), Ns(z) and I; are of the same type; they are both intervals.
P5 For z € I; C Cu(Y), Ns(x) mimics the shape of I}; i.e., it is similar to I;.

P6 For z € I, Ns(x) is a proper subset of I; for all € I; \ {(Y(j—1):m + Yj:m)/2} (or almost

everywhere in I;).
P7 For z € I; and y € I}, with j # k, Ng(z) and Ng(y) are disjoint regions.

P8 The size of Ng(z) is continuous in x; that is, for each £ > 0 there exists a d(¢) > 0 such

that ||Ns(y)| — |Ns(x)|| < & whenever |d(z,y)| < d(¢).

Notice that properties P1, P2, and P3 also hold for all € R.

Partitioning of the convex hull of Y, Cx(Y), in R to intervals can be viewed as a tessellation.
For d > 1, a natural tessellation that partitions Cy () is the Delaunay tessellation (see Section
2.1), where each Delaunay cell is a (d + 1)-simplex. Let 7; be the jt* Delaunay cell in the
Delaunay tessellation of Y for j = 1,...,J, where J is the total number of Delaunay cells. In R,
we implicitly use the Delaunay cell that contains x to define the proximity map for 2 € Cx()).

Note that P5 and P4 are equivalent when d = 1 for z € Cix()), since any two (compact)
intervals are (geometrically) similar in R. For d > 1, P5 implies P4 only, since, for example,
for d = 2, any two triangles are not necessarily similar, but similar triangles are always of the
same type; they are triangles.

Notice that Ng(-) satisfies only P1, P2, P3, and P8 in R? with d > 1. For any z € T; C R?,
B(z,r(x)) ¢ T;, which implies that two proximity regions Ng(z) and Ng(y) might overlap
for z,y from two distinct cells, hence P7 is violated. Such an overlap of the regions make the
distribution of the domination number of the PCD associated with Ng(-), if not impossible, hard

to calculate. In order to avoid the overlap of regions B(z,r(z)) and B(y,r(y)) for z, y in different
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Delaunay cells, we restrict the balls to the corresponding cells, which leads to arc-slice proximity
regions, Nas(z) := B(z,r(z)) N T;, where B(z,r(z)) is the closure of the ball B(z,r(z)). We
chose the closed ball in the definition of the arc-slice proximity map for consistency with the
other proximity maps that we will define on Delaunay cells. The arc-slice proximity map Nag(z)
is well-defined only in C (), provided that ) is in general position and |Y| > d+1in R?. So P1
holds. Nas(+) also satisfies P2, P6, P7, and P8. We define new types of proximity maps that
satisfy more of the properties P1-P8 and introduce new explanatory concepts for investigating
the properties of these proximity maps. We focus on possible extensions to multiple dimensions
based on the Delaunay tessellation of ), hence the extensions will also be well-defined only in
Cu ().

The appealing properties mentioned above can be extended to more general measurable
spaces.

Property P6 suggests a new concept. For @ € I;, Ng(z) = I iff £ = (Y(j_1)m + Yjim) /2-

We define an associated region for such points in the general context.

Definition 3.1.1. The superset region for any proximity map N(-) in Q is defined to be
#s(N):={z € Q:N(z)=Q}.

For example, for Q = I; C R, #s(Ns) := {x € I; : Ns(z) = I;} = {(y(j_l):m +yjm) /2},
and for @ = T; C RY, Zs(Ng) := {z € T; : Ns(z) = T;}. Note that for z € I;, A(Ns(z)) < A(I;)
and A(Ns(z)) = M) iff z € Zs(Ns) where A(-) is the Lebesgue measure on R (also called
as R-Lebesgue measure). So the proximity region of a point in #s(Ng) has the largest R-
Lebesgue measure. Note also that given ), Zs(Ng) is not a random set, but I(X € Zs(Ng)) is
a random variable. Furthermore, P6 is equivalent to Zg(Ng) having zero R-Lebesgue measure.
On the other hand, for x € 9(I;) = {y(j—1):m,Y;}, the proximity region Ns(z) = {x} has zero

R-Lebesgue measure. This suggests the following concept.

Definition 3.1.2. Let (2, ) be a measurable space. The Ag-region for any proximity map
N(:) is defined to be Ag(N) := {z € Q: u(N(z)) = 0}.

For Q@ = R, Ag(Ng) := {z € R? : \(Ns(z)) = 0}. For example, for @ = Cx(Y) C R,
Ao(Ng) = Y, since A(Ng(z)) =0iff z € Y.
Furthermore, given a set B of size n in [y1.m,Ym:m] \ YV, P7 implies that the number of

disconnected components in the PCD based on Ng(-) is at least the cardinality of {j € [m] :
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BnN1I; # 0}, which is the set of indices of the intervals that contain some point(s) from B.

3.2 Vertex and Edge Regions

Our new proximity maps will be based on the Delaunay cell 7; that contains z. The region
Ny(z) will also depend on the location of z in 7; with respect to the vertices or faces (edges in
R?) of T;. Hence for Ny(z) to be well-defined, the vertex or face of 7; associated with z should
be uniquely determined. This will give rise to two new concepts: vertex regions and face regions

(edge regions in R?).

3.2.1 Vertex Regions

Let Y = {y1,y2,y3} be three non-collinear points in R? and T'(}) = T(y1,y2,y3) be the triangle
with vertices . Then for z € T'(Y), Nas(x) = B(z,r(z)) N T(Y) where r(z) = minycy d(z,y).
That is, r(z) = d(z,y;) iff x € Ve(y;) NT(Y) for j € {1,2,3}, where Ve (y;) is the Voronoi cell
generated by y; in the Voronoi tessellation based on ). Notice that these cells partition the
triangle T'()) (in the sense that the intersection of the cells have zero R?-Lebesgue measure) and
each Vo (y;) NT(Y) is adjacent only to vertex y; and if T'()) is non-obtuse, their intersection
is the point M which is equidistant to the vertices, so M is in fact the circumcenter, M¢c¢, of
T(Y). To define new proximity regions based on some sort of distance or dissimilarity relative
to the vertices ), we associate each point in T'()) to a vertex of T()) as in the arc-slice case.
This gives rise to the concept of vertex regions. Note that Nags(z) is constructed using the
vertex region based on the closest vertex, argmin ., d(x,y). If two vertices were equidistant
from z (i.e. argmin .y d(z,y) were not unique), we arbitrarily assign z to a vertex region. In
fact, for N4g, by construction, it would not matter which vertex to pick when the vertices are

equidistant to z, the region N4g(z) will be the same.

Definition 3.2.1. The connected regions that partition the triangle, T'()), (in the sense that
the intersections of the regions have zero R?-Lebesgue measure) such that each region has one

and only one vertex of T'()’) on its boundary are called vertex regions.

This definition implies that we have three regions. In fact, we can describe the vertex regions
starting with a point M € R? \ ). Join the point M to a point on each edge by a curve such

that the resultant regions satisfy the above definition. We call such regions M -vertex regions
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Figure 3.2.1: The C'C-vertex regions in an acute triangle (left) and in an obtuse triangle (right).

and denote the vertex region associated with vertex y as Rps(y) for y € ). In particular, we
use a center of T'()) as the starting point M for vertex regions. See the discussion of triangle
centers in Section 2.3. We think of the points in Rps(y) as being “closer” to y than to the other
vertices.

It is reasonable to require that the area of the region Rys(y) gets larger as d(M,y) increases.
Usually the curves will be taken to be linear or even the orthogonal projections to the edges. But
these lines do not necessarily yield three vertex regions for M in the exterior of T'())). Unless
stated otherwise, M-vertex regions will refer to regions constructed by joining M to the edges

with straight line segments.

3.2.1.1 C(CC-Vertex Regions

The region Vo (y) NT()) is a special type of vertex regions, which can also be obtained geomet-
rically by starting at M¢c and drawing the orthogonal projections to the edges. Hence we will
call these regions C'C-vertez regions. We can also construct CC-vertex regions by drawing the
perpendicular (mid)edge bisectors. See Figure 3.2.1, where M; are the midpoints of the edges.
The functional forms of Roc(y;) for j € {1,2,3}, in the basic triangle T, = ((0,0), (1,0), (c1,¢2))
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Figure 3.2.2: The C'M-vertex regions with median lines.

(see Section 2.2) are given by

1.« Ad+ci-2cz

9 Y= 2c, ’

L A+a3-14+21+ac)z

2’7 = 2 ¢y ’

d+c2-2c2 A+3-1421+ac)z
2c¢o TV = 2¢o )

If x falls on the boundary of two C'C-vertex regions, then z is arbitrarily assigned to one of

the C'C-vertex regions.

3.2.1.2 (CM-Vertex Regions

The motivation behind C'M-vertex regions is that unlike the circumcenter, center of mass is

guaranteed to be inside the triangle. We define the C'M-vertex regions by using the median

lines and denote the regions as Rcoa(y;) for j € {1,

2,3} (see Figure 3.2.2 ).

The functional forms of Rcas(y;) for j € {1,2,3} in the basic triangle T}, are given by

mmwu={@weTwyy
&mwa={mweTwwy

mmwaz{mweTwwyz

<02(2m—1); <02($—1) 7
- 2c¢ -1 - 1 —2
<02(2$—1);y< Co T 7
- 2c -1 — 14

co(z—1)

cy> 2% L
c1—2 14+

If z falls on the boundary of two C'M-vertex regions, then z is arbitrarily assigned to one of
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the C' M -vertex regions.

We can also define the incenter vertex regions by using the inner angle bisectors.

3.2.1.3 M-Vertex Regions

We can also construct M-vertex regions with M € T'(Y)° by using the extensions of the line
segments joining y to M for all y € ). See Figure 3.2.2 with M = M. The functional forms of

R (y;) for j € {1,2,3} with M = (m1,m2) and my > ¢; in the basic triangle, T}, are given by

Ru(y1) = {(w y) €eT(Y):y < %; y < ma(c1 —;’Ul)_"':fl(ﬂ?—mﬂ},
Ru(y2) = {(x,y) eTY):y< ":riw; y > ma(c1 —Cﬂf)j;lz(w—mﬂ}, and
R (Y3)={(3: y)GT(y):yZTZ;x; yz%}

For my < ¢1, Ru(y;j) for j € {1,2,3} are defined similarly.
If x falls on the boundary of two M-vertex regions, then z is arbitrarily assigned to one of

the M-vertex regions.

3.2.2 Edge Regions

The arc-slice proximity region seen earlier is constructed by using the vertex region based on
the closest vertex, argmin, ¢y, d(z,y). We can also use the closest edge, argmin; ¢y 5 3} d(z, €;),
in defining a proximity region, which suggests the concept of edge regions.

While using the edge argmin;c; 5 5y d(z,ej), we again partition the triangle into three re-
gions whose intersection is some point M with Euclidean distance to the edges d(M,e1) =
d(M,e3) = d(M,es3), so M is in fact the incenter of T'()) and d(M, e) = r;. is the inradius (see

Section 2.3 for incenter and inradius).

Definition 3.2.2. The connected regions that partition the triangle, T'()), in such a way that

each region has one and only one edge of T'()) on its boundary, are called edge regions.

This definition implies that we have exactly three regions which intersect at only one point,
M in T'())°, the interior of T(Y). In fact, we can describe the edge regions starting with M.
Join the point M to the vertices by curves such that the resultant regions satisfy the above

definition. We call such regions M -edge regions and denote the edge region for edge e as R (e)
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for e € {e1,e2,e3}. Unless stated otherwise, M-edge regions will refer to the regions constructed
by joining M to the vertices by straight lines. In particular, we use a center of T()) for the
starting point M as the edge regions. We can also consider the points in Rps(e) to be “closer”
to e than to the other edges. Furthermore, it is reasonable to require that the area of the region
Ry (e) get larger as d(M, e) increases. Moreover, in higher dimensions, the corresponding regions
are called “face regions”.

The functional forms of Ras(e;) for j € {1,2,3}, for M = (my,m2) € T(Y)° and mq > ¢; in

the basic triangle are given by

? -

RM(€1) = {(x,y) GT(y) Ty > mo (-’L’—l)_ > Co (x—ml)—mz (;l:—cl)},

my; — 1 c1 —my
Rar(ea) = { () €T0) s > 2%,y < 2EZmI B g
-  maz M (z—1)
Rus(e) = { (o) € T() s 7255 y < "2l 2D

If z falls on the boundary of two M-edge regions, then x is arbitrarily assigned to one of the
M-edge regions.
We describe the center of mass edge regions (C M-edge regions) in detail, as we will use them

in defining a new class of proximity maps.

3.2.2.1 (CM-Edge Regions

We can divide T'()) into three regions by using the median lines which intersect at the centroid
(see Section 2.3), or equivalently, joining the centroid M to the vertices by straight lines will
yield the C'M-edge regions. Let Roar(e) be the region for edge e € {e, ez, e3}. See Figure 3.2.3.

The functional forms of Rcar(e;) for j € {1,2,3}, in the basic triangle, Ty, are given by

Rom(er) = {(:U,y) eTQ):y< e(1-22) > 02(1—:1:)}’

1-2¢ 7% 2-a
02(1—2$);y> Cox ’
1-2¢ —14c¢

T <C2(1—.Z')}-

ry <
y_1+c1,y_ 22—

mm@a={mweTwwyz

mm@a=ﬁaweﬂw

If z falls on the boundary of two C'M-edge regions, then z is arbitrarily assigned to one the

C M-edge regions.
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Figure 3.2.3: C' M-edge regions Rcoa(ej), j € {1,2,3}.

Remark 3.2.3. We can also divide T'()’) into three regions by using the inner angle bisectors
which intersect at the incenter, yielding the incenter edge regions (IC-edge regions). Let Rrc(e)
be the region for edge e € {e1,e2,e3}. Notice that the closest edge to any point in Ryc(e) is
edge e, i.e.,, x € Ry (e) iff argmin,cr,, o, 0.} d(7,u) = e. If two edges are equidistant from z, we

arbitrarily assign z to an edge region. O

Remark 3.2.4. In R, we can view the end points of [0, 1], {0, 1}, as vertices or edges. So [0,1/2]

and [1/2,1] can be viewed as either vertex regions or edge regions. O

3.3 Proximity Maps in Delaunay Triangles

Let Y = {y1,.-.,ym} be m points in general position in R? and 7; be the Delaunay cell for
j=1,...,J, where J is the number of Delaunay cells. Let X, be a random sample (i.e., set
of iid random variables) from distribution F in R? with support S(F) C Cx()). Then the
appealing properties for proximity regions in Section 3.1 can be adapted with I; being replaced
by ;.

In particular, for illustrative purposes, we focus on R?, where a Delaunay tessellation is a
triangulation, provided that no more than three points in ) are cocircular.

Furthermore, for simplicity, let ) = {y1,y2,y3} be three non-collinear points in R?> and
T(Y) = T(y1,y2,y3) be the triangle with vertices ). Let X,, be a random sample from F' with
support S(F) C T()). The spherical proximity map is the only type of proximity map defined
in literature (see [9], [10], [29], [36], [37]) where C'C-vertex regions are implicitly used for points

in Cy(Y). In this section, we will describe arc-slice proximity maps Ng(-) in more detail and
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Figure 3.3.1: Nag(z, Mcc) with an € Reoco(y2) (left) and the superset region Zs(Nas, Mc)
in T(Y) (right).

define two families of triangular proximity regions for which P4 and P5 will automatically hold.

3.3.1 Arc-Slice Proximity Maps

Recall that the arc-slice proximity region of z € T'(}) is given by Nags(z) := B(z,r(z)) NT(Y)
where B(z,7(z)) is the closed ball centered at z with radius r(z) := minycy d(z,y). By con-
struction, we implicitly use the CC-vertex regions, since € Rcc(y) iff y = argmin,, ¢y, d(z, u).
To make this dependence explicit, we use Nag(-, Mcc). See Figure 3.3.1 (left) for Nas(z, Mcc)
with z € Rec(y2).

The functional form of Ngg(z, Moc) for an z € Roe(y) is given by

Nas(z,Mcc) = {z € T(Y) : d(z,z) < r(z) = d(z,y)}.

Notice that, the region Nag(x, Mcc) is a closed region, unlike Ng(z) = B(z,7(z)). The prop-
erties P1, P2, P7 hold by definition. Notice that Nag(z, Mcc) C T(Y) for all z € T()) and
Nas(z, Mcc) =T(Y)iffx = Mcc, since B(z,7(x)) D T(Y) only when z = Mcc. Hence the su-
perset region for arc-slice proximity maps with C'C-vertex regions is Zs(Nas, Mcc) = {Mcc}-
So P6 follows. Furthermore, P8 holds since the area A (Nag(z, Mc¢)) is a continuous function
of r(z) = minycy d(z,y) which is a continuous function of z.

We can define arc-slice proximity regions with any type of M-vertex regions as

Nas(z, M) := B(z,r(z)) N T(Y) where r(z) := d(z,y) for € Rp(y).
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But for M # Mcc, Nas(-, M) satisfies only P1, P2, and P7. P6 fails to hold since Zs(Nas, M)
has positive area and P8 fails since the size of Nag(z, M) is not continuous in z. See, for
example, Figure 3.3.1 (right) for Zs(Nas, M¢c). In terms of the properties in Section 3.1,
Nas(-, Mcc) is the most appealing map among Aas := {Nas(-, M) : M € R? \ V}.

Moreover, Ag(Nas, M) =Y for all M € R? \ Y since A\(Nag(z, M)) =0iff z € V.

Next, we define triangular proximity regions, which, by definition, will satisfy properties P4
and P5. These proximity regions are the building blocks of the PCDs for which more rigorous
mathematical analysis — compared to the PCDs based on spherical and arc-slice proximity

maps — will be possible.

3.3.2 r-Factor Proportional-Edge Proximity Maps

The first type of triangular proximity map we introduce is the r-factor proportional-edge prox-
imity map. For this proximity map, the asymptotic distribution of domination number and the
relative density of the corresponding PCD will have mathematical tractability.

For r € [1,00], define Npp(-, M) := N(-,M;r,Y) to be the r-factor proportional-edge proz-
imity map with M-vertex regions as follows (see also Figure 3.3.2 with M = M¢ and r = 2). For
z € T(Y)\ D, let v(z) € Y be the vertex whose region contains z; i.e., x € Ryr(v(z)). If z falls
on the boundary of two M-vertex regions, we assign v(z) arbitrarily. Let e(x) be the edge of
T(Y) opposite v(x). Let £(v(z),z) be the line parallel to e(z) through z. Let d(v(z), {(v(z), z))
be the Euclidean (perpendicular) distance from v(z) to £(v(z),z). For r € [1,00), let £,(v(z),z)

be the line parallel to e(z) such that

d(v(z), £r(v(2), 7)) = 7 d(v(2), {(v(2), 7))

and

d(t(v(z), x), b (v(), 2)) < d(v(z), £ (v(), ).

Let T.(x) be the triangle similar to and with the same orientation as 7'())) having v(x) as
a vertex and £.(v(z),z) as the opposite edge. Then the r-factor proportional-edge proximity
region Npg(z, M) is defined to be T,.(z)NT' (V). Notice that £(v(z),z) divides the edges of T}.(x)
(other than £,.(v(z),z)) proportionally with the factor r. Hence the name r-factor proportional

edge proximity region.
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Notice that r > 1 implies ¢ € NLg(z, M). Furthermore, lim, oo Npg(z, M) = T(Y) for
all z € T(Y)\ Y, so we define Ng%(xz,M) = T(Y) for all such z. For z € Y, we define
NLp(z, M) = {z} for all r € [1, c0].

Notice that X; “p , with the additional assumption that the non-degenerate two-dimensional
probability density function f exists with support S(F) C T(Y), implies that the special case
in the construction of Npp — X falls on the boundary of two vertex regions — occurs with

probability zero. Note that for such an F, NL;(X) is a triangle a.s.

Figure 3.3.2: Construction of r-factor proximity region, N3 (z) (shaded region).

The functional form of N} g (z, M) for = (z0,y0) € T} is given by

ngE(maM) = {(.Z',y) €Ty y< 7 (yo (1—c1)+ea Z'O)*sz} for z € Ras(y1),

1—c1

Nps(a, M) = {(z,y) € Ty :y < 2weresotlloestos §for 2 € Rug(ya),

Npgp(@, M) ={(z,y) €Ty : y > 2yo — ca(r — 1)} for x € Ry (y3).

Of particular interest is Npp(z, M) with any M and r € {V/2, 3/2,2}. For r = v/2, £(v(z), z)
divides T /(z) into two regions of equal area, hence Nl‘g/g (x, M) is also referred to as double-area

prozimity region. For r = 2, £(v(z),z) divides the edges of Ty(z) —other than £,.(v(z),z) —
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into two segments of equal length, hence N2 ,(x, M) is also referred to as double-edge prozimity
region. For r < 3/2, #s(Npp, Mc) = 0, and for r > 3/2, Zs(Npy, Mc) has positive area;
for r = 3/2, #s(Npg, Mc) = {Mc}. Therefore, r = 3/2 is the threshold for Nig(-, M¢) to
satisfy P6. Furthermore, we will see that » = 3/2 will be the value at which the asymptotic
distribution of the domination number of the PCD based on Npp (-, M¢) will be nondegenerate
(see Section 4.4 and Equation 4.4.2).

The properties P1, P2, P4, P5, and P7 follow by definition for all M and r. Property
P5 holds with similarity ratio of Np(z, M) to T(Y): Dldlele). el alole). Lel0o)) thyt i,

d(v(z), e(z

N} g(x, M) is similar to T'()) with the given ratio. P6 holds depending on the pair M and
r. That is, there exists an ro(M) so that Njg(x, M) satisfies P6 for all r < rq(M), and fails
to satisfy otherwise. P6 fails for all M when r = co. P8 holds only when M = M. With
CM-vertex regions, for all r € [1,00], the area A(Npg(z, Mc)) is a continuous function of
d(£.(v(z),z),v(x)) which is a continuous function of d(¢(v(z),z),v(x)) which is a continuous
function of z.

Moreover, Ag(Nh, M) = Y for all 7 € [1,00] and M € R? \ Y, since the R?-Lebesgue
measure A(Npg(z, M)) =0iff z € ).

As for P3, for To(z) C T(Y) we can loosen the concept of center by treating the line
L(v(z),x) as the edge-wise central line, so P3 is satisfied in this loose sense. Notice that x is
not the unique center in this sense but a point on a central line. Let M;, j € {1,2,3}, be
the midpoints of the edges of T'()), then for any x € T(My, M2, M3), N2g(z, M) = T(Y),
so T(My, M2, M3) C #s(N%gp, M) where equality holds for M = M¢ for all triangles and for
M = Mcc in non-obtuse triangles (see Figure 3.3.3).

In obtuse triangles, Zs(Npp, Mcc) 2 T(My, M,, M) and is a quadrilateral.

The functional form of the superset region, Zs(Npg, M), in Ty is given by

5V, 30) = { (2 € Rasty) 1> ZH 2D

ca(r(z—1)+1)
rc

{@) € Rt v bofen e rutn) iy},

and the functional form of T'(M;, M5, M3) in T is given by

c: c(—14+22x c2o(1—-2z
T(MI,MQ,M3)={(x,y)eTb:ysg;yz 2 r Ly » ! )}
1
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Figure 3.3.3: Superset region Zs (N2, Mcc) in an acute triangle

For r = v/2, we can loosen the concept of center by treating the line £(v(z),z) as the area-
wise central line in N }‘,/g(:c,M ), so P3 is satisfied in this loose sense. Note that if z is close
enough to M, we might have Nl‘g/g (z, M) =T(Y).

In T(Y), drawing the lines g;(r, z) such that d(y;,e;) = rd(g;(r, z),y;) for j € {1,2, 3} yields
a triangle, I, for r < 3/2 . See Figure 3.3.4 for 7" with r = /2.

The functional form of 7 in T} is

T = {(m,y) €Tyiy> 2 (Tr_ D.y< = 8:;“;); <l (”r;l) “)} (3.3.1)
:T(<(T—1),’E1+Cl),CQ(T‘T—].)> , <2—r+<;1(r—1),cQ(rT—1)> , <C1 (2—r2+r—1,02(rr—2)>).

There is a crucial difference between " and T' (M1, M2, Ms): T(My, Ma, M3) C Zs(Npg, M)
for all M and r > 2, but (I7)° and Zs(Nbg, M) are disjoint (i.e., (I7)° NZs(Nhg, M) = 0)
for all M and r.

Soif M € (77)°, then Zs(Npp, M) = 0; if M € ("), then Zs(Npy, M) = {M}; and if
M ¢ I7, then Zs(N} g, M) has positive area. Thus N (-, M) fails to satisfy P6 if M ¢ I".
The triangle " defined above plays a crucial role in the analysis of the distribution of
the domination number of the PCD based on r-factor proximity maps. The superset region
Rs(Np g, M) will be important for both the domination number and the relative density of the

corresponding PCDs.

Remark 3.3.1. In terms of the properties stated in Section 3.1, NI?’)/E2 (-, M) is the most appealing

amongst Ay = {NL (-, M) : 7 € [1,00], M € R* \ V}. It is also noteworthy that the asymp-
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Figure 3.3.4: The triangle Fr=Vv2,

totic distribution of the domination number of the PCD based on N133/E2 (-, M) is nondegenerate.

O

Remark 3.3.2.

e For ri < ry, Npp(z, M) C Npg(z,M) for all z € T(Y). For iy < 1o, Npg(z, M) C

Ny (z, M) with equality holding for only z € Y or z € %S(N;?E(TI’TZ),M).
e For 3/2 <ri <ry, Zs(Npg, M) C #s(Npy, M) and Zs(Npp, M) = for r < 3/2.

e For r; < 1y, A(NPR(X,M)) <57 A(Np;(X, M)) for X from a continous distribution on

T(). O

3.3.2.1 Extension of Ny, to Higher Dimensions

The extension to R? for d > 2 is straightforward. We give the extension with M = Mg, but the
extension for general M is similar. Let ) = {y1,y2, - ,Ya+1} be d+ 1 points that do not lie on
the same hyperplane. Denote the simplex formed by these d + 1 points as &()). A simplex is
the simplest polytope in R? having d + 1 vertices, d (d+ 1) /2 edges and d + 1 faces of dimension
(d —1). For r € [1,00], define the r-factor proximity map as follows. Given a point z in &(}),
let v := argmin ¢y, V(Qy(z)) where Qy(z) is the polytope with vertices being the d(d + 1)/2
midpoints of the edges, the vertex v and x and V() is the d-dimensional volume functional. That
is, the vertex region for vertex v is the polytope with vertices given by v and the midpoints of
the edges. Let v(z) be the vertex in whose region z falls. If z falls on the boundary of two

vertex regions, we assign v(z) arbitrarily. Let ¢(x) be the face opposite to vertex v(z), and
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Y (v(z),x) be the hyperplane parallel to ¢(z) which contains z. Let d(v(x), Y (v(z),z)) be the
(perpendicular) Euclidean distance from v(z) to Y(v(z),z). For r € [1,00), let Y,.(v(z),z) be

the hyperplane parallel to ¢(z) such that

d(v(z), Tr(v(2), 2)) = rd(v(z), T(v(z), )

d(Y(v(z), ), Tr(v(z), ) < d(v(z), Tr(v(z), ).

Let &,(x) be the polytope similar to and with the same orientation as & having v(z) as a
vertex and Y, (v(z), z) as the opposite face. Then the r-factor proximity region Ny (z, M¢) :=

S,(x) N S(Y). Notice that r > 1 implies z € Npg(x, Mc).

3.3.3 7-Factor Central Similarity Proximity Maps

The other type of triangular proximity map we introduce is the 7-factor central similarity
proximity map. This will turn out to be the most appealing in terms of the properties in
Section 3.1. Furthermore, the relative density of the corresponding PCD will have mathematical
tractability. Alas, the distribution of the domination number of the associated PCD is still an
open problem.

For 7 € [0,1], define N} g(-, M) := N(-, M;7,)) to be the T-factor central similarity proxim-
ity map with M-edge regions as follows; see also Figure 3.3.5 with M = M¢. For z € T(Y)\ ),
let e(x) be the edge in whose region z falls; i.e., € Rps(e(z)). If z falls on the boundary of two
edge regions, we assign e(z) arbitrarily. For 7 € (0, 1], the 7-factor central similarity proximity

region N5 g(z, M) is defined to be the triangle T, (x) with the following properties:

(i) Tr(z) has edges e](x) parallel to e; for each j € {1,2,3}, and for z € Rp(e(z)),
d(z,e” (z)) = 7d(x,e(x)) and d(e” (), e(x)) < d(z,e(x)) where d(z,e(x)) is the Euclidean

(perpendicular) distance from z to e(x);
(ii) T;(z) has the same orientation as and is similar to T'());

(iii) z is the same type of center of T, (z) as M is of T'(}).
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Note that (i) explains the “r-factor”, (ii) explains “similarity”, and (iii) explains “central” in
the name, 7-factor central similarity prozimity map. For 7 = 0, we define NZ3°(z, M) = {z}
for all z € T(Y). For z € 9(T(Y)), we define N[ g(z, M) = {z} for all 7 € [0, 1].

Notice that by definition z € N[ g(z) for all z € T'(Y). Furthermore, 7 < 1 implies that
NZg(z, M) CT(Y) for all z € T(Y) and M € T(Y)°. For all z € T(Y)° N Rpr(e(x)), the edges
e’ (x) and e(x) are coincident iff 7 = 1.

Notice that X; “p , with the additional assumption that the non-degenerate two-dimensional
probability density function f exists with support S(F') C T(Y), implies that the special case

in the construction of N5 ¢(-) — X falls on the boundary of two edge regions — occurs with

probability zero. Note that for such an F, N5 ¢(X, M) is a triangle a.s.

K rd(e, o))

d(z,el(x

Vi es = e(x)

Figure 3.3.5: Construction of 7-factor central similarity proximity region, Ngzl/ *(z, M)

(shaded region).

Notice that 7-factor central similarity proximity maps are defined with M-edge regions for
M € T(Y)°. Among the four centers we consider in Section 2.3, Mc and M are inside the
triangle, so they can be used in construction of the 7-factor central similarity proximity map.

In general, for 7-factor central similarity proximity regions with M-edge regions, the similar-
ity ratio of NG g(z, M) to T(Y) is d(z, e (z)) /d(M, e(z)). See Figure 3.3.6 (right) for NZ35! (z, M)

with e(z) = es. Notice that N[ ¢(-, M) satisfies properties P1-P8.
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Figure 3.3.6: NZ5!(z, M) with an z € Ru(es) (left); NZ5! (z, Mc) with an = € R (e3) (right)

See Figure 3.3.5 for Nézl/Q(:c,Mc) with e = e3 and Figure 3.3.6 (left) for NZ5'(z, Mc)

with e = eg. The functional form of NJ¢(z, M¢) for an & = (x9,y0) € Rom(e) is as follows:

For z € Rom(er), Nig(z, Mc) = {(m,y) €ETy:y>yo+7(yo (1 —c1)),

(1—7) (yo (1—c1)—=mg c2)+eca (T—z) . (c1 (147)—7)—z0 ca (147)+ca (7+7)
y < Grlntoal tecalte rma), ) < tola o2 2rte) ],

For € Roym(ez), Nig(z, M) = {(xay) €Ty:y>yo+7(yoc1 — c220),

< yo(l—c1 (147))+woco (147) }
— 1—c1 .

y < (1—7) (yo clc;:co c2)+c2w; y

For z € Rom(es), Nig(z, Mc) = {(»’17,3/) €Ty:y>yo(l—r1); y < Golrkelte @),

Cc1

1—ci47)—cs (z—
ySyO( c1 17;) ca (z wo)}‘

Cc1

Furthermore, Ag (NZg(-, M)) = 8(T(Y)) for all 7 € (0,1] and Ao (NZ5°(-, M)) = T(Y),

since A (Nig(z)) =0iff x € e; for j € {1,2,3} or 7 = 0.

Remark 3.3.3. Among AJg := {NZg(-,M): 7 €[0,1], M € T(Y)°}, every NZg(-, M) with

T € (0,1] satisfies all the properties in Section 3.1. O

Remark 3.3.4.

e For ; < m, Nig(z,M) C NZFg(z,M) for all z € T(Y). For iy < 1, Nig(z, M) C

N (z, M) with equality holding only for z € 9(T'())).
e The superset region Zs (NZg, M) =0 for 7 € [0,1)1 and Zs (NZ5', M) = {M}.
e For 7y < 7, A(NFs(X, M)) <5T A(NZ(X,M)) for X from a continuous distribution

on T(Y). O
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3.3.3.1 Extension of N.g to Higher Dimensions

The extension of NJ g to R? for d > 2 is straightforward. We describe the extension for M = Mc¢,
the extension for general M is similar. Let ) = {y1,y2, -+ ,Ya+1} be d+ 1 points that do not lie
on the same hyperplane. Denote the simplex formed by these d+1 points as §()). For € (0, 1],
define the 7-factor central similarity proximity map as follows. Let ¢; be the face opposite vertex
y; for j € {1,2},...,d + 1, and “face regions” Roar(p1),-.., Rom(pat1) partition &(Y) into
d + 1 regions, namely the d + 1 polytopes with vertices being the center of mass together with
d vertices chosen from d + 1 vertices. For z € &(Y) \ ), let ¢(z) be the face in whose region
z falls; z € R(p(x)). If z falls on the boundary of two face regions, we assign () arbitrarily.
For 7 € (0,1], the 7-factor central similarity proximity region N7 ¢(z, Mc) = Npg(z, M¢) is

defined to be the simplex &, (x) with the following properties:

(i) &-(z) has faces ¢](z) parallel to @;(z) for j € {1,2},...,d + 1, and for z € Rom(p(z)),
Td(z,p(x)) = d(¢7 (z), ) where d(z, p(z)) is the Euclidean (perpendicular) distance from

T to ¢(z);
(ii) &,(z) has the same orientation as and similar to &());

(iii) = is the center of mass of &,(z), as M¢ is of &(Y).

3.3.4 The Behaviour of Proximity Maps

In this section, we provide the conditions for z, which, if satisfied, will imply some sort of
increase in the size of the proximity regions we have defined.

Let N(-) be any proximity map defined on the measurable space 2 with measure u, and
let {z,}52, be a sequence of points in Q. We say N(z,,) gets larger if N(z,) C N(z,,) for all
m >n, and N(zy) gets strictly larger if N(z,) C N(z,) for all m > n.

In the following theorems we will assume 2 = R? with u being the R?-Lebesgue measure .

M-vertex regions are defined with points M € R? \ ).

Theorem 3.3.5. For arc-slice proximity regions with M -vertex regions for an M € R* \ Y, as
d(z,y) (strictly) increases for x lying on a ray fromy in Rp(y) \ #Zs(Nas, M), Nas(z, M) gets

(strictly) larger.

Proof: For z,y lying on a ray from y in Rp(y) \ #Zs(Nas, M), if d(z,y) < d(y,y), then
B(z,r(z)) € B(y,r(y)), which implies Nag(x, M) C Nas(y, M), hence Nag(x, M) gets larger
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as d(z,y) increases for z lying on a ray from y in Rps(y) \ #Zs(Nas, M). The strict version
follows similarly. If z, y € Ry (y) N #s(Nas, M), then Nas(z, M) = Nas(y, M) =T()). &
Let £(y,z) be the line at z parallel to e(z) for z € Ra(y) where e(z) is the edge opposite

vertex y.

Theorem 3.3.6. For the r-factor proportional-edge prozimity maps with M -vertex regions for
an M € B2\ Y, as d(£(y,z),y) (strictly) increases for x € Ry (y) \ Zs(Nbg, M), N&p(z, M)

gets (strictly) larger for r < oco.

Proof: For z,y € Ry(y) \ Zs(Npg, M), if d(l(y,z),y) < d({(y,y),y), then by definition
Nigp(z,M) C Nig(y, M), hence the result follows. The strict version follows similarly. If
z,y € Ryu(y) N Zs(Npg, M), then Nhg(z,M) = Npg(y, M) = T(Y), and if r = oo and
2,y € TO)\ Y, Npg(o, M) = Npg(y, M) = T(Y).

Note that as d({(y,x),y) increases for x € Rp(y), d(£(y,z), M) decreases, provided that
M € T(Y)° and M-vertex regions are convex.

We define the M-edge regions, Ra(e), with points M € T'(Y)°.

Theorem 3.3.7. For 7-factor central similarity prozimity regions with M -edge regions for an
M € T(Y)°, as d(x,e) (strictly) increases for x € Ryr(e), the area A(NGg(x, M)) (strictly)

increases for T € (0,1].

Proof: For z,y € Ry(e) and 7 € (0,1], if d(z,e) < d(y,e) then the similarity ratio of
NEg(y, M) to T'(Y) is larger than or equal to that of Nig(z, M), which in turn implies that
A(NGg(x,M)) < A(NEg(y, M)). The strict version follows similarly. B

Observe that the statement of Theorem 3.3.7 is about the area A (NZg(z, M)). We need

further conditions for N5 g(z, M) to get larger.

Theorem 3.3.8. Let £y (y) be the line joining M and vertexy € Y. As d(z,lnm(y;)) and
d(z, lr(yr)) both (strictly) decrease for x € Ryr(er) where j,k,1 are distinct, NLg(z, M) (strictly)

increases for T € (0,1].

Proof: Suppose, without loss of generality, that z, y € Rps(e3). Consider the set

S(es, z) :={y € Ru(es) : d(y, £am(y1)) < d(z, Lar(y1)) and d(y, €ar(y2)) < d(w, Lar(y2))},
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which a parallelogram. See Figure 3.3.7 for an example of S(es,z) with M = M¢ and e = e3.
Given z, for y € S(es,z), by construction, Nig(z, M) C Nig(y, M). Then the desired result
follows for 7 € (0, 1]. (Observe that if z,41 is in S(es, zy,), then d(zn, £ar(y1)) and d(zn, £ar(y2))

both decrease.) The strict version follows similarly. B

Figure 3.3.7: The figure for z, y € Rps(e3) described in Theorem 3.3.8.

Remark 3.3.9. For #s(Ny) with positive area, by definition, as z — y € Zs(Ny), Ny(z) —
T'(Y) and hence argsup,cr(y) A(Ny(z)) € Zs(Ny) with sup,cr(y) A(Ny(2)) = A(T(Y)). Fur-

thermore, the following also hold.

1. As x - Mcc in a non-obtuse triangle T'()), Nas(z, Mcc) — T(Y) and

argsupger(y) A(Nas(z,Mcc)) = Moc with SUP,cT(Y) A(Nag(z,Mcc)) = A(T(D)).

2. Forr >3/2,as ¢ &y € (#s(Npg, M))°, Npg(z, M) — T(Y) hence argsup,cr(y)
A(Npp(w, M)) € Zs(Npg, M) with sup,er(y) ANpg (e, M)) = A(T(Y)).

3. Forr <3/2,if M ¢ I7, then as ¢ = M, Npg(z, M) — T(Y) and argsup,c7(y)
A(Npg(w, M)) = M with sup,ery) A(Npg(z, M)) = AT())-

IfM e (I7)° thenasz - M, Npp(z, M) = Npp(M, M) C T(Y), but still argsup, 7y
A(Npp(@, M) = M with sup, cr(y) ANp (@, M) = ANp (M, M)).
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If M €9(JT), then as * = M, Npp(w, M) — Npgp(M, M) C T(Y), and argsup,cr(y)
A(Npg(z, M)) = M with sup,cry) A(Npp(z, M)) = A(Npgp(M, M)) which might be
T(Y) or a proper subset of T'(}).

4. Asz — Mc, N;/;(a:,MC) — T(Y) and argsup,c7(y) 4 (NI?;/;(;U,MC)) = M¢ with

sup,ery) A (NP (@, Mc) ) = AT)).

5. Asx — M, NZ5'(z, M) = T(Y) and argsup,cr(y) A(NG5' (2, M)) = M with
SUPgeT(y) A(NZGH(z, M)) = A(T(Y)). For T < 1,as ¢ = M, Nig(z, M) — NZg(M, M)
and argsup,er(y) A (Nis(z, M)) = M with sup,ery) A (Nig(z, M)) = A(NGg(M, M)).
O

Although the comments in the above remark follow by definition, they will be indicative
of whether the asymptotic distribution of the domination number of the associated PCD is

degenerate or not.

3.4 TI'i-Regions and the Related Concepts for Proximity Maps

Let (2, M) be a measurable space and consider the proximity map N : Q — p(Q), where p(-)
is the power set functional. For any set B C (, the I';-region of B associated with N (), is
defined to be the region I'y (B, N) := {z € @ : B C N(2)}. For z € Q, we denote I'y ({z}, N) as
Ty (z,N).

If X, = {X1, Xs, -+ , Xp } is a set of Q-valued random variables, then T'y (X;, N),i = 1,--- ,n
are random sets. If the X; are independent and identically distributed, then so are the random
sets T'1(X;, N). Furthermore, I'; (X,,, N) is a random set.

For Xq,---, X, “ P the domination number of the associated data-random proximity catch
digraph D, denoted v(X,,, N), is the minimum number of points that dominate all points in X,.
Note that, y(X,,N) = 1 iff X, NT1(X,,N) # 0. Hence the name T’y -region. Suppose u is a

measure on 2. Following are some general results about I'y (-, N) for general N.
Proposition 3.4.1. For any prozimity map N and set B C Q, Zs(N) CT'1(B,N).

Proof: For z € #s(N), N(z) = Q, so B C N(z), then z € T'1(B,N), hence Zs(N) C
T (B,N). N

Lemma 3.4.2. For any prozimity map N and B C Q, I'1(B,N) = Ngepli(z, N).
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Proof: Given a particular type of proximity map N and subset B C Q, y € I'1(B, N) iff
BCN(y)iffx € N(y) forall z € Biff y € I'y(z,N) for all z € B iff y € Nyepli(x, N). Hence
the result follows. B

A problem of interest is finding, if possible, a (proper) subset of B, say G C B, such that
I (B,N) = Ngegl1(z, N). This implies that only the points in G are active in determining
T (B, N).

Definition 3.4.3. An active set of points S4(B) C Q for determining I'; (B, N) is defined to

be a subset of B such that 'y (B, N) = Nyeg,(B)l'1(2, N).

This definition allows B to be an active set, which always holds by Lemma 3.4.2. If B is a
set of finitely many points, so is the associated active set. Among the active sets, we seek an

active set of minimum cardinality.

Definition 3.4.4. Let B be a set of finitely many points. An active subset is called a minimal
active subset, denoted S, (B), if there is no other active subset S of B such that S4(B) C S,(B).
The minimum cardinality among the active subsets of B is called the n-value and denoted as
n(B, N). An active subset of cardinality (B, N) is called a minimum active subset denoted as

St (B), that is, (B, N) := |Sy (B)|.

We will suppress the dependence on B for S4(B), S,(B), and Sy (B) if it is obvious. In
particular, if B = X, is a set of Q-valued random variables, then n(X,,, N) is a random quantity.

For example, in R with Y = {0,1}, and X, a random sample of size n > 1 from F in
(0,1), T'1(X,,Ns) = (%, %), where X.,, is the j¢" largest value in X,. So the extrema
(minimum and maximum) of the set X, are sufficient to determine the I'i-region; i.e., Sy =
{X1:n; Xnin}. Then n(X,,Ns) =1+ 1I(n > 1) as. for X, a random sample from a continuous
distribution on (0, 1).

In the multidimensional case there is no natural extension of ordering that yields natural
extrema such as minimum or maximum. To get the minimum active sets associated with our
proximity maps, we will resort to some other sort of extrema, such as, the closest points to edges
or vertices in T(Y).

For any proximity map N and X,,, n(X,, N) < n follows trivially.
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Lemma 3.4.5. Given a sequence of Q-valued random variables X1, Xo, X3,. .. from distribution
F, let X(n) == X(n —1)U{X,} forn =0,1,2,3,... with X(0) := §. Then I'1(X(n),N) is
non-increasing in n in the sense that T'1(X(n), N) D I'1(X(n +1),N).

Proof: Given a particular type of proximity map N and a data set X'(n) = {X1,...,X,},
by Lemma 3.4.2, T'1 (X (n), N) = NJ_;T1(X;, N) and by definition, X'(n + 1) = X(n) U{Xn41}.
So, T1(X(n + 1),N) = NPHT(X;,N) = [, T1(X;, N)] N T1(Xp1, N) = T1(X(n),N) 0
T (Xpt1,N) CT1(X(n),N).

Thus we have shown that I'; (X (n), N) is non-increasing in n, i.e., I'1 (X (n), N) D I'1 (X (n +
1),N). m

Remark 3.4.6. By monotone sequential continuity from above, {I‘l(X (n),N )}:;1 has a limit

G = e Ti(X(k),N) = lim NPTy (X(k),N) = lim T1(X(m),N)
m—00 m—00
= "}i_x)nooﬂ;”:ll”l(Xj,N):ﬂ?‘;ll“l(Xj,N). O

Note however that I'; (X, N) is neither strictly decreasing (in the sense that I'y (X, N) 2
I’ (Xnt1, N)) nor non-increasing (in the sense that I'y (X, N) D 'y (Xnt1,N)) provided that
Fs(N) # Q for all X, because we might have I'1 (X, N) C I'y (X, N) for some m > n.

Since I't (X, N) = N}_; ['1(Xj, N) for a given realization of the data set X, first we describe
the region I'1 (X, N) for X € X),, and then describe the region I'; (X, N).

Recall that the domination number of the PCD is y(X,,N) = 1 iff X, NT1(X,,N) # 0.
Then the distribution of the domination number of the PCD will depend on the I'i-region.
Furthermore, we will see in Chapter 5 that, the I';-regions are also used in finding the distribution

of the relative density of the PCDs. Hence we describe the I';-regions and the associated concepts

for the proximity maps {Nag, Nhg, N5}

3.4.1 Ti-Regions for Arc-Slice Proximity Maps

Let Y = {y1,y2,y3} C R? be three non-collinear points and 7'())) be the triangle with vertices
Y. For ¢ € T()), draw perpendicular lines at the midpoints of the line segments joining z
with vertices ). The I'j-region is the region bounded by these perpendicular lines. Notice
that I'1 (2, Nas, Mcc) = Vo(z) N T(Y), where Mcc is included in the notation to make the

dependence on the C'C-vertex regions explicit, and Ve (z) is the Voronoi cell generated by z
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Figure 3.4.1: T1(z, Nas, Mcc) and z € Reoc(y2) (left); the ball B(Ms, |e2|/2) that divides the
region Roc(y2) for which I'y-region is a hexagon or a pentagon (right).

in the Voronoi tessellation of Y U {z}. See Figure 3.4.1 (left) where the I';-region is a convex
pentagon. I'i(z,Nas, Mcc) can be a hexagon for z close enough to Moc. Let Zj- (z) be the
perpendicular line at the midpoint between z and vertex y; for j € {1,2,3}. For example, for
z € Roo(y2) \ {y2}, T1(x, Nas, Mcc) will be a pentagon that has M as a vertex iff £ (z) N
¢+ (z) = {M>}. The locus of such points in the basic triangle, T}, in the implicit functional

form, is given by
¥ —cir—cy+yt=(—c1/2)?+ {y—c2/2)* = (I +c3) /4,

which is the equation of the circle centered at My with radius (\/M) / 2. See Fig-
ure 3.4.1 (right). Therefore for z € Rcc(y2), I'i(z, Nas, Mcc) is a hexagon iff d(z, M) <
(\/C%Tcg) /2; ie., z € (B(Ma,|e2]|/2))° (see the shaded region in Figure 3.4.1 (right)), other-
wise it will be a pentagon.

For any z = (zo,y0) € T(Y) = T, the functional form of the I';-region is given by

Ty (z = (20,%0), Nas, Mcc) = {(z,y) € T(Y) : y > £ (z); y > by (x); y < L3 ()}

2 2 2 2 2, .2 2 2
1 _ Yo—2zozt+T(r, pL _ Yo—2zoztToH+22+1, 41 _ —ysgterat+2zox—25—2cC1 THC]
where £ (z) = Fo——1——0 m ; Uy (x) = 40 s b3 () = ICE) .

We have found and expressed the form of I'i-region for a point in T'()). For a data set of
size n > 1, we wish to do the same. However, the region I'1 (X,,, Nag, Mc¢) is not a k-gon for

some fixed k € {ki,...,k;} C [n] where j < n. Furthermore, the n-value, n(X,, Nas), (the
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Figure 3.4.2: An empirical T';-region, I'1 (X,,, Nag, Mc¢) with n = 10

minimum cardinality of an active set to describe the I';-region) is not a fixed constant for all n.

We conjecture the following on the upper bound of n-value.

Congjecture 3.4.7. Let X, be a random sample from F' with continuous density f on T'()). Then

for arc-slice proximity maps, n(X,, Nas) = n with positive probability for each n < co.

We can grid the smallest rectangle that contains T'())) and estimate the I'i-region empirically.
The empirical ['1-region (the union of the grid squares whose centers are verified to be in the
actual T';-region) for a particular sample of size n = 10 is in Figure 3.4.2. Notice that the
empirical region suggests that the actual I';-region is a convex polygon for this data set and
X, NT1(Xn, Nas, Mcc) = 0, which implies (X, Nas, Mcc) > 1.

However, we can find regions slightly larger than the I'y-region for arc-slice proximity regions
by picking & < n points which have some particular property and find the intersection of their

I';-regions. For example:

(i) Pick the closest points to the vertices; i.e., pick the vertex extrema Xy (n) € argminy, d(X,y)

for each y € ). Break the distance ties arbitrarily whenever they occur.
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Figure 3.4.3: Figure for Xy, (n) = X,,(n) = (z,y) (left) and B; for j € {1,2,3} for distinct
vertex extrema (right).

(ii) Pick the furthest points from Mcc in the CC-vertex regions; that is, argmaxx c x, g (y)
d(X,Mcc) for each y € Y. If argmaxycx, (g (y) 1S DOt unique, pick any one of the
furthest points from Mg arbitrarily. If there are no points in Roo(y) for some y, then

don’t pick any point in that vertex region.

The methods (i) and (ii) above give regions slightly larger than the exact I';-region for large n,
because these points are more “restrictive” than the subsets of X,, of same size in some way.
However, for each method, we can find examples so that I';-region is a proper subset of the
region obtained by the method.

The most straightforward choice is picking the vertex extrema, denoted as X, (n) for j €
{1,2,3}. It is possible to have two or three distinct vertex extrema, but P(X,, (n) = X,(n) =
Xy, (n)) =I(n =1).

If the cardinality of the set of the vertex extrema is two, then two of the vertex extrema
should coincide, say Xy, (n) = Xy,(n), then the rest of the points should fall, for example, in
the shaded region in Figure 3.4.3 (left) given Xy, (n) = X,,(n) = (z,y).

Proposition 3.4.8. Let X, be a random sample from F whose support is in T(Y) and density
f is nonzero around y;, for j € {1,2,3}. Let Ey(n) be the event that vertex extrema of X, are

distinct. Then P(Ey(n)) — 1 as n — oo.

Proof: Let p := d(y1,y2)/2 in the basic triangle, Tj. So p = |es|/2 = (\/cf + cg) /2. Let
B; := B(yj,p) N T(Y) be the ball slices at y; for j € {1,2,3}. See Figure 3.4.3 (right).
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Let D; be the event that X, N B; # 0, for j € {1,2,3}. If X, N B; # 0, for all j € {1,2,3},
then three distinct vertex extrema will exist. Then P (N3_, D;) < P(Ey(n)) and

P (N3_,D;) =1— P (Ui_,D§}), where D is the complement of D;. Thus
P (uleDJC.) = P(D§)+P(D5)+P(D5)—P(D;NDS)—P(D;NDS)—P(DsNDS)+P(D;NDsNDS).

Now,

P(Dj)=(1-P(X € B;j))" - 0asn — oo,

since by hypothesis P(X € B;) > 0 for j € {1,2,3}. Then P(D§N Dj) < P(D§) — 0 as
n — oo for j # k and j,k € {1,2,3}, and P(Df N D§ND3) < P(D§) — 0 as n — oo.
Hence P (U3_,;D5) = 0 as n — oo, so P (N3_,D;) =1 — P (U}_,D§) = 1 as n — oco. Thus
P(Ey(n)) > lasn—oco. B

The region 037:11"1 (Xy,;(n), Nas, Mcc) which is slightly larger than the actual I'y-region will

be used in finding the asymptotic bounds for the domination number of the corresponding PCD.

3.4.2 Ti-Regions for r-Factor Proportional-Edge Proximity Maps

For r € [1,00], let NLj be the r-factor central similarity prozimity map (see Section 3.3.2). For
Npg(-, M), the T'y-region is constructed as follows; see also Figure 3.4.4. Let &;(r, z) be the line
parallel to e; such that &;(r,z) NT(YV) # 0 and rd(y;,§;(r,z)) = d(y;,£(y;,z)) for j € {1,2,3}.
Then

Ty (¢, Npg, M) = Uj_1 [T1 (#, Npg, M) N R (y;)]

where
Iy (SL’,N};E,M) N RM(Y]) = {z € RM(yJ) : d(yj,f(yj,z)) > d(yjagj(ram)} for JE {1a273}‘

Notice that > 1 implies z € I'y (z, Npg, M). Furthermore, lim,_, Iy (z, Npp, M) = T(Y)
for all x € T(Y) \ Y and so we define I'y(z, N;5>, M) = T(Y) for all such z. For z € ),
Ty (z,Npg, M) = {x} for all r € [1,00].

The functional form of I'1 (z = (z0,y0), Npg, M) in the basic triangle T} is given by
Fl (.73 = (m07y0)7N1T3E5 M) = U?:l [Fl(x = (moayo)angE:M) n RM(yJ)]
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Y2

Figure 3.4.4: Construction of the T';-region, I'1 (z, Nsz?, M) (shaded region).

where

I'i(z = (z0,90), Npg, M) N Ry(y1) = {(x,y) € Ru(y1) 1y 2 % B M}

(I—c))r
Lo = (20, 0) N, M) 0 Raal2) = { (8.9) € Ragly) sy > 20— 2 EZDHI=m
iz = (20,90), Npg, M) N Rur(ys) = {(@";Z/) € Ru(y1) 1y < %(I_T)} .

Notice that I'y (z, N5y, Mc) is a convex hexagon for all r > 2 and z € T'(Y) \ Y, (since for such
an z, I'y (z, Npg, Mc) is bounded by ;(r, z) and e; for all j € {1,2, 3}, see also Figure 3.4.4.)
else it is either a convex hexagon or a non-convex polygon depending on the location of z and
the value of 7.

So far, we have described the I'i-region for a point in z € T(Y). For a set X, of size n in

T(Y), the region I'1 (X, Npg, M) can be exactly described by the edge extrema.

Definition 3.4.9. The (closest) edge extrema of a set B in T'(}) are the points closest to the

edges of T'()), denoted z.; for j € {1,2,3}; that is, z., € arginf .pd(z,e;).

Note that if B = X, is a random sample of size n from F' then the edge extrema, denoted

X, (n), are random variables.
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Proposition 3.4.10. Let B be any set of n distinct points in T(Y). For r-factor proportional-

edge prozimity maps with M -vertex regions, 'y (B, Npg) = M3_ Tt (zey, Npg).

Proof: Given B = {z1,...,2,} in T(Y). Note that
Ty (B,Npg, M) N Ry(y;) = [Nizy Ti(@i, Npg, M)] N Rus(y;),
but by definition z.; € argmax,.pg d(y;,§;(r,z)), so
[y (B,Npg, M) N Ryp(y;) =T1(xe;, Npg, M) N Ry (y;) for j € {1,2,3}.
Furthermore, I'y (B, Np i, M) = Ul_, [T'1(z¢;, Npg, M) N Ry (y;)], and
Ti(ze;, Npg, M) N Ru(y;) = My—y [T1(ze, Npg, M) N Ras(y;)] for j € {1,2,3}.

Combining these two results, we obtain I'y (B,Njg, M) = N3_, Tt (@e,, Npg, M). B
From the above proposition, we see that the I'y-region for B as in proposition can also be

written as the union of three regions of the form
[y (B,Npg, M) N Ru(y;) = {2 € Ruly;) = dly;, £(y;,2)) 2 dly;,&(r, ze;))} for j € {1,2,3}.

Corollary 3.4.11. Let X, be a random sample from a continuous distribution F on T(Y). For
r-factor proportional-edge prozimity maps with M -vertex regions, n (X, Npg) < 3 with equality

holding with positive probability for n > 3.

Proof: From Proposition 3.4.10, n (X,, Npg) < 3. Furthermore, X, (n) is unique for each
edge e a.s. since F' is continuous, and there are three distinct edge extrema with positive
probability. Hence P(n (X, Nbg) =3)>0forn>3. A

Note that P(n (X,, Npp) =3) = 1 as n — oo for X, a random sample from U(T'(Y)), since

edge extrema are distinct with probability 1 as n — oo as shown in the following theorem.

Theorem 3.4.12. Let X,, be a random sample from U(T(Y)) and let E. 3(n) be the event that

(closest) edge extrema are distinct. Then P(E,3(n)) = 1 as n — oo.

Proof: Using the uniformity preserving transformation ¢, : (z,y) — (u,v), where u(z,y) =

T+ % y and v(z,y) = % y from Section 2.2.1, we can, without loss of generality, assume
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X, is a random sample from U(T.). Observe also that the edge extrema in T} are mapped into
the edge extrema in T,. Note that the probability of edge extrema all being equal to each other
is P(Xe,(n) = Xey(n) = Xeg(n)) = I(n = 1). Let E.2(n) be the event that there are only two
distinct (closest) edge extrema. Then for n > 1,

P(Ecz2(n)) = P(Xe,(n) = Xe,(n)) + P(Xe, (n) = Xe;(n)) + P(Xe, (n) = Xe,(n))

)

since the intersection of events X, (n) = X, (n) and X, (n) = X, (n) is equivalent to the event
Xe, (n) = Xe,(n) = X, (n). Notice also that P(E, »(n = 2)) = 1. So, for n > 2, there are two
or three distinct edge extrema with probability 1. Hence P(E, 3(n)) +P(E;2(n)) = 1forn > 2.

We will show that P(E.2(n)) — 0 as n — oo, which will imply the desired result.

First consider P(X,, (n) = X,(n)). The event X, (n) = X.,(n) = X, is equivalent to the
event that X, C {U € T, : d(y1,£(y1,U)) < d(y1,4(y1,Xe)), d(y2, l(y2,U)) < d(y2,£(y2, Xe))}-
For example, if given X,, (n) = X,,(n) = (z,y) the remaining n — 1 points will lie in the shaded
region in Figure 3.4.5.

The pdf of such (X,Y) is f(z,y) =n (4/V3) (yz/\/g)n_l. Let € > 0, by Markov’s inequal-
ity, P(v3/2—Y >¢) <E [V3/2-Y] /e. But,

E [V3/2-Y] /01/2/;% (V3/2-y) n (y?/\/ﬁ)n_1 (4/v3) dyda

[T ) () (108 v

4 (\/5/4)HW;

which converges to 0 as n — co. Hence for each e > 0, P(v/3/2-Y >¢) — 0 as n — oo.
Hence P(X,,(n) = Xe,(n) # y3) — 0 as n — 0. Furthermore, P(X,,(n) = X¢,(n) =y3) <
P(Xe,(n) € e2) =0for allm > 1. So P(X, (n) = X, (n)) = 0 as n — oc.

Likewise, by symmetry, it follows that lim, ,cc P(Xe, (1) = Xeg(n)) = limp 00 P(Xe,(n) =
Xes(n)) = 0. Hence P(E;2(n)) = 0 as n = co. Thus P(E;3(n)) -1 asn — oco. W

The above theorem implies that the asymptotic distribution of n (X, N} ) is degenerate

with P(n (X,, Npg) = 3) = 1 as n = oo. But for finite n, n (X,, Npg) for X; b U(T(Y)) has
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the following non-degenerate distribution.

2 wp ma(n)
3 wp w3(n) =1 —ma(n),

where m2(n) € (0,1) is the probability of edge extrema for any two distinct edges being concur-

rent.

3= (01702)

z,y)

yi[=GU) Y2 =1L,0]

Figure 3.4.5: The figure for X,, (n) = X.,(n) = (z,y) .

Remark 3.4.13. If X, is a random sample from F' such that S(F) N {z € T(Y) : d(z,e;) <e1}
has positive measure and S(F) N B(y;,e2) = () for some &1, > 0, then P(E.3(n)) — 1 as
n — oo follows trivially. However, the case that F' has positive density around the vertices )

needs more work. O

For 7 > 3/2 and M € R? \ Y, I'1(X,, Nbp, M) # 0 as., since Zs(Npp, M) # 0 and
‘%S(ngEaM) - Fl(XnangE’M)'

Now, for n > 1, let X, (n) = z,

J

= (uj,w,) be given for j € {1,2,3}, be the edge extrema

in a given realization of X,,. Then the functional form of I';-region in T} is given by

I (XnaN}T—"EaM) = U;:l [Fl (XnaNIT-:’E‘a M) n RM(y])]
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where

Ty (X, Np g, M) 0 Rag(ys) = {(x,y) € Rulyr) iy > 2 -

Ty (X, Njg, M) 0 Ras(yz) = {(m,y) € Rurlyr) iy > 2 -

Ty (A, Npss, M) 0 Ragys) = {(x,y) € Rurlyr) iy <

Note that, for X, a random sample from U(T'(Y)), P(n (Xn, Nog) =3) = 1 asn — oo, since
the edge extrema are distinct with probability 1 as n — oo. However, for r < 3/2, the region
[y (z,Npg, M) N Ry (y;) might be empty for some j € {1,2,3}. Furthermore, if M € (J7)°
(see Equation 3.3.1 for I ") with r < 3/2, then I'y (X,,, Npi, M) will be empty with probability
1 as n — oco. In such a case, there is no I';-region to construct. But the definition of the 7-value
still works in the sense that I'y (X,,, Npg, M) = 0 = Nges,, 1 (2, Npg, M) (see Definition 3.4.3
for Spr) and Ty (2, Nbg, M) # O for all x € X, since z € 'y (¢, Nbf, M). To determine whether
the T'1-region is empty or not, it suffices to check the intersection of the I'i-regions of the edge

extrema. If M ¢ (77)°, the I';-region is guaranteed to be nonempty.

Remark 3.4.14.
e For ry <79, Ty (x,Npg, M) CTy (z, N5, M) for all z € T(Y).
o For 3/2 <1y <re, T (2, Ni'g, M) C Ty (x, Ny, M).

e Let X be a random variable in X, which is a random sample from U(T(Y)). Then
for ry < ra, ATy (X, Njiy, M)) <51 ATy (X,Nj2,, M)) and A(Ty(Xn, Npy, M)) <57
ATy (X, NZ, M)). O

Remark 3.4.15. In R? with d > 2, recall &()), the simplex based on d+ 1 points that do not lie
on the same hyperplane. Furthermore, let g;(r, z) be the hyperplane such that g;(z)N&(Y) # 0

and r d(y;, 0;(r,z)) = d(y;, Y(y;,)) for j € {1,2},...,d+ 1. Then
Ti(z, Npg, Mc) N Rom(y;) = {2 € Rom(y;) = dly;, Y(y;,2)) > dly;, 0j(r,2)} for j € {1,2,3}.

Hence I't (z, Npp, M) = U;.iill (T1(z, Npg, Mc)NReam(y;)). Furthermore, it is easy to see that
Iy (X, Nbg, M) = ﬁ?i%l"l(X% (n),Npg, Mc), where X, (n) is one of the closest points in

X, to face ;. O

62



3.4.3 T'i;-Regions for 7-Factor Central Similarity Proximity Maps

For 7 € [0,1], let NZg be the T-factor central similarity prozimity map (see Section 3.3.3).
For N{g, the I'i-region is constructed as follows. Let €7 (x) be the edge of T, (z) parallel to
edge e; for j € {1,2,3}. Now, suppose u € Ry (es) and let g;(7,z) for j € {1,2},...,7 be the

lines such that

v € q1(1,u) N Rypr(e3) = u € €] (v), v € g2(1,u) N Rpr(e3) = u € e} (v),
v € g3(1,u) N Ru(er) = u € e5(v), v € ga(T,u) N Ryr(er) = u € e3(v), (3.4.1)
v € gs(1,u) N Rpr(ez) = u € ef(v), v € gg(T,u) N Rypr(ez) = u € e} (v),

v € q7(T,u) N Rpr(e3) => u € ef(v).

Then T'y (z, Nl g, M) is the region bounded by these lines. See also Figure 3.4.6. 'y (z, N5 g, M)
for x € Ry(e;) for j € {1,2} can be described similarly.

Notice that 7 > 0 implies that z € 'y (x, Nig, M). Furthermore, I'1 (x, N5g, M) = {z} iff
(i) 7=0or (ii)) 7 < 1 and z € (T (Y)).

The T';-region T'y (x, Nig, M) is a convex k-gon with 3 < k < 7 vertices. In particular, for

7 =1, T1(z, NJ5', M) is a convex hexagon. See Figure 3.4.7 (right).
cs

Proposition 3.4.16. Let X, be a random sample from U(T(Y)). For T-factor central similarity
prozimity maps with M-edge regions (by definition M € T(Y)°) and 7 > 0, n(Xn,Nig) < 3

with equality holding with positive probability for n > 3.

Proof: Let M € T(Y)° and 7 > 0. Then given X, for j € {1,2,3}, we have

[y (X, Nog, M)) N Ry (ej) = Mizy [T1 (Xi, Nog, M) N R (ej)]

=I" (Xek (n)aNg’SaM) NIy (Xez (n)rNE'S:M) ﬁ-RM(ej)

where k,l # j, since for ¢ € Ru(e;), if {Xe, (n), Xe,(n)} C Nig(x), then X, C Nig(x). Hence
for each edge we need the edge extrema with respect to the other edges, then the minimum active
set is Sy = {Xe, (n), Xe,(n), X, (n)}, hence 1 (X, Nog) < 3. Furthermore, for the random
sample X,,, X.(n) is unique for each edge e with probability 1 and there are three distinct edge

extrema with positive probability. Hence P(n (X,, NZg) =3) >0forn > 3. B
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y €3 = ¢(z) i €3 =e(r)
Figure 3.4.6: Examples of the four cases of the I';-region, T’y (x, Né;l/ 2, MC> with four distinct
z € Ropr(es) (shaded regions).

Note that for 7 > 0 and X, a random sample from U(T(})), P(n(X,, Nig) =3) = lasn —
00, since the edge extrema are distinct with probability 1 as n — co. Here T'y (X, NZ5!, M) # 0
for all n, because by construction M € T'y(X,, NG5, M) since N55' (M) = T(Y). Furthermore,
N (Xn, Nig) L 7 (Xn, Npg) for all (r,7) € [1,00) x (0,1] where £ denotes the equality in

distribution.

Proposition 3.4.17. The I'y-region T'1(X,,, NES', M) is a convex hezagon for any set B of size
n in T(Y)°.

Proof: This follows from the fact that each g;(x) for j € {1,...,6} is parallel to a line
joining y; to M for 7 = 1 (gz(z) is not used in construction of T'1 (B, N;5', M).) See Figure
3.4.7 (right) for an example. B

For n > 1 with M = Mc¢, let X¢;(n) = 2.; = (uj,w;) be given for j € {1,2,3}. Then the

functional forms of the lines that determine the boundary of I'y (X, NGg, M¢)) are given by
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Figure 3.4.7: The I'i-region 'y (z, NJg, Mc) with z € Rar(e2) (left) and T'y (X5, NGg, Mc)
with n > 1 (right).

+ep (z— (1-a)+
qi(r) = g, as(@) = S
— 1—
CIZ(x) _ c(m :3;—11)4:11( 01)’ Q5(.73) — ij;i—zlia’
1— —z)—
Q4(IE) _ Tea z)(—fl'cfc(:;s_cf) wser Q7(l') — 1w—
(x) _ a(l—a)witecrcour—ca (27 (1—c1)+e1 (1—7)) z+7 e (1— 201)
96\ ) = c1 (I—e1) (1-7)

The functional forms of the lines that determine the boundary of I'y ((zo,%0), N5g) can be
obtained by replacing u; with z¢ and w; with yo for j € {1,2,3}.
See Figure 3.4.7 for I'y (z, NI5', M¢) and Ty (X, NI5', Mc).

Remark 3.4.18.

e For m < m, I't (x,Nlg,M) C T'1(x,N5g, M) for all z € T(Y) and for 1 < 7o,

Ty (z, N, M) C Ty (z, N2, M) for all z € T(V)°.

e Let X be a random variable in X, which is a random sample from U(T'(Y)). Then
for m < 12, A(T1(X,Nlg, M)) <57 A(T1 (X,NZs, M)) and A (T1 (Xn, NG, M)) <57
ATy (X, NG, M)). O

3.4.4 Characterization of Proximity Maps Using 7-Values

By definition, it is immediate that the minimum number of points to describe the I'i-region,

7(Xn,N) < n for any proximity map. We have improved the upper bound for Njp and

65



NZg: n(Xn, Npp) < 3 and n(X,, Nig) < 3. However, such an improvement does not hold
for n(X,, Nas); that is, there is no k < n such that n(X,, Nag) < k for all X,.

Below we state a condition for N(-, M) defined with M-vertex regions to have n(X,, N) < 3.

Theorem 3.4.19. Suppose N(-, M) is a prozimity region defined with M -vertex regions and B
is any set of n distinct points in T(Y). Then n(B,N) < 3 if for each y € Y there exists a point
z(y) € B (i.e., related to y) such that T'1(B,N) N Ry (y) =T1 (2(y), N) N Ras(y).

Proof: Let B = {x1,...,2,} C T(Y). Suppose there exists a point z(y;) € B such that
T1(B,N)N Ru(y;) =T (2(y;), N) N Rar(y,) for each j € {1,2,3}. Then
T1(x(y;), N) N Rar(yj) = Nzt [Ti(@s, N) N Rar(y;)] = My [T (2(ys), N) N Rae(y;)]
and
T1(B,N) = Ui [Ti(x(y;), N) N Rus(y;)]-

Combining these two results, we get
T1(B,N) =nNj_4T1 (z(y;),N).

Hence, the minimum active set Spr C {z(y1), z(y2), z(ys)}, which implies (B, N) < 3. The
n-value (B, N) < 3 will hold if z(y;) are not all distinct. B

Notice that N satisfies the hypothesis of the Theorem 3.4.19.

Below we state some conditions for N(-, M) defined with M-edge regions to have n-value

less than equal to 3.

Theorem 3.4.20. Suppose N(-, M) is a prozimity region defined with M -edge regions and B
is set of n distinct points in T(Y). Then n(B,N) < 3 if

(i) for each e € {e1,es,e3}, there exists a point x(e) € B such that T'1(B,N) N Ry(e) =
Ty (z(e), N) N Ry (e),

or

(i) there exist points z(ey), z(e;) € B such thatT'1(B, N)NRa(e;) = T'1(z(er), N)NL1(z(er), N)N
Rasles) for k0 # j with § € {1,2,3} and (k,1) € {(1,2), (1,3), (2,3)}.
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Proof:

(i)

Suppose there exists a point z(e;) € B such that I'y(B,N) N Ru(e;) = Ty (z(e;), N) N
R (ej) for each j € {1,2,3}. Then

Ty (z(e;), N) N Rur(e;) = Nizy [T1 (@i, N) N Rag(e;)] = M=y [T1(z(ex), N) N Rar(ey)]

and

T'1(B,N) = Ui [T1(z(e;), N) N Rus(e;))-

Combining these two equalities, we get
T (X, N) =M3_ Ty (z(ex),N).

Hence, the minimum active set Sy C {z(e1),z(e2), z(e3)} which implies n(X,, N) < 3.
Suppose there exist points z(ej) and z(e;) such that 'y (X,, N)N Ry (e;) = T (z(er), N)N
Ty (z(er), N) N Ra(ej) for k,1 # j. Then
L1 (z(ex), N)NT1(z(er), N)NRar(e5) = iy [T1 (@i, N)NRar(e5)] = Mg [T1 ((eq), N)NRa (e5)]
and

['1(B,N) = Ukui[C1(a(er), N) N Ti(xz(er), N) N Rar(e;)]-

Combining these two results, we get ['1(B, N) = N3_, T (z(e;), N) . Hence, the minimum

active set Spr C {z(e1),z(e2),z(es)} which implies n(B,N) < 3. &

Notice that N7 g satisfies condition (ii) in Theorem 3.4.20.

3.4.5 The Behaviour of I'y(X,, N) for the Proximity Maps in T'(}))

In Section 3.4, we have investigated the behaviour of I'; (X,,, N) for general proximity maps in

Q. The assertions made about I';-regions will be stronger for the proximity regions we have

defined, i.e., for Nas, Npg, and N[ g, compared to the general assertions in Section 3.4. One

property enjoyed by these proximity maps is that the region N(z) gets larger as 2 moves along a

line from Ag(N) to Zs(N) in a region with positive R2-Lebesgue measure. So the modifications
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of the assertions in 3.4 in fact hold not only for {Nas, Npg, Nig} but all proximity regions

with the same property (mentioned above).

Proposition 3.4.21. For each type of prozimity map N € {Nas, Npp, NLg} and any random
sample X, = {X1,...,Xn} from a continuous distribution F on T(Y), if Zs(N) # 0, then
Rs(N) CT'1(Xp,N) a.s. for each n < 0.

Proof: We have shown that Zs(N) C T'1(X,,N) (see Proposition 3.4.1). Moreover,
Hs(N) # 0 for Nas, Nbp with 7 > 3/2, and NZ35'. For these proximity regions, Zs(N) =

Iy (X,, N) with probability 0 for each finite n since

(i) for Nag, I'1(Xn,Nas, M) = #s(Nas, M) iff X,(n) =y for each y € Y which happens

with probability 0,

(i) for N € {Nz5*, Njit/?}, Ty (Xn, N, M)) = &s (N, M) iff X,,(n) € e; for each j €
{1,2, 3} which happens with probability 0.

Furthermore, for Npp with r < 3/2, Zs(Npg, M) # 0 iff M ¢ (F7)° (see Equation 3.3.1 for
"), say M is such that d(M,es) < d(ya,e2)/r. Then I'y (X, Npg, M) = Zs(Npg, M) iff
X, (n) € ey which happens with probability 0. Similarly the same result also holds for edges e;
and e3. W

Note that, if Zs(N) = ) and X, is a random sample from a continuous distribution on T'()),
then I'1 (X, N) = 0 a.s. as n — oo. In particular, this holds for N5g(-, M) with r < 3/2 and
M € (7)°. Lemma 3.4.5 holds as stated. In Lemma 3.4.5, we have shown that I'; (X (n), N)
is non-increasing. Furthermore, for the proximity regions {Nag, Npp, Nl g}, we can state that
[i(X(n),N) 2 T'1(X(n+ 1), N) with positive probability, since the new point in X'(n + 1) has
positive probability to fall closer to the subset of T'()) that defines Zs(N) (e.g., d(T'(Y))). We
restate Lemma 3.4.5 and prove it for the proximity maps {Nas, Npgp, N}

iid

~UT)), let X(n) :=
X(n —1)U{Xp} for n = 0,1,2,... with X(0) := 0. Then for each N € {Nas,Npy, Nig},

Theorem 3.4.22. Given a sequence of random variables X1, Xo, X3, ...

Ty (X(n),N) | Zs(N) as n = oo a.s., in the sense that T'y(X(n),N) D T'1(X(n +1),N) and
AT (X(n), N)\ Z5(N)) L 0 a.s.

Proof: From Lemma 3.4.5, we know that I'y (X(n),N) D I'1(X(n + 1), N). Hence G; :=
N2 T (X (k), N) = N5, T1(X;, N), and Zs(N) C G1. Furthermore, A(T'1 (X (n), N)\Zs(N)) >
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0 for each n a.s. From Proposition 5.6. in Karr [21],

Y, “5 YV iff Ve >0, lim P (sup|Yk -Y]| >5> =0.

Now, let € > 0. Thus we need to show that

lim P (sup AT (X(n),N)\ Zs(N)) > 6) =0.

n—oo k>n

Note that supys, A(T1(X(n), N) \ #s(N) £ A(T1(X(n),N) \ Zs(N), so

P (:1>1p A (N Ty (X, N)\ Zs(N)) < s> =P (A(N}_,T1(X;,N)\ Zs(N)) <e).

Hence it will suffice to show that
P (A (N}, T1(X;,N)\ #s(N)) <e) - 1lasn — oo,

for N € {Nas,Npp, Nig} (with r € [1,00] and 7 € [0,1]). With 7 = oo and 7 = 0, the result
follows trivially.

For N € {N}y, Nig}, Zs(N) is determined by the edge extrema X, (n). Then for suffi-
ciently large n, X.(n) will be close enough to e w.p. 1 for each e € {e1, ez, e3}; that is, for e > 0,
there exist d1 (€), d2(¢) > 0 such that P(d(X.(n),e) < d1(¢)) = 1 and d(X,(n),e) < d1(g) implies
that sup(, ,)ea(r, (x(n),N))xo(@s(N)) 4@, y) < 02(¢), which implies that A(T'y(X(n), N, M) \
#s(N,M)) <e.

For Nas, #s(Nas) is determined by Y and for sufficiently large n, X,(n) will be close
enough toy € Y w.p. 1 that H(X(n),)) hence I'1 (¥ (n), Nag, M) will be slightly larger than
Rs(Nas, M); thatis, A (L1 (X (n), Nas, M)\ Zs(Nas, M)) < e will follow. Then P(A(T'; (X (n),
Nag, M)\ Zs(Nas, M)) <€) = 1 as n — oo which can be shown by arguments similar to the

one above. W

Proposition 3.4.23. For positive integers m > n, let X, and X, be two random sam-
ples from U(T(Y)). Then A (T1 (X, N,M)) <57 A(T1(X,, N, M)) for prozimity maps N €

{Npg,NGg}, forr € [1,00) and 7 € (0,1].
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Proof: Let m > n be two positive integers. Let X.(k) be a member of the set argminy ¢ 5, d(X,e)

(note that X, (k) is unique a.s. since X is from U(T()))), then d(X.(m), e) <57 d(X.(n), e) for
each edge e and A(T'(X,, N, M)) is an increasing function of d(X., e) for N € {Npg, NZg};
the result follows. B

For N4 the stochastic ordering of A (T'y(X,, Nas, M)) is still an open problem, although
we conjecture that A (T'y (X, Nas, M)) <57 A (Ty(X,, Nas, M) for X,, and X, two random

samples from U(T'(Y)) with m > n.

Theorem 3.4.24. Let {X,}°2, be a sequence of data sets which are iid U(T(Y)). Then
[y (X, N) 22 Zs(N) asn — oo for N € {Nas, Npp, N&g}-

Proof: Given a sequence {X,,}°2; as in the theorem, Zs(N) C T';(X,, N) for all n. Let
g > 0. By Proposition 3.4.23, for N € {Npg, N5}, supgsp, A (T'1(Xn, N, M)\ Zs(N, M)) &
ATy (X, N, M)\ Zs(N, M)).

For N € {Npg, Nig}, Zs(N, M) is determined by the edges and I'y (X,,, N, M) by the edge
extrema X.(n). Asn — oo, X.(n) is arbitrarily close to e with probability 1; that is, there exist
01(e) > 0 and d2(¢) > 0 such that P(d(X.(n),e) <) =1 and d(X(n),e) < d§;(¢) will imply
SUD (3,5) 5 (N) xT1 (X ,N) A(T,y) < 02(€) which in turn will imply A (T'y (X, N, M) \ Zs(N, M)) <

e for each e € {e1,e2,e3}. Hence

P (i‘ip“‘ (T4 (X, N, M) \ Z5(N, M) < ) -

P (A (T (X, N, M)\ 2s(N,M)) <¢) =1 as n — cc.

For Nys, let H(X,,Y) := Nyeyl'1(Xy(n), Nas, M). Then I'y(X,, Nas, M) C H(X,,Y) and
Rs(Nas, M) C T1(Xp, Nag, M). So, if A(H(X,,Y)) =2 A(#s(Nas, M)), then the desired
result will follow for Ngg. Note that H(X,,)) is determined by Y. As n — oo, X,(n) will
be arbitrarily close to y € ) with probability 1, using arguments similar to above, the result

follows. W

3.4.6 Expected Area of I';-Regions Associated with N(-)

Let A\(-) be the R?-Lebesgue measure on R? with d > 1. In R, () is the length | - |, in R?, A(-)
is the area A(-), and in R¢, A(-) is the d-dimensional volume V (-). In R with Y = {0, 1}, let &,
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be a random sample from #(0,1), and Ng(z) = B(z,r(x)) where r(z) = min(z,1 — z). Then,
[y (X, Ns) = [Xn:n/27 1+ Xl:n)/Q] = A(I'1(Xn, Ng)) = |F1(Xn7NS)| = (14 X1.n — Xnin) /2-

Hence the expected length of the I';-region is

1 + Xl:n - Xn:n — 1 + E [Xl:n] -E [Xnn]
2 2

E[\T1(X,,Ns)] = E

1
= 1+"+1_"11= 1 —0asn — oo.
2 n+1

In R?, with three non-collinear points J = {y1,y2,y3}, let A, be a random sample from U (T())).
Then A(T'y(X,,Nbg, M)) > 0 as. for all n < oo, 7 > 3/2, M € R?> \ Y. Furthermore,
A(T1(Xn, NESH, M) > 0 a.s. for all n < oo and M € (T'(Y))°; A(T1(Xn, Nas, M)) > 0 a.s. for
alln < oo and M € R2 \ ).

The I'y-region, ' (X, N), is closely related to the distribution of the domination number
of the PCD associated with V. Hence we study the asymptotic behaviour of the expected area
E[A(T1 (X, N, M)], as n — o0, for N € {Nas, Npg, Nig}

3.4.6.1 Expected Area of T'y(X,,, Nag, M)

Recall that for Ngg, the minimum number of “active” observations for a general representa-
tion of T'y (X, Nas, M); that is, n(X,, Nas) has no fixed upper bound that works for all n.
Hence, unlike T'y (X, N, M) with N € {Npp, Nig}, there is not a general short form involv-
ing some sort of extrema for 'y (X,, Nas, M). However, we can find regions slightly larger
than T'y (X, Nas, M) using the vertex extrema X, (n) for y; i.e., Xy(n) € argminycy d(X,y).
Then Ty (X, Nas, M) C H(X,,Y) := NyeyT1(X,(n), Nas, M). Hence A(Ty(X,, Nag, M)) <
A(H(X,,Y)), and same inequality holds for the expected values. The expected area of H(X,,,))
is determined by the expected locus of E[X,(n)]; i.e., the expected value of the distance
d(Xy(n),y). For example, if d(X,(n),y) = u, then the locus of X,(n) is on the arc of the

circle in T'()) with center at y and radius u.

Lemma 3.4.25. Let X, be a random sample from U(T(Y)) and Ry(n) := d(X,(n),y) for each
y €Y. Then E[Ry(n)] = 0 as n — oo for eachy € Y.

Proof: Notice that E [Ry(n)] — 0 as n — oo implies that expected locus of X, (n) is on y.
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Figure 3.4.8: The smallest arc-circle S¢(T'())) that contains T'(Y)

For y = y1, Ry, (n) = d(Xy,(n),y1). Let Sc(T(Y)) be the smallest slice of the circle

centered at y; with radius 1, that contains T'(Y) (see Figure 3.4.8). Given X; “u (T(Y)), and

let V; % U(Sc(T (D)) for i = 1,...,n. Furthermore, let R;(y;) := d(Yj,y1) and Ry, be the
k' largest R;(y1) value. Then clearly, P (Ry,(n) <u) > P (R, <u) for all u € [0,1] with
inequality holding for all u € [0,1]. So R,, <57 Ry.,, which implies E [R,,] < E [R1.p).

Next P (R;(y1) <u) = %ﬁ’—l = u? for all u € [0, 1] where §; is the inner angle at vertex y;
in radians, then cumulative distribution function (cdf) and probability density function (pdf)

of R; are given by
Fru) =v*T(0<u<1)+T(u>1)and fr(u) =2uI(0<u<1),

respectively. Thus pdf of Ry., is fr,., (v) = 2nu (1 —u?)""1I(0 < u < 1). Then

V2rnnte "

™ w1
2.\ /27(n +1/2)(n + 1/2)n+1/2e=n=1/2 ~ 2/n

Q

— 0, as n = o0,

where for the first approximation we used the Stirling’s approximation of T'(k+1) ~ k¥ v27k e *
and the second approximation is straightforward. Hence E [R;.,] — 0 which implies E [R,, (n)] =

0 as n — oc. Similarly, E[Ry;(n)] = 0 for j € {2,3} asn = co. B

Theorem 3.4.26. Let X, be a random sample from U(T(Y)). Then E[A(T1 (X, Nas, M))] —

A(#s(Nas, M)) as n — oo.
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Proof: Recall that H(X,,)) = Nyeyl1(Xy(n), Nas, M) where H(X,,Y) is bounded by
the perpendicular lines at the midpoints between X,(n) and y for all y € ). Furthermore,
I'1(X,,Nas, M) C H(X,,Y), so A(T1(X,,, Nas, M)) <57 A(H(X,,,))), which implies
E [A(T1(Xp, Nas, M))] < E[A(H(X,,Y))]. Additionally, H(X,,Y) = Zs(Nas, M) iff X,(n) =
y for all y € ). Moreover, Zs(Nas, M) C T'1(X,, Nas, M), which implies A(Zs(Nas, M)) <
E[A(T1(Xn, Nas, M))]. In Lemma 3.4.25, we have shown that E[R,(n)] — 0 as n — co. Hence
the expected locus of the perpendicular lines (that determine the boundary of H(X,,Y)) con-
verge to the midedge bisectors (the expected value of the angle between midedge bisector and the
perpendicular lines converge to zero); i.e., the boundary of the superset region (#Zs(Nag, M)).
Then E[A(H(X,,Y))] = A(%#s(Nas, M)) as n — oo.

So, combining the results we obtain

A(%s(Nas, M)) < BIAT1 (X, Nas, M)] < E[A(H(X,, V)] = A(#s(Nas, M)) as n — oo.

Hence E [A(T'1(X,, Nas, M)] = A(#s(Nas,M)) asn — co. B
In particular, if M = Mcc, then E[A(T1 (X, Nas, Mcc))] = 0 as n — o0, since

Hs(Nas, Mcc) = {Mcc}.

3.4.6.2 The Limit of Expected Area of I'y(X,,, N, M) for N, and N/ ¢

Recall that for N € {Npp, Nig}, T1i(&X,, N, M) is determined by the (closest) edge extrema
Xe(n) € argminy .y, d(X,e), for e € {e1,e2,e3}. So, to find the expected area of I'1 (A, N, M),
it suffices to find the expected locus of X.(n); i.e., the expected distance E [d(X.(n),e)]. For
example, for A, a random sample from a continuous distribution F', argminycy d(X,e) is
unique a.s., and if d(X,(n),e) = u, then X.(n) falls on a line parallel to e whose distance to e

is u a.s.

Lemma 3.4.27. Let D,;(n) := d(X,,;(n),e;) for j € {1,2,3} and X, be a random sample from
UT(Y)). ThenE[D,;(n)] = 0 (i.e., the expected locus of X.,(n) is on e;) for each j € {1,2,3},

as n — o0.
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Proof: Given Z; = (X;,Y) (Y U(T(Y)). Then for e = ez, D¢y(n) = Y1., (the minimum
y-coordinate of Z; € A},). First observe that P(Y; <y) = “227?”), hence
2¢y —
Fy(y) = MQ?J)I(O <y<eca)+1(y > ca).

C3

So the pdf of Y; is fy(y) =2 cicg—yI(O <y < ¢2). Then the pdf of Y;., is

Jin(y) =2n(c2 — y) (1 R Avhoins V)

Therefore,

e y2e-y»\"' c2
E [Yi.,] = ; 2yn(ca —y) 1—T Co dy:2n+1—>0, as n — 0o.

Hence E [Y1.,] = E[De,(n)] — 0. Similarly, E[D,;(n)] = 0 for j € {1,2},as n — co. B
Notice that, D.(n) = 0 iff X.(n) € e, so E[D.(n)] = 0 iff expected locus of X.(n) is on the

edge e, for each e € {e;,ez,e3}.

Theorem 3.4.28. Let X, be a random sample from U(T(Y)) and M € T())°. For N €
{Npg, Nost, E[AT1(Xn, N, M))] - A(#Zs(N, M)) as n — oo.

Proof: Recall that for N € {Np, Nig}, T1(Xn, N, M) = ﬂ?lel(Xej (n), N, M). More-
over, I'y (X, N,M) = Zs(N, M) iff X.;(n) € e; for j € {1,2,3}. In Lemma 3.4.27, we have
shown that expected locus of X.(n) converges to edge e as n — co. Hence the expected locus
of (T'y (X, N, M))

N Ra(e) converges to the O(#Zs(N, M)) N Ru(e;) for each j € {1,2,3}. Hence

E[A(T1 (X, N, M)] —» A(%#s(N,M)) asn — co. R

Remark 3.4.29. In particular,
i- B [A(Ty (X, Npp, Mc))] = 1/4 as n — oo, since Zs (N3, Mc) = T(My, M>, Ms)
ii- E [A(Ty (X, Npp, M))] > 0asn - ocoif M € I7, since s (Npy, M) =0for M € T".

iii- Furthermore, E [A (F1 (;vn, NE2, MC))] — 0 since & (Nj;/;, MC) = {Mc},
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iv- forany M € T(Y)°, E [A(T'1 (Xn, Nig, M)))] = 0 asn — oo, since Zs (NLg, M) = {M}.
v- We also have E [A (T, (X, Nbg, Mc))] = 0 for r € [1,3/2] as n — oc.

vi- Furthermore, by careful geometric calculations, we get E [A (T'y (X, Nbg, Mc))] = (1 —
3/(2r))? /3 for r € (3/2,2],

vii- E [A(Ty (Xn, Nbg, Mc))] = V3/4(1 — 3/r?) for r € (2,00], as n — oo.
We also derive the rate of convergence of E [A(T'1 (X, Npg, Mc))] for r = 3/2.

Theorem 3.4.30. Let X,, be a random sample from U(T(Y)). For r = 3/2, the expected area

of the the T'1-region, E [A (T1 (Xn, Nbg, Mc))], converges to zero, at rate O (n™2).

Proof: See Appendix A.1.1 for the proof. B

Remark 3.4.31. We can also define the regions associated with v(X,,, N) = k for k < n. Let B*
be the Cartesian product of k copies of the set B. For example, the I'y-region for a proximity

map N(-) and set B C Q is
T2(B,N) = {(z,y9) € [2\T1(B,N)]*: BC Ny(z)UNy(y)}.
In general, I'-region for proximity map Ny(-) and set BC Q for k =1,...,nis

Tw(B,N) = {(21,22,...,74) € Q¥ : B C UleNy(a:j) and all m-permutations (u,us, ..., Um)

of (z1, s, ...,2k) satisfy (uy,us, ..., un) &€ Tm(B,N) for each m € {1,2,...,k —1}}.

Note that I'y-regions are defined for £ < n and a I'y-region might be empty. Moreover, T'j-
regions are not in Q but in Q*. Furthermore, P(y(X,,N) = k) = 1 iff P(v(X,,N) < k) =0

and X} N Ty (X,, N) # 0, where XF = {(u1,ua,...,up) 1 uj € Xn, j €{1,...,k}}. O

3.5 k-Values for the Proximity Maps in T'())

Recall that the domination number, v(X,,, N) is the cardinality of a minimum dominating set of
the PCD based on N. So by definition, v(X,, N) < n. We will seek an a.s. least upper bound

for v(X,, N) which suggests the following concept.

75



s
K=5
2m/3
B k=4
— K=25)
/3
k=4 k=4
K= K=25) K=25
0,0 /3 2773 P
? «

Figure 3.5.1: A vertex with inner angle equal to /3 (left), the domain of o and g for which
k(Nas) =4 and k(Nas) =5 (right).

Definition 3.5.1. Let X,, be a random sample from F' on T()) and let v(X,,N) be the
domination number for the PCD based on a proximity map N. The general a.s. least upper
bound for v(X,,, N) that works for all n > 1 and is independent of n is called the x-value; i.e.,
K(N) := min{k : y(X,,N) <k as. for all n > 1}.

In R with Y = {0,1}, for X, a random sample from U(0,1), v(X,, Ns) < 2 with equality
holding with positive probability. Hence x(Ng) = 2. Next, we investigate the s-values for

{Nas,Npg, N&g}in R2.

Theorem 3.5.2. Let X, be a random sample from U(T(Y)). For arc-slice prozimity maps with

CC-vertex regions, K(Nag) < 5.

Proof: The value of k(Nas) depends on the inner angles of the triangle.We need one point
to cover X, N Roc(y) if the inner angle at y is less than or equal to 7/3. See Figure 3.5.1
(left). For an equilateral triangle, k(Nag) = 3, with one angle between 7/3 and 27/3 degrees,
two less than 7/3, k(Nas) = 4, with two angles between 7/3 and 27/3 degrees, one less than
7/3, k(Nas) = 5, and, with one angle larger than 27/3 degrees, two less than 7/3, again
K(Nas)=5. 1

Notice that the K(Nas) depends on the geometry of T()), which is caused by the lack of
geometry invariance for Nag (when, e.g., T'(Y) is transformed to T).

Since the k-value depends on the inner angle, we can find its distribution for an arbitrary

triangle from Dp, the Delaunay Poisson triangles. See Section 2.1.1. Recall that the joint
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density of any two arbitrary angles of a triangle from Dp is f(a, ) = % sin asin B sin(a + 3),
for a, 8 > 0 and o+ B < 7 (see [30]). Using the above density, we can find the distribution of
KZ(NAS) for Dp.

P(k(Nag) =3) = Plaa=p=m/3) =0. A careful investigation shows that

P(k(Nag) =4) =Pla<7/3,8<7/3,a+ > n/3)
+P(r/3<a<2n/3,0<B<7/3,2r/3<a+f <)

+P(r/3<p<2n/3,0<a<7/3,2n/3 < a+p <)
See Figure 3.5.1 (right) for the domain of @ and S for which k(Nas) =4 and k(Nas) = 5. So

w/3 pmw/3
Pla<n/3,8<n/3a+8>r/3) :/ // F(a, B)dBda = 1/6.
0 w/3—a

and
27 /3 pm/3
P(r/3<a<2n/3,0<B<7/3,21/3<a+B<m)= / / f(a, B)dBda = 1/6,
/3 27 /3—a

and by symmetry third piece is also 1/6. Hence P(k(Nas) = 4) = 1/2, which implies
P(k(Nas) = 5) =1/2, also. Therefore,

4 wp.1/2
K,(NAs) =
5 w.p. 1/2.
Theorem 3.5.3. Let X,, be a random sample from U(T(Y)), and M € R\ Y. For Ny, (-, M),

K (Npg) = 3.

Proof: For N} (-, M), pick the point closest to edge e; in vertex region Ras(y;); that is,
pick U; € argminy ¢ x, g,y (y,) 4(X; €5) = argmaxx ¢ x, nRry,(y;) AE(y, X),y;) in the vertex region
for which X, N Ry (y;) # 0 for j € {1,2,3} (note that as n — oo, U; is unique a.s. for each j,
since X is from U(T'(Y))). Then X, N Rp(y;) C Npg(Uj, M). Hence X,, C Ui Npy(Uj, M).
So Y(Xn, Np g, Mc) < 3 with equality holding with positive probability. Thus & (Npg) =3. B

There is no least upper bound for y(X,, N5g, M) that works for all n > 0; i.e., K(Nig) is

not defined, as shown below.
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Theorem 3.5.4. Let X, be random sample from U(T(Y)). Then v(Xn, Nig, M) = n holds

with positive probability for all T € [0,1].

Proof: For 7 = 0, the result follows trivially. For 7 = 1, we will prove the theorem by
showing that there is a union of n regions of positive area in T'(Y), so that u € NZ3' (v, M)
iff u = v, for any u,v € X,. Let M = (my,mz) € T(Y)°. In Rp(es) locate n triangles
evenly on ez with base length 1/n and similar to T()) (with similarity ratio 1/n). See also
Figure 3.5.2. Then locate n points in each triangle at z; = (x;,y;) such that (x;,y;) is the same
type of center of T; as M is of T'()). Then using the similarity ratio of NZ35*(z;, M) to T(Y),
namely, y;/ms = 1/n, we get y; = ma/n for all i = 1,...,n. Moreover, z; — z,—1 = 1/n for
i=2,...,n with 2y = my/n and z, = 1 — (1 — mq)/n. Then (z;,4;) € NZ3'((z;,y;), M)
iff i = j. Furthermore, for sufficiently small € > 0, the same holds for the £ neighborhood of
each z; = (z;,y;). That is, NI ' (z, M) N B(zj,e) = 0 for all z € B(z;,¢) for any distinct pair
i,j € [n], and probability of X, being composed of n points one from each B(z;,¢) is positive.
Then v(Xp, Nig, M) = n holds with positive probability. The result for 7 € (0,1) follows

similarly. W

3.5.1 Characterization of Proximity Maps Using k-Values

For the proximity maps we have considered, k(Nas) < 5, kK (Npg) = 3 and & (NZg) is not
defined.

The common property for the proximity maps for which (V) is defined is that probability
of having an X, for which N(X)N X, = {X} for all X € X, is zero. Note also that N4s and
Npp are defined with M-vertex regions, while Nf g is defined with M-edge regions.

Below we state a condition for k(N (-, M)) = 3 for N(-, M) defined with M-vertex regions.

Theorem 3.5.5. Suppose N(-, M) is defined with M -vertex regions with M € R? \' Y and
N(z,M) gets larger as d((y,z),y) increases for x € Ru(y) in the sense that N(z,M) C
N(z,M) for all x,z € Run(y) when d({(y,z),y) < d(£(y,z),y). Furthermore, N(X,M) C
N(Z,M) for all X,7Z € Rp(y) occurs with positive probability when d(€(y, X),y) < d(£(y, Z),y)

occurs with positive probability for X, Z from F. Then k(N) = 3.

Proof: When X,,NRa(y;) # 0, pick one of the points U;(n) € argmaxycx, nry,(y;) 445, X),¥j)s
then X, NRar(y;) C N(Uj(n)) for each j € {1,2,3}. So v(X,, N, M) < 3, and the condition for
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Figure 3.5.2: The figure for k (N.g) = n.

strict inclusion for strict inequality implies that v(X,,, N, M) = 3 holds with positive probability.
Hence k(N)=3. 1

Notice that Npp satisfies the conditions of Theorem 3.5.5.

Theorem 3.5.6. Suppose N (-, M) is defined with M -edge regions and N (x, M) gets larger as
d(x,e) increases for x € Ryr(e) in the sense that N(x, M) C N(y, M) for all x,y € Rpr(e) when
d(z,e) < d(y,e). Suppose also that for X,Y from F, N(X,M) C N(Y, M) for all X,Y € Ru(e)
occurs with positive probability when d(X,e) < d(Y,e) occurs with positive probability. Then
K(N) = 3.

Proof: When X;,NR(e;) # 0, pick one of the points Ue, (n) € argmaxy ¢ x, g, (e,) UX, €;)-
Then X, N Ry (e;) C N(Ue(n)) for each j € {1,2,3}. So y(X,, N, M) < 3, and the condition for
strict inclusion for strict inequality implies that v(X,,, N, M) = 3 holds with positive probability.
Hence k(N)=3. 1
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CHAPTER 4

Distribution of the Domination Number of Proximity
Catch Digraphs in Delaunay Tessellations

In this chapter, first, we give the formal definitions of the domination number and some re-
lated concepts and provide some background on the domination number of general digraphs.

Then we investigate the distribution of the domination number of the PCDs based on N €

{NASaNJTDEaNE’S}'

4.1 Minimum Dominating Sets and Domination Number of Digraphs

Definition 4.1.1. In a digraph D = (V, A) a vertex v € V dominates itself and all vertices of
the form {u : vu € A}. A dominating set Sp for the digraph D is a subset of V such that each
vertex v € V is dominated by a vertex in Sp. A minimum dominating set S}, is a dominating
set of minimum cardinality and the domination number (D) is defined as y(D) := |S}| (see
[26]) where | - | denotes the set cardinality functional. See Chartrand and Lesniak [4] and West
[44] for more on graphs and digraphs. If a minimum dominating set is of size one, we call it a

dominating point.

Note that since V is always a dominating set, 1 < (D) < n.

In a digraph D(V, A), the open neighborhood of a vertex v € V, denoted N(v), is the set of
vertices u € V such that vu € A. The closed neighborhood is defined by N[v] = N(v) U {v}. In
general finding a minimum dominating set is an NP-Hard optimization problem (see [20] and
[5]). However an approximately minimum dominating set, Sp, can be obtained in O(|V|?) by
a well-known greedy algorithm (see [5] and [31]). The greedy algorithm begins by selecting the
vertex that has the most neighbors: S}, = {v'}, where v' € argmax, ¢y, |[N[v]|. Cardinality ties
are broken arbitrarily whenever they occur. Then for iteration ¢ > 2 the algorithm picks v €

argmax, ), gt=1 (N[v] \ U, g g:-1 Nu]| and set St = SE MU {v'} until V = Uyest-1N[v]. This
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algorithm is guaranteed to terminate after at most |V| iterations. If the algorithm terminates
after t* iterations, the set S D= S}g is a dominating set. The approximation to the domination
number (D) of the digraph D is 7(D) = ‘§D|; and 5(D) > v(D).

For X, = {Xi,---,X,} arandom sample from F, the domination number of the associated
data-random proximity catch digraph based on the proximity map N(-), denoted (X, N), is
the minimum number of points that dominate all points in X,. Recall that v(X,, N) = 1 iff
X NT1 (X, N) # 0.

The random variable v(X,,, N) depends on X,, and N(-) explicitly, and on F' implicitly. Fur-
thermore, in general, the expectation E [y(X,, N)], depends on n, F', and N; 0 < E [y(X,, N)] <

n. In general, the variance of -, satisfies, 1 < Var [y(X,, N)] < n?/4.

4.2 The Asymptotic Distribution of Domination Number of the CCCD

for Uniform Data on Compact Intervals in R

Recall that for Y = {0,1} C R, k(Ng) = 2 (see Section 3.5) where Ng(z) = B(z,r(x)) with
r(z) = min(z,1 — z), so it suffices to find P(y(X,,Ngs) > 1) = P(y(X,,Ns) = 2) to get the
distribution of y(X,, Ns). Note that y(X,, Ng) > 1iff X,,NT1(X,, Ng) = 0 where T'; (X,,, Ng) =

For the proximity maps we have defined in R?, i.e., for N € {Nag, Np, Ng} (see Chapter
3), k(N) > 2, so finding only lim,_,cc P(y(Xpn, N) > 1) or lim,_,c0 P(y(Xy, N) = 2) does not
suffice to find the asymptotic distribution of y(X,,, N). In particular, if x(N) = 3, finding —
for example — both lim,_, P(y(X,, N) > 1) and lim,_, . P(y(X,,N) = 2) will yield the
asymptotic distribution of y(X,,, N). The latter probability will be found by a method similar
to the below alternative calculation — alternative to the one given in [35]— for v(X,, Ng) in R
where Ng(z) = B(z,r(x)).

Let X, be a random sample from F = 1(0,1), we will calculate lim,_,oc P(y(Xn, Ny) = 1)

as follows. Let

Xf/z(“) € argminy ¢ x, no,1/2 (1/2 — X) and X1+/2(”) € argminy ¢ x, /2,1 (X —1/2)

whenever they exist. Note that either one exists with probability one.

=

As n — oo, {Xl_/Q(n), X1+/2(n)} C X, both uniquely exist with probability 1. Then
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v(X,,Ng) = 1iff X,, C Ng (Xl_/z(n)) or X, C Ng (X;rﬂ( )) Let the events EE de defined as
X, C Ns (X1 /2) Then

P(y(Xn, Ns) =1) = P(E;) + P(E;) - P(E; N EY).

By symmetry P(E; ) = P(E}').

The asymptotically accurate pdf of X /2( n) (see Remark A.1.1) is
F@)=n(1-(1/2-2)""10<z<1/2) =n(z+1/2)" L0 <z <1/2),

then P(E,) = P (X, C Ns(X;;,(n))) = P (a C [0,2X7,(m)] \ [X;,(n),1/2]). For suffi-

ciently large n,

X

1/2
/ n(3z—1/2)" 'dx =
1/4

47",

_!
3

C»-'Jli—‘

Hence lim, o, P(E;) = lim, o, P(E}) =1/3.
Next, we find P(E; N E;}'). The asymptotically accurate joint pdf of X /2( n), X1+/2(n) is

fE(z, ) =n(n—-1) (1— (22— ;1:1))" I[(z1,22) € (0,1/2) x (1/2,1)].

Let € > 0 be sufficiently small (say, € < 1/6) that 1 > 1/2 — ¢ and 22 < 1/2 + £ implies that

[21,%2] C [229 — 1,2 21]. Then for sufficiently large n

P(E, NE}) ~ P (X, C[Ns(X],0)NNs(X,n)]) = P(Xa C 225 = 1,21 \ [21,22])
V2 12t fog —2my 41— (2 — 1)\
=~ / / ( ! 2 ( 2 1)) f:t (.’L‘l,mg)dl‘z dz’l
1/2—¢ 1—(z2 — 1)
/2 pl/2+e
= / / n(n—1) (3x1—3m2+1)"72dx2da:1,
1/2—¢
since P( 1/2( n) >1/2—¢, X1+/2( n) < 1/2+5) — 1 as n — oo. The integrand is critical at

21 = x3 = 1/2,since (321 —3z2+1) = 1 when 21 = 22 = 1/2. So we make a change of variables
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21 =1/2 — 21 and z3 = 1/2 + 22, then for sufficiently large n
PE; NEN ~ / / n(n—1)(1—-32 —32)" 2dzydz;.
o Jo

The new integral is critical when 2z; = 22 = 0, so we make the change of variables z; = w;/n,

then for sufficiently large n

P(E; NE;)

Q

ne ne -1 1 n—2
/ / n(niz) [1——(311)1 + 3w2) dws dwy,
0 0 n n

o0 o0
letting n - 00 =~ / / exp(—3w; — 3ws) dwy dwy = 1/9.
o Jo

Hence lim,, o, P(E,, N E}) =1/9. Then lim,_,o, P(y(Xn,Ng) =1) =2/3 —1/9 =5/9, which
agrees with the asymptotic result given in [35].
Below is a general result for the limiting distribution of v(X,,, N) for X, from a very broad

family of distributions and for general N(-).

Theorem 4.2.1. Let Zs(N) be the superset region for the proximity map N(-). Let X, be a

random sample from F with Pp(X € #s(N)) > 0, then lim,_,o, Pr(y(X,, N) =1) =1.

Proof: Suppose Pp(X € #s(N)) > 0. Recall that for any z € Zs(N), N(z) = Q, so
Xn, C N(z), hence if X, N Zs(N) # 0 then v(X,,N) = 1. Then P(X, N Zs(N) # 0) <
P(y(X,,N) =1). But

P(X,NZs(N)#0) =1-P(X,NRs(N)=0) =1—-[1-Pp(X € Zs(N))]" = Lasn — oo,

since Pp (X € #s(N)) > 0. Hence lim, oo P(y(X,,N) =1)=1. B
Remark 4.2.2. In particular, for F = U(T'())), the inequality Pp(X € Zs(N)) > 0 holds iff

A(Zs(N)) > 0 and P(X,, N Zs(N) # 0) — 1 at rate O((l - %)6 asm — oo. O

For Y ={0,1} C R, Zs(Ns) = {1/2}, so Theorem 4.2.1 does not apply for Ng in R.

4.3 The Asymptotic Distribution of (X, Nag, M)

Recall that any given triangle T'())) can be mapped to the basic triangle T, (see Section 2.2).

For X,, a random sample from U (T ())), the transformed data set is also a random sample from
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U(Ty). So without loss of generality, we can assume T()) = T,. The domination number of the
PCD based on Nag(-, M) is denoted as y(X,, Nag, M) to make the dependence on M explicit.

Recall also that kK(INag) < 5, then 1 < E [y(Xy,, Nas, Mcc)] <5 and 0 < Var [y(X,, Nas,
Mco)] < 25/4.

For Nag (z) = B(z,r(z)) NT(Y), where r(z) = minycy d(z,y), we are implicitly using the
CC-vertex regions. See Section 3.2.1. We can also use other M-vertex regions. The superset
region for Nag (-, Mcc) is {Mcc}, so Theorem 4.2.1 does not apply to v(Xn, Nas, Mcc).

If T(Y) is an acute triangle, then Moo € T(Y)°. For a given X, I'1 (X, Nas, Mcc) C
H(X,,Y) = Nyeyl'1(Xy(n), Nas), where X, (n) € argminy., d(X,y); ie., the vertex ex-
tremum that is closest to vertex y which is unique a.s. if X}, is a random sample from a

continuous distribution F on T'(}).

Proposition 4.3.1. Suppose X,, is a random sample from a continuous distribution F on T (Y).

If T(Y) is an obtuse triangle, then P(y(Xn, Nas, Mcc) > 1) = 1 as n — oo.

Proof: In an obtuse triangle, Mcc ¢ T(Y). Hence H(X,,Y) = (§ with probability 1 as
n — oo which implies that T';(X,, Nas, Mcc) = 0 with probability 1 as n — oco. Therefore
P(X, NT1 (X, Nag, Moo) = 0) = P(y(Xp, Nag, Moc) > 1) = 1 asn — oco. B

The above proposition indicates that the distribution of v(X,,, Nas, Mcc) depends on the
inner angles of T'(Y) or (c1,c¢2). Observe that, the distribution of v(X,, Nas, Mcc) is not
geometry invariant, in particular, under ¢, (), which transforms T} to T.

Now, suppose T(Y) is an acute triangle and X, is a random sample from a continuous
distribution F on T(Y), then Mgc € T())° and T'1(X,, Nas, Mcc) is nonempty and has
positive area with probability 1 for all finite n. For sufficiently large n, H(X,,)) is a (convex)
hexagon bounded by the perpendicular lines at the midpoints of the line segments joining X, (n)
and yy, for all k£ # j with probability 1. See also Figure 4.3.1.

Given X, (n) = z,; = (%;,y;), for j € {1,2,3}, let Ej-- (u, z) be the line perpendicular to the
line segment joining u and y; at the midpoint of the line segment for j € {1,2,3}. See Figure

4.3.1. Below are the explicit forms of these lines.

84



0.7 y3
o.6 N £ (z\e)
0.5 - o =
0.4 Zé (2yy, )
] 43 L&y, @)
] H
0.3
i 4
N H. ¢ (zysyz)
1 Nzyz» 2)
0.2 lé_ zyza-”:)
) cd
] H
0.1 y1<> n my2<> ¢ y2> @)
] £ (ityl,z)
B Z%(znvz)
y1 y2
0.2 0.4 0.6 0.8 1

Figure 4.3.1: A realization of H(X},,)) based on a given set of vertex extrema X,,(n) = =,,

from X,,.
2 2
yi+ 21 2z —z1)+22 -1 y3 — 23 (22 — x3)
ty = £ =
2 ($y1,$) 22}1 ’ 1 (-’L'y3,.’L') 2y3
E—y2+x2(22—132) +c1(c1 —27) Y2 —zo (22 — 29)
lf (zy,,x) = 2—22 , U (zy,, ) = 22 ,
3 ( y2 ) 2(02—]]2) 1 ( y2 ) 2y2
2 —y2+xo(2x—13) +c1(c; —27) Y2232z —x3)— (22— 1)
O (z,,,0) = 292 (o) =B ,
3(y1 ) 2(02—3/2) 2(}'3 ) 2y3
y1 —z1 (22 — 11) Y — 1 (20 —x2) +22—1
0 = ¢ = ,
1 ($Y17$) 2y1 2 (m)’wm) 2y2
0 (2, 0) = A—-—yi+x3(2z—123)+c1 (a1 —27)
3 e 2 (c2 —y3) '
The area of a planar (convex or non-convex) polygon with vertices (a1,b1), (az,b2),..., (an,byn)

85




arranged in counterclockwise order is

a; as as das anp a1
+ +...+ . (4.3.1)
b1 b2 bg b3 bn bl

D | =

If the vertices are arranged in a clockwise order, the above expression is negative. For example,

the area of a triangle with coordinates (ai,b1), (az,b2), (as,bs) in counterclockwise order is

a; as az Qs a3 ai
+ + =
b1 b2 b2 b3 b3 bl

(a1 ba —az by + a2 bs —az be + az by — aq bs).

N | =

1
2

Observe that éj- (%e,,x) and Kj-(a:el ,x) for k,l # j are the only (active) lines —there are six
such lines— that determine the boundary of H(X,,Y). Then H(X,,)) is the hexagon with

vertices H; for j € {1,...,6} (see Figure 4.3.1), where

Hl = e;_ ($y17$) N Eé_ ('Z'ysax)a H2 = E;_ (wyuw) N eé_ (xyux)a H3 = Eé_ (xyux) ﬂ@é (myzam)a

H, = ﬂé‘ (xyz,x) ﬂéf‘ (xYZax)a H; = Ef_ (-Tyz:w) ﬂff‘ (my37m)7 Hg = Ef‘ (a:y3,a:) ﬂfé‘ (:I:y3,x).

Below are the explicit forms of the coordinates of H; for j =1,...,6.

(y3 y1+w1 -y (Y3 +23) + 11— ys (x%+y%)(x3—1)+(x§+y§)(1—x1)+w1—w3>

1—) =41 (23 — 1)) ’ 2(y1 (z3 —1) —yz (21 — 1))
_ $1+Z/1 +yp—a-—ypn(@+ad) A-ca)@+y+a)-(1-cd-d)n+c
(2@ —D+ym(1-ec1)) 2(c2 (1 —1) +y1 (1 — 1)) ’
(02—112 (@ +)+ -+ W —cd—B)n+(E@+3)yp—yie

)

2((c2 —y2) z1 4+ (y1 —ca) w2+ c1 (y2 — 1))
)
)

(22 —c1) (27 + 97) + (a1 — 1) (23 + 93) + (] + &) (21 — 22)
2((c2—y2) 1+ (Y1 —ca) w2 +c1 (Y2 — y1)) ’

=2 tys) (G + )y o (@ +u3) — (cf + ) o
2(.’1}262 —ygcl) ’ 2(:1/201 —CQ.CL’Q) ’

i, = (y (3 +93) w2 (a3 +93) s (o3 +93) —2» (a3 + y))
- ?

2(z2y3 — 3 Y2) ’ 2(x3y2 — 22 y3))
Hy = 1 y3 +xz3 (3 — 1) .
2 2y3

The area of the hexagon H(X,,Y), which is a quite lengthy expression, can be obtained by
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using Equation 4.3.1.
Since T'1(X,, Nas, Mcc) C H(X,,Y), the intersection X, N H(X,,)Y) = 0 implies that
X, NT1(Xn, Nas, Mcc) = 0. So

P(Xn mH(Xn:y) = Q) S P(Xn n Fl(Xn:NASaMCC) = @) = P(’Y(XnaNA-S’aMCC) > 1)

Hence P(X, N H(X,,Y) = 0) serves as a lower bound for P(y(X,, Nas, Mcc) > 1).

For sufficiently large n and X, a random sample from a continuous distribution F' on T'()),
H(X,,Y) C T(Y)° with probability 1 in an acute triangle. Let ¢ > 0 sufficiently small so
that d(z,,y) < € for each y € Y will imply the vertex extrema are distinct and H(X,,)) C
T(Y)°. Then the vertex extrema are distinct and H(X,,Y) C T())° with probability 1, since
d(Xy,y) < € for each y € Y occurs with probability 1 as n — oco. Denote the associated event

d(Xy(n),y) <€ as E; (Y). See Figure 4.3.2 (left).
3= (c1,¢2) 3= (c1,¢2)

Tyy Lys

‘Moo ‘Mcc

Ty, Ty, Ty, Ty

yi[=10,U] y2 = (1,0] yi[= 10, U] y2 = (1,0]

Figure 4.3.2: A figure for the description of the event Ef ()) (left) and the pdf of X, (n) (right)
given three distinct vertex extrema X,,(n) = =, for j € {1,2,3}.

Since H(X,,)) is determined by X,(n), to find the expected area of H(X,,)) we need the
exact joint pdf of the (closest) vertex extrema. But to find the limit of the expected area of
H(X,,Y) as n — oo we only need the asymptotically accurate joint pdf of the vertex extrema.
(see Remark A.1.1).

Now suppose F' =U(T'(Y)). Let the inner angles of the triangle T'()) be

y1 = arctan(cz/c1), Y2 = arctan(c2/(1 —c1)),

¥s = — (Y1 +¥2) = m — (arctan(cz /c1 + arctan(cz/(1 — ¢1))) = arctan(c1 /c2 + arctan((1 — ¢1)/c2)).
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Given Xy, (n) = z,, = (zj,y;) for j € {1,2,3},let Sy () be the region T(V)\ [Uyey B(y, d(zy,y))],
an example of which is the unshaded region in Figure 4.3.2 (right) where = (1,91, 72,92, %3,Y3)-

So the area of Sy (E) is

A(Su(Q) = AT ) - 1/2((37% +i)v 4 (22 = 1) +92) Vo + (23 — 1) + (43 — 2)”) ?3),
where A(T())) = c2/2. So the asymptotically accurate joint pdf of the vertex extrema of an

X, which is a random sample from U(T'(})) is

v @) _nm-D =2 [ A 1™
RO ="y [Awon)

where the domain Dg = {z,, = (z;,y;) : d(zy,,y;) <&, for j € {1,2,3}}, where ¢ is sufficiently
small that z,; are distinct and H(&X,,)) C T())°.

We switch to the polar coordinates as

1 =11 c0s(61), y1 = risin(61), for 0 < 6, <y,
22 = 1+ rycos(fa), Y2 = 1o sin(hs), fory; +y3 <6y <, (4.3.2)
T3 = c1 —r3sin(f3), Y3 = ca — r3 cos(fs), fory1 <63 <y1 +79s.
Then
A(Sy) = %2 — % [arctan(@/cl)rlz + arctan(ca/(1 — ¢1))rs + r3 (arctan(ci1/c2) + arctan((1 — Cl)/CQ)]

and Dg = {(F,H-) €RS: r; <efor j€{1,2,3}}, where 7= (r1,r2,73) and g = (61,62,03) and
the ranges of §; are given in Equation 4.3.2.
In the standard equilateral triangle T, and A(Sy) = ? —Z(r} 4713 +73). A(H(X,,))) is

a rather lengthy expression in polar coordinates, so the general version (for T}) is not provided.
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But in T,

173 1 . 1
A(H(X,,Y)) = (0050—0 + cos(f3 +0;) — — sin(03 — 0;) + — sin(f3; + 6 )
(H( ) 6 (63 —61) (03 +61) 73 (03 —61) 7 (05 + 61)
- % (% cos(8; — 6s) + % cos(f; + 63) — sin(6y — 92)) _ 27 (cos(03 —63) +cos(6s5 + 02)
1 1 . .
~ 5 sin6s — 0) & — sin(0s + 02)) +0(r2) + 0 (r2) + 0 (r2).
Furthermore, the Jacobian J (F, 5) is
cos(61) —r1 sin(61) 0 0 0 0
sin(61) 1 cos(61) 0 0 0 0
5 0 0 % — in(6 0 0
S (F, 9) _ cos(62) 72 sin(2) S
0 0 sin(62) 72 cos(6-2) 0 0
0 0 0 0 —cos(f3) 73 sin(f3)
0 0 0 0 —sin(f3) —rs cos(f3)

Hence |J (F,é)‘ =7r17T9T3.

Remark 4.3.2. We can give a proof —more explicit than Theorem 3.4.26— for lim,,_, o, E [A(T';(

Xn,Nas, Mcc))] = 0, using the explicit form of the area of the hexagon A(H (X,,))).

Remark 4.3.3. Note that transforming the basic triangle T}, to the standard equilateral triangle

T, with u(z,y) = = + L }Cl y and v(z,y) = \/_ >y (see Section 2.2) does preserve the uniformity
of the data but not the circular structure of the balls unless T}, = T,, but rather a ball is mapped

to an ellipse. For example, the ball
B(yi,r) = {(w y) ER: 2® +y? STQ}

is mapped to the ellipse

{(u,v)EIR2: ( 201_2)1“1—}-( a Cl_;)+c2)+1)1)2§r2}.

2 2
Moreover, the circumcenter of T, Moo = (l cper (1= cl)) is mapped to (w,

27 2 ca 462
V3 (c3—c1(l—c1))
4c2

). Hence the distribution of v(X,, Nas, M¢cc) is not geometry invariant. O
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Given X, (n) = zy; = (z;,y;) for j € {1,2,3},

n—3
P(X,NH(X,,Y) =0)= (A(Su) —AzzléiI)(Xn,y))>

SO

P(X, NH(Xn,Y) =0) = / (A(SU) _A’?éi(x"’y))> A6
2)

_ [n(—=1)(n—2) [ASv) — AHX, I)\"° >
- / ATY))? ( AT Q) ) dc,

where df = dx1 dy; dxs dys dxs dys.

Let

where T = (21,22, 23) and ¥ = (y1,¥2,¥3)-

If the vertex extrema are in fact at the vertices, then G(Z,%) = 1, hence the integrand
is critical when x, = vy, for each y € )Y; i.e., when (z1,y1) = (0,0), (z2,92) = (1,0), and
(z3,9y3) = (c1,¢2). Switching to polar coordinates as in Equation 4.3.2, G(Z, ) becomes G (F, H_)

and

— — An—3 -
n{n—1)n 2)G(F,0) rrorsdidd.

P(XnﬂH(Xn,y):@):/W

The new integrand is critical at (r1,r2,73) = (0,0,0), since G(7 = (0,0,0),5) = 1. Letting

rj =w;/v/n, for j € {1,2,3}, and & = (w1, ws,ws3) for sufficiently large n we get

/ / / nO D02 w6 0,6)" b,
n—3
/ / / (1— —g w é)) w1 we w3 dwy dws dws

where dW = dw;dwsdws, g(vﬁ,é) = K; (0_‘) w% + Kz(é) w% + Ko (0-) wy we + Kis (0-‘) w1 w3 +
K23 (0-) w9 11)3), with K1 (5), K2 (5), K12 (5), K13 (0-), and K23 (5) are functions of Only 5 For

P(Xan(Xnay) :Q))

Q

Q

example, in T,

5) K, 67) = 27r\/_/9 Ki» 0-) V3 sin(fy — 01) + cos(61 + 62) + cos(f2) cos(61),

Ki13(0) = —4 cos(63) (sin(61) + V3 c0s(61)) /9, Kaz(6) = 4 cos(83) (V'3 cos(82) — sin(62)) /9
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So, letting n — oo

P(XnﬂH(Xn,y):@)%/ / / w1 W2 W3 exp(—[Kl(é)wf+K2(§) ’LU%
o Jo Jo
+ K12 (9-) w1 w2 + K3 (9-) w1 w3 + Koa3 (67) w2 ws]) di,

which is not analytically integrable but yields a bounded constant K(ci,ca).
For Ty # T., P(X, N [[1(Xn, Nas, Mcc) N Ree (y;)] # 0) is maximized when j = 3, since

in T

A(T1(Xn, Nas, Mcc) N Roe (yi)) <57 A(T1(Xn, Nas, Mcc) N Ree (ys)) for k= 1,2.
Furthermore,

A(Nas (X, Mcc), X € Rec (yi)) <°T A(Nas (X, Mcc), X € Rec (ys)) for k= 1,2.

IfT, = T., A(Fl(Xn,NAs,MC(j) N Reeo (y]-)) and A(NAS (X, MC(}),X € Roe (yj)) are all
identically distributed for j € {1,2,3}.
Following are some a.s. upper bounds for the asymptotic values of v(X,,, Nag, Mcc) for

Nys (-, M).

Proposition 4.3.4. Suppose X,, is a random sample from a continuous distribution F on T (Y).

Then P(y(Xp,Nas,Mcc) <3) = 1 as n — oo.

Proof: See Appendix Section A.2.1 for the proof. B

Below is an improved upper bound for acute triangles with F' = U(T'(Y)).

Theorem 4.3.5. Suppose X, is a random sample from U(T(Y)) and T(Y) is an acute triangle,
then P(y(Xn,Nas, Mcc) <2) = 1 as n — oo.

Proof: See Appendix Section A.2.2 for the proof. B
We conjecture the following on the asymptotic distribution of v(X,,, Nas, Mc¢) for uniform

data on triangles.

Congjecture 4.3.6. Suppose X, is a random sample from U(T'(Y)) and T() is an acute triangle.
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Then for Nags (-, Mcco),

1 w.p. 7(c1,¢2),
Y(Xp, Nas, Mcc) — as n — oo.

2 W.p. 1—71'(C1,02),

where 7 (c1,¢2) € (0,1).

Conjecture 4.3.7. Suppose X, is a random sample from U(T'())) and T(Y) is a right triangle.
Then for Nyg ( ,Mcc), P('V(XnaNAS; Mcc) < 2) —1asn — oo.

Congjecture 4.3.8. Suppose X, is a random sample from U (T(Y)) and T(Y) is an obtuse triangle.
Then for Nas ( ,Mcc), P(’Y(-XH,NAS, MCC) = 2) —1asn — oo.

We estimate the distribution of v(X,, Nas, Mcc) for various n empirically and present
empirical estimates of y(X,, Nas, Mcc) with n = 10, 20, 30, 50, 100 based on 1000 Monte
Carlo replicates. The estimates for T, are presented in Table 4.3.1 (left) (see Figure 4.3.3
(left) for the corresponding graph); for T, = ((0,0), (1,0), (1/2,1/2)) which is an isosceles right
triangle, are presented in Table 4.3.1 (right) (see Figure 4.3.3 (right) for the corresponding
graph); for T) = ((0, 0),(1,0),(1/2, 1/4)), are presented in Table 4.3.2 (see Figure 4.3.4 for the

corresponding graph).

K\n | 10 | 20 | 30 | 50 | 100 E\n | 10 | 20 | 30 | 50 | 100
1 697 | 704 | 697 | 705 | 712 1 593 | 583 | 590 | 597 | 618
2
3

2 284 | 284 | 300 | 293 | 288 384 | 413 | 403 | 400 | 382

3 19 | 12 3 0 23 4 7 3 0

2
Table 4.3.1: The number of v(X,,, Nas, Mcc) = k out of N = 1000 Monte Carlo replicates for
the equilateral triangle T, (left) for and the isosceles right triangle T}, = ((0,0),(1,0),(1/2,1/2))
(right).

Proposition 4.3.9. Suppose X,, is a random sample from a continuous distribution F on T (Y).

Then for M € T(Y) \ {Mcc}, P(v(Xn,Nas,M)=1) > 1 as n — oo.

Proof: For M € T(Y)\ {Mcc}, Zs(Nas, M) has positive area, hence the result follows by
Theorem 4.2.1. &

Remark 4.3.10. For Nag (- ,M) with M € {My, M¢c}, P(y(Xp,Nas,M)=1) > 1l asn -

in non-equilateral triangles.
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Figure 4.3.3: The empirical estimates of P(~y,, = k) where v, = v(X,,, Nas, Mc¢) versus various
n values for T, (left) and for T, = ((0,0),(1,0),(1/2,1/2)) (right).

E\n | 10 | 20 | 30 | 50 | 100 | 200
1 30 0 0 0 0 0
2 783 | 867 | 926 | 958 | 991 | 997
3 185 | 133 | 74 | 42 9 3
4 2 0 0 0 0 0

Table 4.3.2: The number of v(X,,, Nas, Mcc) = k out of N = 1000 Monte Carlo replicates for
the obtuse triangle T, = ((0,0), (1,0), (1/2,1/4)).

4.4 The Asymptotic Distribution of v (X,, Nj, M)

Recall that & (Njg) < 3, then
1<E [y(Xy,Npg,M)] <3 and 0 < Var [y (X,, Npg, M)] < 9/4.

Furthermore, there is a stochastic ordering for v (X, Nhg, M).

Theorem 4.4.1. Suppose X, is a random sample from a continuous distribution F on T(Y).

Then for r1 < T2, we have v (Xn, N2y, M) <57 5 (X,, Npiy, M).

Proof: Suppose 1 < ro. Then P (y(X,, Npg, M) =1) > P (y(X,, Np'g, M) = 1) since
[y (Xn, Npg) C Ty (X, NZg) for any realization of X,, and by a similar argument P (7 (X,,, Nz, M)
= 2) > P(y(Xn, Npp, M) = 2) s0 P (y(Xn, Npig, M) = 3) < P (y(Xn, N, M) = 3). Hence

the desired result follows. B
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Figure 4.3.4: The empirical estimates of P(~y, = k) where v, = v(X,, Nas, Mcc) versus various
n values for Ty = ((0,0),(1,0),(1/2,1/4)).

We present a “geometry invariance” result for N% (-, M) which will simplify our subsequent

analysis by allowing us to consider the special case of the equilateral triangle.

Theorem 4.4.2. Suppose X,, is a random sample from U(T(Y)). Then for any r € [1,00] the

distribution of v (X, Nbg, M) is independent of J and hence the geometry of T(Y).

Proof: A composition of translation, rotation, reflections, and scaling will take any given
triangle T, = T'(y1,y2,y3) to the basic triangle T}, = T'((0,0), (1,0), (¢1,¢2)) with 0 < ¢; < 1/2,
c2 > 0, and (1 —c1)%+c3 < 1, preserving uniformity. The transformation ¢, : R — R? given by
be(u,v) = (u + % v, % v) takes T} to the equilateral triangle T, = ((0,0), (1,0), (1/2,v3/2)).
Investigation of the Jacobian shows that ¢, also preserves uniformity. Furthermore, the compo-
sition of ¢, with the scaling and rigid body transformations, maps the boundary of the original
triangle, T, to the boundary of the equilateral triangle, T, the lines joining M to y; in T} to
the lines joining ¢ (M) to ¢(y;) in Te, and lines parallel to the edges of T, to lines parallel to
the edges of T,. Since the distribution of v (X, N5y, M) involves only probability content of
unions and intersections of regions bounded by precisely such lines and the probability content
of such regions is preserved since uniformity is preserved; the desired result follows. B

Note that geometry invariance of v (X, Ny, M) follows trivially since for r = oo,

¥ (Xn, N2, M) =1 ass. for all T()).
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Theorem 4.4.2 generalizes to multiple dimensions so that any simplex & in R¢ can be trans-
formed into a regular polytope (with egdes being equal in length and faces being equal in volume)
preserving uniformity. Delaunay triangulation becomes Delaunay tessellation in R?, provided
no more than d + 1 points being cospherical (lying on the boundary of the same sphere). In
particular, with d = 3, the general simplex is a tetrahedron (4 vertices, 4 triangular faces and 6
edges), which can be mapped into a regular tetrahedron (4 faces are equilateral triangles) with
vertices (0,0,0) (1,0,0) (1/2,v/3/2,0), (1/2,v3/6,16/3).

Remark 4.4.3. The orthogonal projections from M € T(Y)° to the edges e; are not mapped
to the orthogonal projections from ¢, (M) to ¢.(e;), since orthogonal projections depend on
the inner angles (or equivalently on (c1,c¢z)). Hence the distribution of (X, Npg, M) with
vertex regions obtained by orthogonal projections of M to the edges, e.g., the distribution of

Y(Xn, Np g, Mcc), is not geometry invariant. O

Based on Theorem 4.4.2 we may assume that T'()) is a standard equilateral triangle with

Y =1{(0,0),(1,0), (1/2,v/3/2) } for Np(-, M) with M-vertex regions.

Theorem 4.4.4. Suppose Xy, is a random sample from a continuous distribution F on T(Y). If
M ¢ I7 (see Figure 3.3.4 and Equation 3.3.1 for T ), then lim,_,o P (v (Xp, Npp, M) =1) =
1 for all M € R2\ Y.

Proof: M ¢ 7 implies that #Zs (Npy, M) has positive area. Hence the result follows by

Theorem 4.2.1. R

Corollary 4.4.5. Suppose X, is a random sample from a continuous distribution F on T(}).

Then for r > 3/2, lim, 00 P (y (Xn, Nhp, M) =1) =1 for all M € R*\ ).

Proof: For r > 3/2, 7" =0,s0 M ¢ 7. Hence the result follows by Theorem 4.4.4. B

We estimate the distribution of v (X,, Npp, M) with » = 2 and M = M¢ for various
n empirically. In Table 4.4.1, we present the empirical estimates of v (X,, Npg, M) with
n = 10, 20, 30, 50, 100 based on 1000 Monte Carlo replicates in T,. See Figure 4.4.1 for the
corresponding graph.

In particular, for N2 (-, M), with C M-vertex regions defined by median lines, the super-
set region is #s (Nig, Mc) = T(My, Ms, Ms) and P(X, N %Zs (Npy, Mc) # 0) = P(X, N
T(My, My, M3) # 0) — 1 at rate O((3/4)"). The same holds for N3 (-, Mcc) in acute trian-

gles.
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n | 10 20 30 50 100
961 | 1000 | 1000 | 1000 | 1000
34 0 0 0 0

w| o~/

Table 4.4.1: The number of y (X, Npg, M) = k out of N = 1000 Monte Carlo replicates with
r=2and M = Mc'.

1.0

k)

0.8

AN
1o

0.6

0.4

empirical value of P(y,

0.2
I

0.0

20 40 60 80 100

Figure 4.4.1: The empirical estimates of P (v, = k) where v, = v (X,, Npp, M) versus various
n values with r = 2 and M = Mc.

The asymptotic distribution of vy (X,,, Npg, M) for r < 3/2 depends on the relative position

of M with respect to J". See Figure 3.3.4 and Equation 3.3.1 for 7.

Remark 4.4.6. Let h; := d(y;,e;) (ie., the altitude of T'(Y) associated with vertex y,), for
j € {1,2,3}. Then for any triangle T(Y) with M-vertex regions, if d(M,e;) < (“=1) - h; for
some j € {1,2,3} then M ¢ 77, hence limy,_,oo P (v (Xn, Npp, M) =1) =1. O

For an example of Moo ¢ 77, see Figure 3.3.4 and for Moo € 7, consider the equilateral
triangle. In non-acute triangles, the above corollary holds for M = Mg, since in right and

obtuse triangles, Mcc ¢ T(Y)° which implies Moo ¢ T7.

Theorem 4.4.7. Suppose X, is a random sample from a continuous distribution F on T(Y).

If M e (T7)°, then P(y(Xy,Nbg, M) =3) > 1 as n — oo.

Proof: Note that (Z7)° # 0 iff r < 3/2. Suppose M € (J7)°. Then for any point u

in Ry (y;), Npg(u, M) C T(Y), because there is a tiny strip adjacent to edge e; not covered
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by Npg(u, M), for each j € {1,2,3}. Then, Npg(u, M) U Npg(v, M) C T(Y) for all (u,v) €

RM(yl) X RM(yz). Pick

sup (u,v)ERM(y1)xRM(yz)ngE(uv M) U NIT;E(Uv M) g T(y)

Then

T(V) \ [SUP (u,0)€ Ras (1) x Bar (y2) No i (4, M) U NE (v, M)]

has positive area. So

Xn n [T(y) \ [Sup (u,v)ERM()’l)XRM(yz)NITJE(u7M) ) NITJE(Ua M)]] 7é @

with probability 1 for sufficiently large n. (The supremum of a set functional A(x) over a range
B is defined as the set S := sup, g A(z) such that S is the smallest set satisfying A(z) C S for
all z € B.) Then at least three points—one for each vertex region— are required to dominate
X, Hence for sufficiently large n, v (X, Npg, M) > 3 with probability 1, but k¥ (Npg) = 3 by
Theorem 3.5.3. Then lim,, o, P (y (X, Npp, M) =3)=1forr < 3/2. R

As a corollary to this, in an acute triangle, if d(Mcc,e;) > (1) h; for all j € {1,2,3},
then Mcc € (Z7)°, which implies P(y(Xy, Npg, Mcc) =3) = 1 as n — oc.

We estimate the distribution of v (X, Npgp, M) with r = 5/4 and M = Mc for vari-
ous n empirically. In Table 4.4.2, we present the empirical estimates of v (X, Npp, M) with

n = 10, 20, 30, 50, 100 based on 1000 Monte Carlo replicates in T;,. See Figure 4.4.2 for the

corresponding graph.

E\n | 10 | 20 | 30 | 50 | 100
1 9 0 0 0 0
2 293 | 110 | 30 8 0
3 698 | 890 | 970 | 992 | 1000

Table 4.4.2: The number of v (X,,, Ny, M) = k out of N = 1000 Monte Carlo replicates with
r=5/4 and M = M.

Theorem 4.4.8. Suppose X,, is a random sample from U(T(Y)). If M € d(T"), then
Py (X, Npg, M) >1) =1 asn — oco.

Proof: See Appendix Section A.2.3 for the proof. B
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Figure 4.4.2: The empirical estimates of P (v, = k) where v, = v (X,, Npg, M) versus various
n values with r = 5/4 and M = Mc¢.

For M € (™), there are two separate cases:

(i) M € 9(T") \ {t1, t2, t3} where t; with j € {1,2,3} are the vertices of " whose
explicit forms are t; = ((T71)£1+cl), &2 (:71)), ty = (27T+CT1 (r=1) e (’;71)), and t3 =

(cl @2—r)+r—1 c2 (7'72)).

r ’ T

(11) M e {tl, ta, t3}.

Theorem 4.4.9. Suppose X,, is a random sample from U(T(Y)). If M € 0(T") \ {t1, t2, t3},
then P (v (Xp,Npg, M) =3) = 1 as n — 0.

Proof: See Appendix Section A.2.4 for the proof. B

We estimate the distribution of v (X, Npp, M) with r = 5/4 and M = (3/5,1/3/10) for
various n empirically. In Table 4.4.3 we present empirical estimates of v (X, Nbg, M) with
n = 10, 20, 30, 50, 100, 500, 1000 based on 1000 Monte Carlo replicates in T,. See Figure 4.4.3

for the corresponding graph.

Theorem 4.4.10. Suppose X,, is a random sample from U(T(Y)). If M € {ti, t2, t3}, then

P(y(Xn,Npp, M) =2) — p, as n = 0o where p, € (0,1).

Proof: See Appendix Section A.2.5 for the proof. B

For example,p,_ 5 ~ .4826 and p,—5/,4 ~ .6514.
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n| 10 | 20 | 30 | 50 | 100 | 500 | 1000
118 | 60 | 51 | 39 | 15 1 2
462 | 409 | 361 | 299 | 258 | 100 | 57
420 | 531 | 588 | 662 | 727 | 899 | 941

(‘.«::M»—l/

Table 4.4.3: The number of v (X, Npp, M) = k out of N = 1000 Monte Carlo replicates with
r=5/4 and M = (3/5,4/3/10).
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Figure 4.4.3: The empirical estimates of P (v, = k) where v, = v (X,, Nbg, M) versus various
n values with r = 5/4 and M = (3/5,/3/10).

So the asymptotic distribution of v (X, Npg, M) with r € [1,3/2) and M € {t1,t2,t3} is

2 wp pr,
Y (X, Npg, M) = as n — oo. (4.4.1)

3 wp ]-_pra

See Figure 4.4.4 for p, as a function of r € (1,1.5).

We estimate the distribution of  (X,,, Npp, M) with r = 5/4 and M = (7/10,+/3/10) for
various n empirically. In Table 4.4.4, we present the empirical estimates of vy (X, Npg, M) with
n = 10, 20, 30, 50, 100, 500, 1000 based on 1000 Monte Carlo replicates in T,. See Figure 4.4.5

for the corresponding graph.

Theorem 4.4.11. Suppose X, is a random sample from U(T(Y)). Then forr =3/2, asn —
P (y(Xn,Nig, Mc) > 1) = 1 at rate O (n71).

Proof: See Appendix Section A.2.6 for the proof. B
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Figure 4.4.4: Plotted is the probability p, = lim, oo P (7 (Xy, Nbg, M) = 2) as a function of r
for r € [1,3/2) and M € {tl,tz,t3}.

K\n | 10 | 20 | 30 | 50 | 100 | 500 | 1000
1 174 | 118 | 82 | 61 | 22 5 1
2 532 | 526 | 548 | 561 | 611 | 617 | 633
3 294 | 356 | 370 | 378 | 367 | 378 | 366

Table 4.4.4: The number of v (X,,, Npg, M) = k out of N = 1000 Monte Carlo replicates with
r=5/4 and M = (7/10,/3/10).

Theorem 4.4.12. Suppose X,, is a random sample from U(T(Y)). Then for r = 3/2,

¥ (X, Nog, Mc) has the following asymptotic distribution.

3/2 2 wp~ .7413,
Y (XnaNPE;MC) = asmn — 00. (4.4.2)

3 wp = .2487,

Proof: See Appendix Section A.2.7 for the proof. B

Then
Tim B [y (X, NJZ, Mo)| > p 22587 (4.4.3)
and
Var [ (¥, N, Mc)| = o® ~ .1017. (4.4.4)

Indeed, the finite sample distribution of + (Xn,Nl?;/g ,MC) hence the finite sample mean and
variance can be obtained by numerical methods.

We can also estimate the distribution of (XH,N;/L?,MC) for various n empirically. The
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Figure 4.4.5: The empirical estimates of P (v, = k) where v, = v (X,, Npp, M) versus various

n values with r = 5/4 and M = (7/10,/3/10).

empirical estimates for n = 10, 20,...,100, 200, 300, 500 based on 1000 Monte Carlo replicates

are given in Table 4.4.5. See Figure 4.4.6 for the corresponding graph.

E\n| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 8 | 90 | 100 | 200 | 300 | 500
1 1561 | 82 | 61 | 67 | 50 | 24 | 29 | 21 | 15 | 27 | 10 7 2
2 602 | 636 | 688 | 670 | 693 | 714 | 739 | 708 | 723 | 718 | 715 | 730 | 753
3 247 | 282 | 251 | 263 | 257 | 262 | 232 | 271 | 262 | 255 | 275 | 263 | 245

Table 4.4.5: The number of ~ (Xn, N133/E27 MC) = k out of N = 1000 Monte Carlo replicates.

4.5 Summary of the Asymptotic Distribution of v (X,

N7, M)

PE»

We can summarize the asymptotic distribution of v (X, Nbg, M) in a succinct form as follows:

Theorem 4.5.1. The domination number of the PCD based on N with X, a random sample

from U(T(Y)), with M -vertex regions has the following asymptotic distribution. As n — oo,

nondegenerate,

for M € {t1,t2,t3} and r € [1,3/2],

forr>3/2,

for M € T"\ {t1,t2,t3} and r € [1,3/2).
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Figure 4.4.6: The empirical values of P (v, = k) where v, = vy (Xy, Npg, M¢) for various n.

The proof is given in the previous section. The nondegenerate asymptotic distributions are
provided in Equation 4.4.1 for r € [1,3/2) with M € {t1,t2,t3} and Equation 4.4.2 for r = 3/2
with M = M.

Let v(Xy, Npg, d) be the domination number of the PCD based on the extension of NL (-, M¢)
to R%. Then it is easy to see that y(X,, N%y,3) is nondegenerate as n — oo for r = 4/3. In
R?, it can be seen that y(X,, N5y, d) is nondegenerate only for r = (d + 1)/d in the limit.
Furthermore, for large d, asymptotic distribution of v(X,,, Nf g, d) is nondegenerate at values of
r closer to 1. Moreover, it can be shown that lim,,_, P(2 < (X, Nl’;;(dﬂ)/d, d) <d+ 1) =1,
and we conjecture the following.

Conjecture 4.5.2. Suppose X, is random sample from the uniform distribution on a simplex in
R?. Then the domination number v (X, N5z, M) in the simplex satisfies
lim P (d < (X, NSV gy < g 4 1) -1

For instance, with d = 3 we estimate the empirical distribution of y(X,,4/3) for various
n. The empirical estimates for n = 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000 based on 1000
Monte Carlo replicates for each n are given in Table 4.5.1. See Figure 4.5.1 for the corresponding

graph.
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n| 10 | 20 | 30 | 40 | 50 | 100 | 200 | 500 | 1000 | 2000
92 | 18 5 ) 4 0 0 0 0 0
385 | 308 | 263 | 221 | 219 | 155 | 88 | 41 31 19
348 | 455 | 557 | 609 | 621 | 725 | 773 | 831 | 845 | 862
215 | 219 | 175 | 165 | 156 | 120 | 139 | 128 | 124 | 119

pwm»—n/

Table 4.5.1: The number of ~ (Xn, N;;/E3, MC) = k out of N = 1000 Monte Carlo replicates.
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Figure 4.5.1: The empirical values of v, = k versus various n values where v, =

~ (Xn,Nf)/g,Mo).

4.6 The Use of the Domination Number (X, N, 5, Mc) for Testing

Spatial Patterns of Segregation and Association

4.6.1 Null Distribution of Domination Number

A detailed description of spatial patterns of segregation and association is given in Section 2.4.
Consider the null hypothesis
Ho : X; XU (TY)),
which is a form of complete spatial randomness. If it is desired to have the sample size be a
random variable, we may consider a spatial Poisson point process on T'()) as our null hypothesis.
Based on Theorem 4.4.2 and our uniform null hypothesis, we may assume that T'(}) is a

standard equilateral triangle with Y = {(0,0), (1,0), (1/2,v/3/2) } henceforth.

In our r-factor proportional-edge proximity map and uniform null hypothesis, the asymptotic
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null distribution of v (X, Npg, M) as a function of r can be derived, see main result in Section

4.5.

4.6.2 The Null Distribution of Mean Domination Number in the Multiple Triangle

Case

Suppose Y is a finite collection of points in R? with || > 3. Consider the Delaunay triangulation
(assumed to exist) of Y, where T; denotes the jt* Delaunay triangle, J denotes the number of
triangles, and Cg()) denotes the convex hull of Y (see [30]). We wish to investigate Hy : X; ud
U (Cr(Y)) against segregation and association alternatives.

Figure 4.6.1 (middle) presents a realization of 1000 observations independent and identically

distributed according to U (Cy (Y)) for |Y| = 10 and J = 13.

1q 19

0.8 0.8
0.6 0.6
0.4

0.4

0.2 0.2

02 04 06 o8 02 04 o6 o8

Figure 4.6.1: Realizations of segregation (left), null case (middle), and association (right) for
V| = 10, J = 13, and n = 1000.

The PCD is constructed using Npg(-, Mc,Y;) as described above where for X; € Tj the
three points in ) defining the Delaunay triangle T are used as ); (to make the dependence
explicit, }; is included in notation). Let 7, (r) be the domination number of the component of

the digraph in T}, where n; = |X, N Tj|.

Theorem 4.6.1. (Asymptotic Normality) Suppose n; > 1 and J is sufficiently large. Then the
null distribution of the mean domination number of the components of the PCD associated with

N;/E2('7MC)7 Gy=1 ijl Yn; (3/2), is given by
Gy "R N(pu,a?/J)

where p and 02 are given in Equations 4.4.3 and 4.4.4, respectively.
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Sketch of the proof: For fixed J sufficiently large and each n; sufficiently large, vn; (3/2)
are approximately independent identically distributed as in Equation 4.4.2. B

Figure 4.6.2 indicates that, for J = 13 with the realization of J given in Figure 4.6.1 and n =
100 the normal approximation is not appropriate (even though the distribution looks symmetric)
since not all n; are large enough. But for n = 1000 the histogram and the corresponding
normal curve are similar indicating that this sample size is large enough to allow the use of the
asymptotic normal approximation, since all n; are sufficiently large. However, larger J values
require larger sample sizes in order to obtain approximate normality. Figure 4.6.3 indicates
that, for J = 30 and n = 3000, the normal approximation is accurate, although skewness may

be indicated, and for n = 5000, the approximation is closer.
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10 15 20 s 30 10

Figure 4.6.2: Depicted are G5 “"R°° N (u ~ 2.2587,02/J ~ .1917/J) for J = 13,n = 100
(left); J =13, n = 1000 (middle); and J = 30, n = 1000 (right). Histograms are based on 1000
Monte Carlo replicates and the curves are the associated asymptotic normal curves.

DENSITY

DENSITY
3

DENSITY

Figure 4.6.3: Depicted are Gy "R N (u ~ 2.2587,02/J ~ .1917/J) for J = 13, n = 1000
(left); J =30, n = 3000 (middle); and J = 30, n = 5000 (right). Histograms are based on 1000
Monte Carlo replicates and the curves are the associated asymptotic normal curves.

For finite n, let G; (N5 ) be the mean domination number of the components of the PCD
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based on Npg. Then as a corollary to Theorem 4.4.1, it follows that for r1 < r2, we have

T, (Np3) <57 T (N3)-

4.6.3 Segregation and Association Alternatives

We define two simple classes of alternatives, H? and HZ, with ¢ € (0,4/3/3), for segregation
and association, respectively. Let Y = {(0,0),(0,1), (1/2,v/3/2)} and T(Y) = T.. Fory € Y,
let e(y) denote the edge of T'()) opposite vertex y, and for z € T(Y) let 4, (x) denote the
line parallel to e(y) through . Then define T(y,e) = {z € T(Y) : d(y,4, (z)) < e}. Let HS

be the model under which X; & UT (D) \ UyeyT(y,€)) and HA be the model under which

X; %u (UyeyT(y,v/3/3 —¢)). Thus the segregation model excludes the possibility of any X;
occurring near a y;, and the association model requires that all X; occur near y;. The V3/3—¢
in the definition of the association alternative is so that € = 0 yields Hy under both classes of
alternatives.

Note that T(Y) \ UyeyT(y,e) is a hexagon for ¢ € (0,v/3/4) and is a triangle for £ €
[V/3/4,V/3/3), is the center of mass for ¢ = v/3/3 and empty set for € € (v/3/3, 00).

Remark 4.6.2. These definitions of the alternatives are given for the standard equilateral trian-
gle. The geometry invariance result of Theorem 4.4.2 still holds under the alternatives, in the
following sense. If, in an arbitrary triangle, a small percentage 0 - 100% where § € (0,4/9) of the
area is carved away as forbidden from each vertex using line segments parallel to the opposite
edge, then under the transformation to the standard equilateral triangle this will result in the
alternative H 5/3— This argument is for segregation; a similar construction is available for

5/4
association. [J

We parametrize the distributions under the segregation (association) alternative as follows.
Let .#9 (%) be the family of continuous distributions, with support T()) and let F., be the
distribution F' restricted to T'(Y) \ U3_;T(y,e) (U3_,T(y,e)). The distribution for complete
spatial randomness in F9 (F4) is with ¢ = 0 and F.—q = U(T(Y)) and € > 0 for F. € F*°

(F. € Z4) implies segregation (association).

Theorem 4.6.3. (Stochastic Ordering) Let 75 (X,,, Nby) be the domination number under the
segregation alternative with € > 0. Then with €; € (0,\/5/3), Jj € {1,2}, e1 > &2 implies that
’751 (Xn, Npg) <5T ’7592 (Xn, Npg)-
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Proof: P (75 (Xn, Npi) =1) > P (15 (Xa, Ni/3) =1) and P (35 (%, N}Z) =2) >
P ('yf2 (X, NI2) = 2) . The desired result follows. W

Note that, the stochastic ordering in the limiting case requires €5 € (0,\/3/4] and €1 €
(vV3/4,4/3/3). For e € (0,4/3/4], 72 (Xn,NISJ/;) — 2 in probability as n — oo, and for
e € (V3/4,v/3/3) , v5 (X, N¥2) = 1 in probability as n — oco.

Similarly, the stochastic ordering result of Theorem 4.6.3 holds for association for all € and

n < o0, with the inequalities being reversed.
Remark 4.6.4. The stochastic ordering in Theorem 4.6.3 also holds for all r < co and all M. O

Notice that under segregation with ¢ € (0,v/3/4), v5 (Xn, Nbf) is degenerate in the limit
except for r = (3 —v/3¢) /2. With € € (vV3/4,v3/3), 77 (X, N5) is degenerate in the limit
except for r = v/3/e — 2. Furthermore, under association with € € (0,v3/4), v (X, Npp) is
degenerate in the limit except for r = ﬁ

The mean domination number of the components of the proximity catch digraph, Gy :=
% ijl Vn, (Nf,/}; ), is a test statistic for the segregation/association alternative; rejecting for

extreme values of G; is appropriate since under segregation, we expect G'; to be small, while

under association, we expect G'; to be large. Using the equivalent test statistic
S=vVI(Gs—np)/o, (4.6.1)
the asymptotic critical value for the one-sided level a test against segregation is given by
2i_a = @71 (), (4.6.2)

where ®(-) is the standard normal distribution function. Against segregation, the test rejects
for S < z1_o. Against association, the test rejects for S > z,.

Depicted in Figure 4.6.1 are the segregation with § = 1/16, null, and association with § = 1/4
realizations for |Y| = 10 and J = 13, and n = 1000. The associated mean domination numbers
are 1.923, 2.308, and 3.000, respectively, yielding p-values .003, .660 and .000. We also present

a Monte Carlo power investigation in Section 4.6.4 for this case.

2
Theorem 4.6.5. (Consistent Test) Let J*(a,¢€) := [(J_—ZG"‘J) -‘ where [-] is the ceiling function

and e-dependence is through G; under a given alternative. Then the test against HZ which
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rejects for S < z1_ is consistent for all € € (0, \/5/3) and J > J*(1 —a,€) and the test against

HA which rejects for S > z, is consistent for all € € (O, \/5/3) and J > J*(a,¢).

Proof: Let ¢ > 0. Under HS, 75 (X,, NZ/2) is degenerate in the limit as n — oo, which
implies G is a constant a.s.. In particular, for e € (0,v/3/4], Gy = 2 a.s. and for € €
(V3/4,4/3/3), G; =1 a.s. as n — oo. Then the test statistic S = v/J(G; — p)/o is a constant
a.s. and J > J*(1 — o, ¢) implies that S < 21—, a.s.. Hence consistency follows for segregation.

Under HA, as n — oo, Gy = 3 for all € € (0,v/3/3), a.s.. Then J > J*(a,e) implies that

S > z4 a.s., hence consistency follows for association. B

4.6.4 Monte Carlo Power Analysis

In Figure 4.6.4, we observe empirically that even under mild segregation we obtain considerable
separation for moderate J and n values suggesting high power at a = .05. A similar result is
observed for association (see Figure 4.6.5). With J = 13 and n = 1000, under Hy, the estimated
significance level is @g = .09 relative to segregation, and a4 = .07 relative to association. Under
H \S/g /8 the empirical power (using the asymptotic critical value) is B = .97, and under H \% Jo17
BA = 1.00. With J = 30 and n = 5000, under Hy, the estimated significance level is ag = .06
relative to segregation and a4 = .04 relative to association. The empirical power is E = 1.00
for both alternatives.

We also estimate the empirical power by using the empirical critical values. With J = 13
and n = 1000, under H \S/g /g the empirical power is Efnc = .72 at empirical level (’ifw =.033 and
under H \% /21 the empirical power is B\,’;‘w = 1.00 at empirical level a7, = .03. With J = 30 and
n = 5000, under H \S/g /e the empirical power is 35, = 1.00 at empirical level @5, = .034 and

under H/) /1 the empirical power is BA. =1 at empirical level a4, = .04.

4.6.5 Asymptotic Efficacy Analysis

Pitman asymptotic efficacy (PAE) provides for an investigation of “local asymptotic power”—
local around Hg. This involves the limit as n — oo as well as the limit as ¢ — 0 . A detailed
discussion of PAE is available in Section 2.7.2.1. For segregation or association alternatives
the PAE is not applicable for G, because none of the Pitman conditions in Section 2.7.2.1 is

satisfied by the test statistic, G ;.
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Figure 4.6.4: Two Monte Carlo experiments against the segregation alternatives H \S/g /8 ie.,

§ = 1/16. Depicted are kernel density estimates of G; for J = 13 and n = 1000 with 1000
Monte Carlo replicates (left) and J = 30 and n = 5000 with 1000 Monte Carlo replicates (right)
under the null (solid) and the segregation alternative (dashed).

Hodges-Lehmann asymptotic efficacy (see [16]) is unbounded under each alternative and
asymptotic power function analysis (see [22]) is not applicable for G ;. However, for € small and
n large, this test is very sensitive for both alternatives because 72 (Xn, NI?’,/,; ) — 2 in probability
as n — oo for segregation and v (Xn, NI?;/;) — 3 in probability as n — oo for association. That
is, the test statistic become degenerate in the limit for all £ > 0, but in the right direction for

both alternatives.

4.7 The Asymptotic Distribution of v (X, N.g, M)
For a general family of continuous distributions F¢ on T'()) we have the following result.

Proposition 4.7.1. Let X, be a data set of sizen from an F € Fc, then P (y (Xn, Nbg, M) =n) >

0 for all n < .

Proof: Similar to the proof of Theorem 3.5.4. B
Then 1 < E [y(Xn, Nog, M)] < n and 0 < Var [y (X,, NZg, M)] < n?/4.

There is also a stochastic ordering for v (X, NGg, M).

Theorem 4.7.2. Suppose X, is a random sample from an F € Fo. Then for 1y < 12, we have

’7 (XTL:NE’2S7M) SST ’7 (XnaNg'lSaM)'
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Figure 4.6.5: Two Monte Carlo experiments against the association alternatives H \% /o1 ie.,

§ = 16/49. Depicted are kernel density estimates of Gy for J = 13 and n = 1000 with 1000
Monte Carlo replicates (left) and J = 30 and n = 5000 with 100 Monte Carlo replicates (right)
under the null (solid) and the association alternative (dashed).

Proof: For 7 < 72, Pr(y(Xn,NGg, M) <k) > Pr(y(Xn,Nlg, M) <k) for all k €
{0,1,2,...,n}. In particular, for k = 1 strict inequality holds. Hence the desired result follows.
|

We present a “geometry invariance” result for X,, a random sample from U(T'())), which
will simplify our subsequent analysis by allowing us to consider the special case of the standard

equilateral triangle.

Theorem 4.7.3. Suppose X, is a random sample from U(T(Y)). Then for any T € [0,1] the

distribution of v (X, Nig, M) is independent of Y and hence the geometry of T'(Y).

Proof: Recall T, T}, ¢, and T, in the proof of Theorem 4.4.2. A composition of scaling
and rigid motion transformations will take any given triangle T, to T}, preserving uniformity.
The transformation ¢, takes Tp to T, and preserves uniformity. Furthermore, the composition
of ¢, with the rigid motion transformations maps the boundary of the original triangle T, to
the boundary of the equilateral triangle T,, the median lines of T, to the median lines of T,
lines parallel to the edges of T, to lines parallel to the edges of T,, and straight lines that cross
T, to the lines that cross T,. Since the distribution of y (X,, Nlg, M) involves only probability

content of unions and intersections of regions bounded by precisely such lines and the probability
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content of such regions is preserved since uniformity is preserved; the desired result follows. B

In fact, for 7 = 0, geometry invariance follows trivially since v (X,,, NZ5°, M) = n as. in
any triangle T'()) for any X, from F € Fc¢.

Theorem 4.7.3 generalizes to multiple dimensions, so that any simplex & in R? can be trans-
formed into a regular polytope, e.g., a regular tetrahedron with vertices (0,0,0) (1,0,0) (1/2,v/3/2,0),

(1/2,4/3/6,/6/3) in R®.

Theorem 4.7.4. Suppose X, is a random sample from U(T(Y)). Then P(y (X,,N55", M) >

1) > 1 asn — oo.

Proof: See Appendix Section A.2.8 for the proof. B
In particular, P(y (X, Nig, M¢c) > 1) = 1 as n — oo. See Figure A.2.12 (right) for a
realization of I'y (X, N.g, M¢) with M = Mc¢.

As a corollary, we have the following result for vy (X, N5g, M) for all 7 € [0,1].

Corollary 4.7.5. Suppose X, is a random sample from U(T'(Y)). Then P (v (Xn, NLg, M) > 1) —

1 asn — oo for all T € [0,1].

Proof: Above in Theorem 4.7.4, we have proved the result for 7 = 1. By Theorem 4.7.2, for
all 7 € [0,1), P (y (Xn,NZg, M) <1) < P(y(X,,Ni5", M) <1) — 0 as n — co. Hence the
desired result follows. B

Next, we conjecture that for 7 € (0,1], P (y(Xy, Nig, Mc) =1) — 0 as n — oo at rate

0 (TZ (;_1)) based on the following theorem.

Theorem 4.7.6. Suppose X, is a random sample from U(T(Y)). Whenever X, NRcum(y;) # 0,

let

ng (n) € argmaXy c x, NRoa(y;) d(X,ej),

i.e., the data point furthest from edge e; in the edge-region Rc (y;) for j € {1,2,3}. Note that
chj (n) are unique a.s. as n — oo. Then for T € (0,1], P (Xn C Nig (ng (n),MC)) — 0 as

n — oo at rate O (72(;_1)).

Proof: See Appendix Section A.2.9 for the proof. B
The result in Theorem 4.7.6 also holds for N (-, M) for general M € T'(Y)°, which can be

shown similarly.
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Next, we conjecture that P (’y (Xn, N3, Mc') > 2) — 1 as n — oo based on the following

theorem.

Theorem 4.7.7. Suppose X,, is a random sample from U(T(Y)). Then P(Xn C NG (XI,Mc)
U NZS (chj (n),M(;)) — 0 asn — oo for dall (i,7) € {(1,2),(1,3),(2,3)}.

Proof: See Appendix Section A.2.10 for the proof. B

If the conjecture holds, then it follows that for all 74 € (0,1), by Theorem 4.7.2,
P (y (X, Nls,Mc) <2) < P (v (X, Ni5', M) <2) = 0asn — oo.

Hence P (y(X,,NLg,Mc) >2) — 1 asn — oo for all 7 € [0,1]. The result also holds for
v (Xn, Nig, M) for general M which can be proven similarly.

We estimate P (y(X,,Nig,M)=k) for k = 1,2, and k¥ > 3 with 7 = 1 and M =
Mc for various n empirically and present empirical estimates of v (Xn, Nig, M) with n =
10, 20, 30, 40, 50,100, 500 based on 1000 Monte Carlo replicates in T, in Table 4.7.1 (see also
Figure 4.7.1).

E\n | 10 | 20 | 30 | 40 | 50 | 100 | 500
1 41 | 23 | 19 | 11 | 16 4 0
2 160 | 110 | 112 | 113 | 120 | 79 | 42

>3 | 799 | 867 | 869 | 876 | 864 | 917 | 958

Table 4.7.1: The number of ~y (XH,N(GEI,M) =kfor k =1,2, and k > 3 out of N = 1000
Monte Carlo replicates with 7 = 1 and M = M.

Now, we prove an upper bound for v (X,, NZg, Mc).

Theorem 4.7.8. Suppose X, is a random sample fromU(T(Y)). Then P (y (X,, Ni5", Mc)) <

6) = 1 as n — oo.

Proof: See Appendix Section A.2.11 for the proof. B

Note that Theorem 4.7.8 does imply that P (y (X, NZg, Mc) < 6) < P (v (Xn, NLT', Mc) < 6)
forall 7y € [0,1), but P (v (X, NZ5', Mc) < 6) — 1asn — oo does not imply P (v (X,,, NFs, M¢)
<6) = 1lasn — oo.

In the proof of Theorem 4.7.8, we show that lim, oo P(Yina(X,, NG5, Mc) = 1) = 1 where

X} = X, N T, (conditional on the event that |X, N Ts| =n) .
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Figure 4.7.1: The empirical estimates of P(vy, = k) for k = 1,2 and k¥ > 2 versus various n
values with 7 =1 and M = M¢ where v, = v (X,, NG5t M).

We estimate the distribution of ;4 (X,’L,N(ES,M ) with 7 = 1 and M = M for various n
values empirically. In Table 4.7.2, we present empirical estimates of Vina (X}, NZ3', Mc) with
n € {10, 20, 30, 40, 50, 100, 500, 1000, 2000} based on 1000 Monte Carlo replicates in Ts. See

Figure 4.7.2 for the corresponding graph.

kK\n | 10 | 20 | 30 | 40 | 50 | 100 | 500 | 1000 | 2000
1 765 | 849 | 881 | 885 | 900 | 942 | 989 | 990 | 995
2 207 | 147 | 113 | 114 | 99 | 58 | 11 10 5

>3 | 28 4 6 1 1 0 0 0 0

Table 4.7.2: The number of v;nq (X,’l, NZ3, MC) = k out of N = 1000 Monte Carlo replicates.

The fact that lim, e P(Yina(X,, NES', Mc) = 1) = 1, from proof of Theorem 4.7.8, does
also imply lim,,_, P('yind(X,’:,Nggl,Mo) < 2) = 1 where X)) = X, N T(y1,y2, Mc) (con-
ditional on the event that |X,, N T(y1,y2, Mc)| = n). We also estimate the distribution of
'yind(XT':,N(TJS,M) with 7 = 1 and M = M for various n empirically. In Table 4.7.3, we
present empirical estimates of 'yind(X;;,Ngs,M) with n € {10, 20, 30, 40, 50, 100, 500, 1000}
based on 1000 Monte Carlo replicates in T'(y1,y2, Mc) . See Figure 4.7.3 for the corresponding
graph.

As a summary of this section, we have shown that P(2 <~ (X,, NZ5', Mc) <6) — 1, and

we conjecture that P (3 < (X,, NZ3', Mc) <6) = 1 asn — oo.
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Figure 4.7.2: The empirical estimates of P(vy, = k) versus various n values with 7 = 1 and
M = MC where Tn = Yind (Xn N TSJNE’SJ M)

K\n | 10 | 20 | 30 | 40 | 50 | 100 | 500 | 1000
1 365 | 378 | 347 | 352 | 342 | 342 | 372 | 365
2 434 | 478 | 550 | 572 | 579 | 609 | 619 | 631

>3 | 201 | 144|103 | 76 | 79 | 49 9 4

Table 4.7.3: The number of ;54 (X,': , NZ3H, Mc) = k out of N = 1000 Monte Carlo replicates.

In the multi-dimensional case with d > 2, let X, be a random sample from U (&) with & C R?
and denote the domination number associated with Ncg based on X, as va (X,, NG5!, M).

Then we conjecture that
P(d+1<vq(Xn,N55', M) <d(d+1)) - Lasn — oco.

4.7.1 Summary of Asymptotic Distribution of (X, N)

Here is a summary of asymptotic distribution of (X, N) for the proximity maps we have
defined, i.e., for N € {Nas, Npg, N}
Let X, be a random sample from U(T(Y)) and ~(X,, N, M) be the domination number of

the PCD associated with N € {Nas, Npp, NGg}. Then as n — oo,

o for Nyg,

Y(Xn,Nas, M) =1, wp. 1, for all M € T(Y) \ {Mcc},
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Figure 4.7.3: The empirical estimates of P(vy, = k) versus various n values with 7 = 1 and
M = M where 7, = %ina (%, Ng g, M).

¥(Xn, Nas, Mcc) € {1,2} w.p. 1 for M = Mcc and acute T'(Y),
¥(Xn, Nas, Mcc) € {1,2,3} w.p. 1 for M = Mcc and right T(Y),
¥(Xn, Nas, Mcc) € {2,3} w.p. 1 for M = Mcc and obtuse T'(Y);

o for Npg,
Y (X, Npg, M)=1w.p. 1forall M ¢ T,
v (Xn, Npp, M) =3 w.p. 1forall M € T\ {t1,t2,¢3},
¥ (Xn, Npg, M) € {2,3}, wp. 1, for all M € {t1,12,t3};

e for Nos,
(X, NEZ1) € {2,3,4,5,6) w.p. 1for all M € T(D)°,
Y(Xn, NZs) > 2 w.p. 1for all M € T(Y)° and 7, € [0,1).

The exact and asymptotic distribution of y(Xy, Nas, Mcc) and (X, NJg, M) for 7 € (0,1] are
open problems. The exact distribution of v (X, Np g, M) can be found by numerical methods.
The asymptotic distribution of v (X, Npg, M) for M € {t1,t2,t3} and r € [1,3/2) is given in

Equation 4.4.1 and asymptotic distribution of ~y (Xn, NIT;;/ 2, Mc) is given in Equation 4.4.2.
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CHAPTER 5

Relative Density of Proximity Catch Digraphs

5.1 Preliminaries and Foundation

Let D = (V, A) be the digraph with vertex set V of size |V| = n and arc set A. The relative
density of D, denoted p(D), is defined as

|A|

See e.g., [18]. That is, p(D) is the ratio of number of arcs in D to the number of arcs in a
complete symmetric digraph of order n, which is n (n — 1).
For X; ¢ F, relative density p(D) of the PCD, D = D(X,,, A), associated with the proximity

map N(-) is denoted as p(Xy,;h, N) and is a U-statistic;

p(Xn; b, N) = n_lzthXN

i<

where
h(X;, Xj;N) = I(X;X; € A) + I(X;X; € A) =I(X; € N(X;)) + I(X; € N(X;))

is the number of arcs between points X; and X;. We will denote h(X;, X;; N) as h;;(N) for
brevity of notation. Since the digraph is not symmetric, h;;(IV) is defined as the number of arcs
in D between vertices X; and X; in order to produce a symmetric kernel with finite variance
[27]. Notice that the variance is finite, since 0 < h(X;, X;; N) < 2

By definition, X;X; € A iff X; € N(X;) for distinct X;, X; € &, in digraph D = D(V =
X, A) based on the proximity region N(-). Below we define a probability related to the random
variable I(X;X; € A).
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Definition 5.1.1. The arc probability between any two distinct vertices X;, X; € &, is defined
to be u(X;, X;;N) := E [I(X;X; € A)] = P(X;X; € A).

Note that this probability could also be called domination probability, since X;X; € Aiff X;
dominates X;. But by definition any vertex dominates itself and vv is generally not allowed in
a digraph, hence the preference of the name arc probability. Furthermore, for the PCD based

on the data set X, and the proximity map N(-),
u(Xi, X;;N) = P(X;X; € A) = P(X; € N(X;)).

For X; “ Fin Q, P(X; € N(X;)) = P(X; € N(X;)) for all X;,X;, Xy, X; with i # j
and k # 1 (the equality holds trivially if ¢ = j and k = I), so for i # j, u(X;, X;5N) =
p(X1,X2; N) = P(X, € N(X;)) does depend on the type of the proximity region N(-) and the
distribution of X;. In short, we will denote the arc probability as p(N) for proximity region
N(-)and X; ¥ F.

If x € Zs(N), the superset region associated with N(-), then N(z) = Q. So

u(N) = P(Xy € N(X1)) = P(Xy€eN(Xy1),X; € Zs(N)) + P(Xy € N(X1), X, & Zs(N))

P(X1 € #s(N)) + P(X> € N(X1), X1 & %Zs(N)). (5.1.1)

Notice that the random variable p,(N) := p(Xn;h, N), the relative density of PCD based
on N(-), depends on X,, h, and N(-) explicitly and on F implicitly. The expectation E [p,],

however, is independent of n, but depends on only F, h and N(-):

0 < B[ (V)] = s 30 3 Bk (V)] = 5B (a(V)] = (). (5.1.2)
i<j

The variance Var [p,,(N)] simplifies to

1 n

0 < Var [p,(N)] = gros Var [ua(N)] + i Cov [hro(V), ua(N)] < 1/4. (5.13)

A central limit theorem for U-statistics (see [27]) yields

Vi(pa(N) = Bpa(N)]) = N (0,Cov [hiz(N), hus (V) (5.1.4)
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provided that Cov [h12(N), h13(IN)] > 0. The asymptotic variance of p,(N), Cov [h12(N), h13(N)],
depends on only F', h, and N(-). Thus, we need determine only E [h13(N)] and Cov [h12(N), h13(N)]

in order to obtain the normal approximation

prn(N) PR™ N (E [pa(N)], Var [p,(N)]) =
I (E [P12(N)] Cov [h12(N), hus(V)]

2 ’ n

) for large n. (5.1.5)

Now, let A;; be the event that {X;X; € A} = {X; € N(Xj)}, then h;;(N) = I(4y) +
I(A_”) In particular hlz(N) = I(Alz) + I(Azl) Then
2

Var [h13(N)] = E [(h12(N))?] = (E [h12(N)])

where E [h12(N)] = 2 u(N). Furthermore,

E[(ha(N)?] = B [(I(A1) + 1(41))°] = E [1(A15) + 21 (A12) T(Az1) + T (Aar)]

P(Alg) +2P(A12 mAzl) +P(A21) = 2/.I/(N) +27T3a(N).
where
WSG(N) = P(A12 nAgl) = P(X1 € N(XQ) NnXs e N(Xl)) = P(X2 S N(Xl) ﬂI‘l(Xl,N)),

which is the probability of having a symmetric arc between X; and X, (or X; and Xj, for

general i # j), hence the notation 74, (N). Then
Var [his (N)] = 2 4(N) + 2 75a(N) — [2(N)]%,

and

Cov [h12(N), hi3(N)] = E [h12(N) hi3(N)] — E [h12(N)] E [h13(N)]
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where E [h12(N)] = E [h13(N)] = 2 u(N). Furthermore,

E [h12(N) hi3(N)] = E [(I(A12) + I(A421)) (1(A13) + 1(A31)]

= E [I (A12 N A13) =+ I (A12 n A31) + I(Agl n A13) =+ I(Agl n A31)]

P (A12 N Aiz) + P (A12 N Asg1) + P(Az1 N Aiz) + P(Aa1 N Asy)
where
P (A1 N Ayg) = P(X,y € N(X1) A X3 € N(X1)) = P({X2, X3} C N(X1))
and
P (As N Agy) = P(X5 € Ty(Xy,N) A X3 € Ty (X1, N)) = P({X2, X3} C T4 (Xq, N)).
Furthermore, by symmetry P (Aj2 N A3) = P(A2; N Ay3) and
P (A1 N Agp) = P(X, € N(X1), X3 € Ty (X1, N)).

Let Py := P({X3, X35} C N(X1)), Pag := P({X2, X3} CT1(X1,N)), and Py := P(X; €
N(X;),X3 € Fl(Xl,N)). Then,

COV[hlz(N),hl_g(N)] = P2N +2PM +P2G’ — [Q/J,(N)]2

Remark 5.1.2. The joint distribution of (h12(N), h13(N)) can be computed by finding

P((h12(N)7 h13(N)) = (’L,]))

for each (i, j) € {(0,0),(1,0),(0,1),(1,1),(0,2),(2,0),(1,2),(2,1),(2,2)}. O
5.2 Relative Density of the CCCD Based on Ng and Uniform Data on

Compact Intervals in R

In R, let Y = {y1,y2} with y; < y2 and F = U(y1,Yy2), by geometry invariance, without loss of

generality, we can assume y; = 0 and yo = 1, so F = U(0,1). Recall that Ng(z) = B(z,r(z))
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where r(z) = min(z, 1 — ). Then the arc probability of the CCCD (based on Ng(-)) is given by
n(Ns) = P(X, € Ns(X1)) = P(X, € Ns(X1), X1 <1/2) + P(X; € Ns(X1), X1 > 1/2).
By symmetry P(X2 € Ng(X1),X; < 1/2) = P(Xz € Ng(X1),X; > 1/2). Then

u(NS):2P(X2€NS(X1),X1§1/2) = 2P(X2§2X1, X1§1/2)

1/2
= 2/ 2zxdx =2(1/4) =1/2.
0
The symmetric arc probability of the CCCD is

Tsa(Ns) = P(Xs2 € Ns(X1)NT1(X1,Ns))

P(Xz € Ns(Xl) ﬂrl(Xl,Ns),Xl < 1/2) +P(X2 € Ns(Xl) ﬂPl(Xl,Ns),Xl > 1/2)

= 2 (P(X2 € Ns(X1)NI'1(X1,Ns), X1 <1/2)).

For 1 < 1/2, Ng(z1) = [0,221] and T'y (21, Ng) = [21/2, (1 4+ 1) /2], which are both connected

intervals. Then for z; <1/2,

Ns(z1) NTy(z1,Ns) = [21/2, min(2z1, (1 + 71)/2)]

where min(2z1,21/2) =22, I(0 <z, <1/3)+ (1 +21)/21(1/3 < 21 < 1/2). Hence

’/Tsa(Ns) = ZP(XQ € Ns(Xl) ﬂrl(Xl,Ns),Xl < 1/2)
1/3 1/2
= 2 (/0 (21‘1—$1/2)d$1+/1/3 ((1+:1:1)/2—:c1/2)da:1)

2(1/1241/12) = 1/3.
Hence
Var [h12(Ns)] = 2 u(Ns) + 2750 (Ng) — [2 ,u(NS)]2 =2(1/2) +2(1/3) = [2(1/2)]* = 2/3.
Next, we find E [h12(Ns) hys(Ns)]- By symmetry,
P({X2, X3} C Ns(X1), X1 <1/2) = P({X2, X3} C Ns(X1), X1 >1/2)
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50 Pyy = 2 P({X2, X5} C No(X1), X; <1/2) =2 (f01/2(2x1)2 dxl) =2(1/6) = 1/3.

Similarly, Pog = fy (1 +21)/2 — 21/2)” day = (1/2)> = 1/4.
Next,
Py = P(X2 € Ns(X1), X3 € I't'(X1,Ns), X1 <1/2) + P(X; € Ns(X1), X3 € T'1(X1,Ns), X1 > 1/2)

=2 (P(X2 € Ns(X1), X3 € T1(X1,Ns), X1 <1/2)) =2 (/1/2(23:1) (1/2) dwl) =2(1/8) = 1/4,
0

since, given X1, the events X5 € Ng(X;) and X3 € T';(X;, Ng) are independent.
Hence

E [h12(Ns) h13(Ns)] = 1/3+2(1/4) + 1/4 = 13/12 = 1.083,

which yields
Cov [h12(Ns), hi3(Ns)] = 13/12 - [2(1/2)]* = 1/12 = 0.083.

Thus

Vi (pn(Ns) —1/2) %5 N(0,1/12) as n — oo.

5.3 Relative Density of Proximity Catch Digraphs Based on Arc-Slice

Proximity Maps

The asymptotic distribution of p,(N4g) is not analytically tractable, so we only calculate the
arc probability u(Nas, Mcc) by numerical methods. Throughout this section, N4g is defined
with C'C-vertex regions, hence dependence on M¢c¢ is omitted.

Recall that #Zs(Nas) = {Mcc}, so A(#Zs(Nas)) =0, hence

#(Nas) =Y P(X3 € Nas(X1), X1 € Rocl(y))-
yYEY

As in Remark 5.2.3, the distribution of p,(Nas) is not geometry invariant; so we can only
use the basic triangle Ty, for T'()).

Observe that, by symmetry, for any proximity map N ()
W(N) = P(X, € N(X;)) = P(X; € T1(X3,N)) = P(X, € ' (X1, N)).

In general the calculation of x(IN') with the direct method which uses P(X> € N(X1)) is simpler
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than the indirect method which uses P (X2 el (X1, N )) However, u(Nag) is easier to compute
numerically with the latter (i.e., the indirect) method, since in the direct method the integrands
contain inverse trigonometric functions and are lengthier.

For simplicity, we use the equilateral triangle T,. By symmetry in 7T,, we only consider the
triangle Ty := T'(y1, M3, Mcc). There are two cases for I'y(z,Nag) for z € Ts. Iz € Ry
in Figure 5.3.1, Ty (2, Nag) is a pentagon and if x € Ry in Figure 5.3.1, then Ty (z, N4g) is a

hexagon. See Figure 5.3.2 for the pentagonal and hexagonal T';-regions, 't (z, Nag). Then

2
P(X5 € T1(X1,Nas), X1 € Ts) = Y P(Xy € T4 (X1, Nas), X1 € R;).
j=1

e

0.81

0.6

0.41

0.24
c‘j Ry :

yi = (0, 0) 02 33 04 M3 o 08 y21: (170)

Figure 5.3.1: The two regions in Ty for which I'1(z, N4s) is a pentagon or a hexagon.

o =(1/2,V/3/2) - w=TU/2,3/2)
1 2

/

Y/ My i M,
0.41 \ § \ 0.4 \ )
Mcc / \ e
0.21 R, 0.2 Rz
yi = (0,8 53 o0a Msos 08 S/é =(1,0) 1 = (0,092 3 0a Mz os 08 y#=(1,0)

Figure 5.3.2: A sample figure for pentagonal I'i(z, Nag) (left) and a hexagonal I'i(z, Nag)
(right).
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First,

z/V3 A F N
P(Xy € T'1(X1, Nas), X1 € Ry) =/ / 11, AS))dydx
o Jo A(T))?
1/2  pre(z) A F N
/ / A ”“’ AS) AR TAS) Gyd ~ 04865,

which is obtained by numerical integration, where s3 = (3 — V/3) /4, r.(z) = VAT $4_1) (5-4 2)

(see Figure 5.3.1), and

\/g(xQ +y2_1)2 N (55'2 +y2_1)2\/§
8(x—1)(3z+v3y—3) 4 (3z+vV3y—3) (z—2++3y)
3@ +y* -1 +y)y V3@ 4y
8 (z-2+V3y)z (z+V3y) 8 z? -

A(Ty(x1,Nas)) =

(See Figure 5.3.2 (left)).
Next,

#/V3 A(Ty (21, Nas))

dydx =~ .0417
(@) ATQ))?

1/2
P(X, € T1(X1,Nas), X1 € R) =/ /
.
which is obtained by numerical integration, where

V3@ +y? —1) (22 +1+2°+y’) VB (=2y"— 22"~ 1432+ V3y)

A(T1(z1,Nas)) =

8(z—1)(-z+1++3y) _4(—x+1+\/§y)(—x—1+\/?_’y)+
VB 4y 1) (p — 12’ +V8y+e) - 3@+’ - DEP 4y VBET )
4(—w—1+\/§y)(:c—2+\/§y) 8(w—2+\/§y)x(m+\/§y) 8 12

Hence,

(N 4s) ~ 6 (.04865 + .0417) ~ .5421

in T,. The empirical estimate of u(Nag) with 10000 Monte Carlo replicates is fi(Nas) = .5393.
Given a triangle T()), i.e., given (c1,¢2), u(Nas) can be obtained similarly. However the
computation is longer, since symmetry does not necessarily hold.

The asymptotic variance can also be calculated similarly, but it requires more effort and

computation time.
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5.4 Relative Density of Random Proximity Catch Digraphs for Testing

Spatial Patterns of Segregation and Association

In Section 4.6, we use the domination number for testing segregation and association. In this
section, we employ a different statistic, namely the relative density, p(Xn; h,Ny) where Ny(-)
is a proximity map based on ). Two simple classes of alternative hypotheses, for segregation
and association, are defined in Section 4.6.3. This test is related to the available tests of spatial
patterns in the literature, such as Pielou’s test and Ripley’s test. See the discussion in Chapter
6 for further detail. Our approach is valid for data in any dimension, but for simplicity of
expression and visualization, will be described for the two-dimensional data.

The phenomena known as segregation and association are defined in Section 2.4. For statis-
tical testing of spatial patterns of segregation and association, we consider a form of complete
spatial randomness for the null hypothesis;

Ho: X; Y UT)).
5.4.1 Relative Density of Proximity Catch Digraphs Based in r-Factor Proportional-
Edge Proximity Maps
We have defined the r-factor proportional-edge proximity maps and the associated PCDs in
Section 3.3.2.

The test statistic used here is the relative density pn(N5g) = p(Xy; b, Nbg) where N§p is
defined with C'M -vertex regions throughout this section, hence dependence on M is suppressed
for brevity of notation. The asymptotic distributions under both the null and the alternative
hypotheses are determined in Sections 5.4.2 and 5.4.3, respectively, by using the standard U-
statistic central limit theory. Pitman and Hodges-Lehman asymptotic efficacies are analyzed in

Sections 5.4.8 and 5.4.9, respectively.

5.4.2 Asymptotic Normality Under the Null Hypothesis

First, we present a “geometry invariance” result which allows us to assume 7'()) is the standard
equilateral triangle, T ((0,0), (1,0), (1/2,4/3/2)), thereby simplifying our subsequent analyses.
Theorem 5.4.1. Suppose X,, is a random sample from U(T(Y)). Then for any r € [1,00] the

distribution of pn(Npg) is independent of ) and hence the geometry of T'()).
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Proof: Similar to the proof of Theorem 4.4.2. B

Based on Theorem 5.4.1 and our uniform null hypothesis, we may assume that 7()) is the
standard equilateral triangle with Y = {(0,0), (1,0), (1/2,v/3/2)} for p,(Npp)-

For our r-factor proportional-edge proximity map and uniform null hypothesis, the asymp-
totic null distribution of p,,(Npg) can be derived as a function of r. Let u(Npg) = E [pn(Npg)]
and v(Npp) := Cov [h12(Npg), hs(Npg)]-

By detailed geometric probability calculations, the asymptotic variance of the relative density
of the r-factor proximity catch digraph can be explicitly computed. The central limit theorem
for U-statistics then establishes the asymptotic normality under the uniform null hypothesis.

These results are summarized in the following theorem.

Theorem 5.4.2. Forr € [1,00),

TN 0,1) (5.4.1)
where
212, for rell,3/2),
w(Npg) = —1r?+4-87 4+ 3172 for re€(3/2,2), (5.4.2)
1-3r72, for r€[2,00),
and

v(Npg) =vi(r) I(r € [1,4/3)) + v (r) I(r € [4/3,3/2))

+v3(r)I(r € [3/2,2)) + va(r) I(r € [2,00]) (5.4.3)

with
n(r) = [3007 10 — 13824 r° + 898 7° + 77760 77 — 117953 7° + 48888 ° — 24246 " + 60480 1> — 388801
+3888] / [58320 r4],
(r) = 5467 1'% — 37800 r° + 61912 7% + 46588 r® — 191520 r° + 13608 r* + 241920 r® — 155520 r* + 15552
? - 233280 4 ’
vs(r) = — [7 % —72r' 4 31271° — 5332 7% + 1507277 + 13704 r° — 139264 r° + 273600 r* — 242176 r*

103232 % — 276481 + 8640} / [960 7"6] ,

125



15r% — 1172 —48r + 25
156 ’

V4 (1“) =

For r = 00, pp(NEg) is degenerate.

See Appendix Sections B.1 and B.2 for the derivation of mean and variance, respectively.

//,/,,,,,,,,,,,,,,, |
_— N |
/
0.8 /
[
0.1
r\ | —~ |
] 0.6 - “‘
z ) : s
~ ) ; “‘
3 ) ; y“
/ - |
0.4 / H
|
| Ji
| |
/| 0.041 J |
| H
0.2 | “‘}
| ““
i oozl |||
| |
| |
i I
1 |
(o} 1 2 3 4 5 o 7 - 3 | |
| T

Figure 5.4.1: Asymptotic null mean pu(N5y) (left) and variance v(N§y) (right) from Theorem
5.4.2 for r € [1,5]. The vertical lines indicate the endpoints of the intervals in the piecewise
definition of the functions. Notice that the vertical axes are differently scaled.

Consider the forms of the mean and asymptotic variance functions, which are depicted in
Figure 5.4.1. Note that u(N}p) is monotonically increasing in r, since Npg(z) gets larger with
r for all z € Rom(y;) \ Zs(Npp). In addition, u(Npg) = 1 as r — oo (at rate O (r~2)), since
the digraph becomes complete asymptotically, which explains why p,, (N} ;) becomes degenerate
as r — 00, i.e., v(NEz®) = 0. Note also that u(N%y) is continuous, with u(NEg5') = 37/216 ~
.1713. By similar arguments, similar results hold for N5 (-, M) with general M.

Regarding the asymptotic variance, note that ¥(N} ) is also continuous in r with lim,_,
v(NLg) = 0 and v(NEZ') = 34/58320 ~ .000583 and observe that argsup,»1 ¥(Npg) ~ 2.045
with sup,>; ¥(Npg) ~ .1305.

To illustrate the limiting distribution, » = 2 yields

Vi(pa(NFE) = w(NEE) _ \/m (p (NEE) - é) = NO,1)
25 \"" 8 ’

v(NEE)
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or equivalently,

rox 5 25
W(NFE2) PR N (2, 2
P ( PE) N 2’192

The finite sample variance and skewness may be derived analytically in much the same way
as was Cov [h12(Npg), hi3(Npg)] for the asymptotic variance. In particular, the variance of

h12 (NIT;E) iS

w(Npg) = Var [hs(Npg)] = wi,1 () 1(r € [1,4/3))+

wi2(r) I(r € [4/3,3/2)) + w1 3(r) I(r € [3/2,2)) + wy 4(r) I(r € [2,00))

where
wia(r) = —(13697° + 410777 4 902 7% — 78084 r° 4 161784 r* — 182736 r> — 23328 1% + 155520 7 — 55296) ,

’ 11664 (r +2)(r + 1)r2
wra(r) = 1369 r7 +41077° + 9650 r° — 98496 1 4 132624 r* — 79056 r* — 57888 r + 72576

’ 11664 (r + 2)(r + 1)r

P10 4+ 37° — 6278 4 9687r° — 1704 5 — 1824 r* + 5424 3 — 1168 r? — 3856 r + 2208
wis(r) == 16 (r + 2)(r + 1)r* ’
3r®+3r° +3r—13

w1,4(1") =

ri(r+1)

0.6 1

0.2+

0.1

Figure 5.4.2: The plot of w(Npj) = Var [hi2(Np)] as a function of r for r € [1,5].

In Figure 5.4.2 is the graph of w(NLg) for r € [1,5]. Note that w(r = 1) = 2627/11664 =~

2252, and lim, o w(Np ) = 0 (at rate O (r~?)), argsup, (1 o0y W(Npg) & 1.66 with sup, ¢(1 )
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w(NLg) = .6796.

In fact, the exact distribution of p, (N5 ) is, in principle, available by successively condition-
ing on the values of X;. Alas, while the joint distribution of hi2(Npg), his(Nbg) is available,
the joint distribution of {h;;(Npg) }1<i<j<n, and hence the calculation for the exact distribution
of p,(Npg), is extraordinarily tedious and lengthy for even small values of n.

Figure 5.4.3 indicates that, for 7 = 2, the normal approximation is accurate even for small
n (although kurtosis may be indicated for n = 10). Figure 5.4.4 demonstrates, however, that

severe skewness obtains for small values of n and extreme values of r.

DENSITY
2 3
DENSITY
DENSITY
6

T 1
08 10

Figure 5.4.3: Depicted are the distributions of p,(N2y) PN (%, %) for 10,20, 100 (left
to right). Histograms are based on 1000 Monte Carlo replicates. Solid curves represent the ap-
proximating normal densities given in Theorem 5.4.2. Note that the vertical axes are differently

scaled.

Letting H,(Nbp) = Y hint1 (Nbg), the exact distribution of p,(N5z) can be written

as the recurrence
d
(n+1)npni1(Npg) =n(n—1) po(Npg) + Hn(Npg)

by noting that the conditional random variable H,,(Npg)| X1 is the sum of n independent

and identically distributed random variables. Alas, this calculation is also tedious for large n.

5.4.3 Asymptotic Normality Under the Alternatives

Asymptotic normality of relative density of the proximity catch digraphs under the alternative

hypotheses of segregation and association can be established by the same method as under the
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DENSITY
DENSITY

Figure 5.4.4: Depicted are the histograms for 10000 Monte Carlo replicates of p1o(Npj) (left)
and p10(Npj) (right) indicating severe small sample skewness for extreme values of 7.

null hypothesis. Let ES[-] (EA[]) be the expectation with respect to the uniform distribution

under the segregation (association) alternatives with & € (0,v/3/3).

Theorem 5.4.3. Let us(Nhp,€) be the mean ES[hi12(Nbg)], vs(Nbg,€) be the covariance,
Cov 5[h12(Nbg), his(Nbg)] for v € [1,00], and € € [0,/3/3) under HS. Then /n(pn(Nbg) —
ps(Npg,€)) £ N(0,vs(Npg,€)) at the values of (r,e) for which vs(Npg,e) > 0. Likewise
for HA.

Sketch of Proof: Under the alternatives, i.e., € > 0, p,(Npbg) is a U-statistic with the
same symmetric kernel h;;(N5;) as in the null case. Under H?, the mean pg(Npg,e) =
EZ[pn(Nbg)] = EZ[h12(Nbg)]/2, now a function of both r and e, is again in [0,1]. The
asymptotic variance vg(Np, &) = Cov Z[h12(NbE ), h13(Np )], also a function of both r and &,
is bounded above by 1/4, as before. Thus asymptotic normality obtains provided vs(Npg, ) >
0; otherwise p,(N5y) is degenerate. Likewise for HA.

The explicit forms of pus(Npg,€) and pa(Npg,€) are given, defined piecewise, in Appendix
Section B.4. Sample values of us(Np g, €), vs(Npg,€), and pa(Npg,€), va(Np g, €) are given in
Section 5.4.9.1 under segregation with & € {v/3/8,v/3/4, 2/3/7} and in Section 5.4.9.2 under
association with £ € {5v/3/24, v/3/12, v/3/21}. Note that under HS,

vs(NBg,€) > 0 iff (r,e) € [1,\/5/(25)) x (0,\/5/4] u [1,\/5/6—2) x (\/5/4, \/5/3),
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and under HA,
vA(Nbg,) > 0 iff (r,€) € (1,00) X (o,\/§/3) u{1} x (0,\/5/12) =

Notice that under the association alternatives any r € (1,00) yields asymptotic normality
for all € € (0,v/3/3), while under the segregation alternatives only r = 1 yields this universal

asymptotic normality.

5.4.4 The Test and the Analysis

The relative density of the proximity catch digraph is a test statistic for the segregation/association
alternative; rejecting for extreme values of p,(NLj) is appropriate since under segregation we
expect p,(NE ) to be large, while under association we expect p,(N&g) to be small. Using the

test statistic
\/ﬁ(pn(NITDE) - M(NlTDE))
v(N ITDE)

the asymptotic critical value for the one-sided level a test against segregation is given by z, =

R(Npg) =

(5.4.4)

7

® 1(1—a). Against segregation, the test rejects for R(N% ) > 2, and against association, the

test rejects for R(Npp) < z1—a.

5.4.5 Consistency

Theorem 5.4.4. The test against H? which rejects for R(NLy) > 21— and the test against

H2 which rejects for R(Nby) < 2o are consistent for r € [1,00) and £ € (0,v/3/3).

Proof: Since the variance of the asymptotically normal test statistic, under both the null
and the alternatives, converges to 0 as n — oo (or is degenerate), it remains to show that
the mean under the null, u(N5g) = E[p,(Nkg)], is less than (greater than) the mean under
the alternative, us(Npg,¢e) = E5[p, (N5 )] against segregation (ua(Npg,e) = EA[pn(Nby)]
against association) for € > 0. Whence it will follow that power converges to 1 as n — 0.

Detailed analysis of ps(Npg,€) in Appendix Section B.4.1 indicates that under segregation
us(Npg,€e) > p(Npg) for all e > 0 and r € [1,00). Likewise, detailed analysis of p4(Npg,€)
in Appendix Section B.4.2 indicates that under association ps(Npg,€) < u(Npg) for alle > 0

and r € [1,00). Hence the desired result follows for both alternatives. W
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Remark 5.4.5. In fact, the analyses of ps(Npg,€) and pa(Npg,€) under the alternatives reveal
more than what is required for consistency. Under segregation, the analysis indicates that
us(Npg,e1) < us(Npp,e2) for 1 < 2. Likewise, under association, the analysis indicates that

pA(Npp,e1) > pa(Nbg,e2) for &1 < ez O

Remark 5.4.6. Note that the consistency holds for segregation (association) for all F, € %%
(F. € F4) (see Section 4.6.3 for #° and F4). Moreover, let 45 (44) be the family of contin-
uous distributions, G, whose support is S. C T'()) with d(S:,Y) = min(, y)es.xy d(@,y) = €
(d(SE,y) = min(, y)es. xy d(z,y) = V3/3 — e) and whose densities are nondecreasing along
straight lines towards the center of mass (the vertices). Then & > 0 for G. € ¥° (G. € 94)
implies segregation (association). The consistency holds for the alternatives with X; u G, with

e>0.0

5.4.6 Monte Carlo Power Analysis Under Segregation

In segregation alternatives with € > 0, we implement the above described Monte Carlo ex-
periment for various values of r (for which the associated relative density pn(Npg) is non-
degenerate). Recall that p,(N%y) is degenerate for large r at each £ > 0. In particular, with
£ = V3/8, pn(Nhy) is degenarate for r > 4, with e = v/3/4, p,(Nb,) is degenarate for r > 2,
and with ¢ = 2v/3/7, pn(Np ) is degenarate for r > 3/2.

Let pr(n, Npj) be the empirical relative density for experiment k and pj.n(n, Npy) be the
j** (ordered) empirical relative density for j = 1,..., N. Then for each r value, we estimate
the empirical critical value €, (r) := pja—_a) N1:N (7, Npg) and the empirical significance level
ag.(n,r) = % E;\le I(pj(n,Njg) > ¢5(r)) under Hy and the empirical power ng(”ﬂ": €) =
N Ejvzl I(pj(n,Npg) >¢5(r)) under HY with e € {\/3/8, v/3/4,23/7}.

For segregation with ¢ = \/5/ 8 & .2165, we run the Monte Carlo experiments for eight r
values: 1, 11/10, 6/5, 4/3, v/2, 3/2, 2, and 3. In Figure 5.4.5 are the kernel density estimates for
the null case and the segregation alternative for the eight r values with ¢ = v/3/8, n = 10, and
N =10000. Observe that under both Hy and H \S/g /g7 kernel density estimates are skewed right
for r € {1, 11/10}, (with skewness increasing as r gets smaller) and kernel density estimates are
almost symmetric for r € {6/5, 4/3, v/2,3/2, 2}, with most symmetry occurring at r = 3/2,
kernel density estimate is skewed left for r = 3 (with skewness increasing as r gets larger).

The empirical critical values, empirical significance levels, and empirical power estimates
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Figure 5.4.5: Kernel density estimates for the null (solid) and the segregation alternative H \S/g
(dashed) for r € {1, 11/10, 6/5, 4/3, v/2, 3/2, 2,3} (left-to-right).

/8

under H \S/g /g aTe presented in Table 5.4.1.

In Figure 5.4.6, we present a Monte Carlo investigation against the segregation alternative
H\S/?j/8 for r =11/10, and n = 10, N = 10000 (left), n = 100, N = 1000 (right). With n = 10,
the null and alternative probability density functions for p19(11/10) are very similar, implying
small power (10000 Monte Carlo replicates yield 35 (11/10, 10, V/3/8) = 0.0787, 25(11/10) =
0.15, and @3,.(11/10, 10) = 0.0484). With n = 100, there is more separation between null
and alternative probability density functions; for this case, 1000 Monte Carlo replicates yield

B3 (11/10, 100, v/3/8) = 0.77, &5(11/10) = 0.2203, and &,,(11/10,100) = 0.05. Notice also

that the probability density functions are more skewed for n = 10, while approximate normality
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r 1 [11/10 ] 6/5 | 4/3 | v2 | 3/2 2 3

) 024 | 3 35 | 4 5 5 | 82 | 0.98
as_(r, 10) 0324 | .0403 | .0484 | .0442 | .0446 | .0492 | .049 | .0389

5. (r,10,1/3/8) | .0381 | .0787 | .122 | .1571 | .1719 | .1955 | .2791 | .2901

Table 5.4.1: The empirical critical values, empirical significance levels, and empirical power
estimates under H\%/s’ N = 10000, and n = 10 at a = .05.
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Figure 5.4.6: Two Monte Carlo experiments against the segregation alternative H \% /s Depicted

are kernel density estimates for p, (N 1131]510) for n = 10 (left) and n = 100 (right) under the null
(solid) and alternative (dashed).

holds for n = 100.

For segregation with &€ = v/3/4 ~ .433, we run the Monte Carlo experiments for six r values:
1,11/10, 6/5, 4/3, v/2, 3/2. In Figure 5.4.7, are the kernel density estimates for the null case
and the segregation alternative for the six r values with ¢ = v/3/4, n = 10, and N = 10000.
Observe that under H \S/g m
estimates are almost symmetric for r € {11/10, 6/5, 4/3, v/2}, with most symmetry occurring

kernel density estimate is skewed right for » = 1 and kernel density

at r = 4/3, kernel density estimate is skewed left for r = 3/2.
The empirical critical values, empirical significance levels, and empirical power estimates

under H 4 are presented in Table 5.4.2.

s
V3/
For segregation with ¢ = 2+/3/7 & .495, we run the Monte Carlo experiments for six r
values, 1, 21/20, 11/10, 6/5, 4/3, v/2. In Figure 5.4.8, are the kernel density estimates for the
null case and the segregation alternative with e = 21/3/7 for the six r values with n = 10 and

N = 10000. Observe that under H, ; V37" kernel density estimate is skewed right for r = 1 and

kernel density estimates are almost symmetric for » € {21/20, 11/10, 6/5} with most symmetry
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Figure 5.4.7: Kernel density estimates for the null (solid) and the segregation alternative H \S/g
(dashed) for r € {1, 11/10, 6/5, 4/3, v/2, 3/2} (left-to-right).

/4

r 1 |11/10] 6/5 | 4/3 | V2 | 3/2

3 (r) 24 3 35 A 5 5
ay,.(r,10) 0318 | .0411 | .0479 | .0484 | .0481 | .043
5. (r,10,/3/4) | 1247 | 9138 | .998 | 1.0 1.0 | 1.0

Table 5.4.2: The empirical critical values, empirical significance levels, and empirical power
estimates under Hf/g /4> IV = 10000, and n =10 at a = .05.

occurring at r = 6/5, kernel density estimate is skewed left for r = V2.

The empirical critical values, empirical significance levels, and empirical power estimates
under H, f V37 are presented in Table 5.4.3.

We also plot the empirical power as a function of r in Figure 5.4.9. Let r5(e) be the value
of r at which maximum Monte Carlo power estimate occurs, then r%(1/3/8) = 3. Furthermore,
Monte Carlo power estimate increases as r gets larger and then decreases, due to the magnitude
of r and n. Because for small n and large r the critical value is approximately 1 under Hy, as
we get a complete digraph with high probability.

Furthermore, r%(v/3/4) € {4/3, v/2, 3/2} and r%(2V/3/7) € {11/10, 6/5, 4/3, v/2}. Monte

Carlo power estimates increase as 7 gets larger. The phenomenon happened above for & = v/3/8
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Figure 5.4.8: Kernel density estimates for the null (solid) and the segregation alternative H, 5 V37
(dashed) for r € {1, 21/20, 11/10, 6/5, 4/3, v/2} (left-to-right).

r 1 |21/20| 11/10 | 6/5 | 4/3 | V2
e (r) 24 | .28 3 35 | 42 5
a3 (r,10) 0318 | .0447 | .0411 | .0479 | .0477 | .0481
S (r,10,24/3/7) | 1247 | 9728 | 1.0 1.0 | 1.0 1.0

Table 5.4.3: The empirical critical values, empirical significance levels, and empirical power
estimates under H; 3 IV = 10000, and n = 10 at o = .05.

does not occur, because r values are not large enough to yield complete digraphs under Hy with
high probability.
For a given alternative and sample size, we may consider analyzing the power of the test —

using the asymptotic critical value— as a function of the proximity factor r. Let R;(Npg) :=

Vi (03 (N7 g sm)—#(NE 1))
’\/”(N;’E)

for j =1,2,...,N. For any r € [1,00), the level a asymptotic critical value is u(Npy) + 2(1—q) -

VV(NEg)/n. We estimate the empirical power as B\f(r, ) =% Z;VZI I(R;j(N}g) > 21—q). In

Figure 5.4.10, we present a Monte Carlo investigation of power 35 (r, ) against H \% o H \% m

and Hég Va2 a function of r for n = 10. The empirical significance level is ag(r,n) :=

be the standardized relative density for experiment j with sample size n

N Ejvzl I(R;(N}g) > #1—a|Ho). Then @g(r,10) is about .05 for r € {2, 3} and the empirical
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Figure 5.4.9: Monte Carlo power using the empirical critical value against segregation alterna-

tives H\%/S (left), H\%M (middle), and H2S\/§/7 (right) as a function of r for n = 10.
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Figure 5.4.10: Monte Carlo power using the asymptotic critical value against segregation alter-
natives H\S/g/8 (left), H\S/g/4 (middle), and Hf\/g” (right) as a function of r for n = 10. The

circles represent the empirical significance levels while triangles represent the empirical power
values.

powers are B (r,/3/8) ~ .35 and B5(r,¢) = 1 for & € {v/3/4,2+/3/7}. So, for small sample
sizes, moderate values of r are more appropriate for normal approximation, as they yield the
desired significance level and have the property that more severe segregation yields higher power
at each r.

The empirical significance levels and empirical power values 35(r,e) under HS for e €
{V/3/8,V/3/4,2+/3/7} are presented in Table 5.4.4. Note that even for n = 10, the plots
of the empirical power E;f (r,€) resemble the curves of the asymptotic power function IIg(r) in

Section 5.4.10.

5.4.7 Monte Carlo Power Analysis Under Association

In association alternatives with € > 0, we implement the Monte Carlo experiment for r €

{1, 11/10, 6/5, 4/3, V2, 3/2,2,3,5, 10}. Then for each r value, we estimate the empirical
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r 1 [11/10] 6/5 | 4/3 | V2 | 3/2 2 3 5
as(r,n) 2829 | .2019 | .1486 | .1224 | .1139 | .0966 | .0619 | .0374 | .000

B3 (r,v/3/8) | 3086 | .3309 | .3123 | .3233 | .3365 | .3317 | .3175 | .2950 | .0000
Bs (r,v/3/4) | 6519 | .9985 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | .0000
B3 (r,2+/3/7) | 6508 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | .0000

Table 5.4.4: The empirical significance level and empirical power values under HS for ¢ €
{V3/8,V3/4,2+/3/7}, N = 10000, and n = 10 at a = .05.

critical value 4(r) := Pla N|:N(Npg,n) where [-] is the floor functional, and the empirical
significance level @ . (r, n) == & Ej\;l I(p;(Npg,n) <22(r)) under Hy and the empirical power
BA.(n,re) == & Zjvzl I(pj(r,n) <¢4(r)). We implement the Monte Carlo simulation for
e € {5v3/24, /3/12, \/3/21}.

The empirical critical values, empirical significance levels, and empirical power estimates
under H? are presented in Table 5.4.5.

For association with € = 5 \/3/ 24 = .36, in Figure 5.4.11, are the kernel density estimates for
the null case and the segregation alternative for the ten r values with n = 10 and N = 10000.
Observe that, under Hy, kernel density estimates are skewed right for r € {1, 11/10}, (with
skewness increasing as r gets smaller) and kernel density estimates are almost symmetric for
r e {6/ 5,4/3,/2,3/2, 2}, with most symmetry occurring at » = 3/2, kernel density estimates
are skewed left for r € {3, 5, 10}, (with skewness increasing as r gets larger). Under H;‘ V3247
kernel density estimates are skewed right for r € {1, 11/10, 6/5, 4/3, 3/2, 2, 3}, (with skewness
increasing as r gets smaller) and kernel density estimate is almost symmetric for r = 5, kernel
density estimate is skewed left for r = 10.

For association with & = v/3/12 & .144, in Figure 5.4.12, are the kernel density estimates for
the null case and the segregation alternative for the ten r values with n = 10 and N = 10000. Ob-

serve that under H4 kernel density estimates are skewed right for r € {1, 11/10, 6/5, 4/3},

V3/12°
(with skewness increasing as r gets smaller) and kernel density estimates are almost symmetric
for r € {v/2,3/2, 2}, with most symmetry occurring at r = 2, kernel density estimates are
skewed left for r € {3, 5, 10}, (with skewness increasing as r gets larger).

Note also that for r = 11/10 with n = 10 and N = 1000, the kernel density estimates
are very similar, implying small power. With N = 10000, 4, (11/10,10, v/3/12) = 0.0921,
¢4(11/10) = 0.15, and a2 ,(11/10,10) = 0.0484. See Figure 5.4.13. Note that for large n,

there is more separation between null and alternative kernel densities, which implies higher
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Figure 5.4.11: Kernel density estimates for the null (solid) and the association alternative

Hg“ﬁm (dashed) for r € {1, 11/10, 6/5, 4/3, v/2, 3/2, 2, 3, 5, 10} (left-to-right).
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Figure 5.4.12: Kernel density estimates for the null (solid) and the association alternative H \’% /12
(dashed) for r € {1, 11/10, 6/5, 4/3, v/2, 3/2, 2, 3, 5, 10} (left-to-right).
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Figure 5.4.13: Two Monte Carlo experiments against the association alternative H f}g 12" De-
picted are kernel density estimates for pn(N}plbflo) for n = 10 (left) and n = 100 (right) under
the null (solid) and alternative (dashed).

power. With n = 100, N = 1000 and get &4(11/10) = 0.1963, @2 (11/10,100) = 0.049, and
BA. (11/10,100,/3/12) = 0.56.

For association with € = /3 /21 =~ .0825, in Figure 5.4.14, are the kernel density estimates for
the null case and the segregation alternative for the ten r values with n = 10 and N = 10000. Ob-
serve that under H i}g /a1’ kernel density estimates are skewed right for r € {1, 11/10, 6/5, 4/3},
(with skewness increasing as r gets smaller) and kernel density estimates are almost symmetric
for r € {V/2,3/2, 2}, with most symmetry occurring at » = 3/2, kernel density estimates are
skewed left for r € {3, 5, 10}, (with skewness increasing as r gets larger).

We also plot the empirical power as a function of r in Figure 5.4.15. Let r% (¢) be the value at
which maximum Monte Carlo power estimate occurs. Then % (51/3/24) = 3, % (V3/12) = 2,
and for 7% (v/3/21) = 3/2. Notice that the more severe the association the larger the value of
r%(¢). Based on the analysis of the Monte Carlo power estimates, we suggest moderate r values
for moderate association.

We also estimate the power using the asymptotic critical value in association alternatives
for various values of r. For each r value, the level o asymptotic critical value is p(Npg) + 24 -
\/V(Npg)/n. We estimate the empirical power as 3;? (r.e) == % E;\Ll I(R;(Npg) < 2a)-

In Figure 5.4.16, we present a Monte Carlo investigation of power against H \% H f}g /197

/217

A
and H5\/§/24

£ 0L IR (Npg) < 2a|Ho). Then d4(r,10), is about .05 for r € {v/2,3/2, 2, 3, 5} which

as a function of r for n = 10. The empirical significance level is a4(r,n) :=
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Figure 5.4.14: Kernel density estimates for the null (solid) and the association alternative H \’% /o
(dashed) for r € {1, 11/10, 6/5, 4/3, v/2, 3/2, 2, 3, 5, 10} (left-to-right).
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Figure 5.4.15: Monte Carlo power using the empirical critical value against association alterna-

tives H\%/ﬂ (left), H\%/lz (middle), and H?\/g/u (right) as a function of r for n = 10.
r 1 [ 11/10 | 6/5 | 4/3 | V2 | 3/2 2 3 5 10
ca(r) 13| 14 .16 2 2 .24 42 .65 .82 .91

.0112 | .0208 | .0308 | .0363 | .0359 | .0392 | .0413 | .0478 | .0398
.0213 | .0754 | .2052 | .3253 | .4365 | .946 | .9993 | .9473 | .4242
.0921 | .0645 | .1448 | .2002 | .2274 | .2739 | .1383 | .0823 | .0639
.0151 | .0364 | .0605 | .0746 | .0771 | .0764 | .0618 | .0501 | .0518

am(r,10)
Bine(r, 10, 51/3/24)
Bime(r, 10, v/3/12)
BA.(r, 10, V/3/21)

o|lo|o|o

Table 5.4.5: The empirical critical values, empirical significance levels, and empirical power
estimates under H2 for € € {51/3/24, v/3/12, v/3/21} and n = 10 at a = .05.

POWER
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e

Figure 5.4.16: Monte Carlo power using the asymptotic critical value against association alter-
natives Hé§/21 (left), H\%/u (middle), and H?\/g/u (right) as a function of r for n = 10. The
circles represent the empirical significance levels while triangles represent the empirical power

values.
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r 1 11/10 | 6/5 | 4/3 | v2 | 3/2 2 3 5 10
aa(r,10) 5318 | .2426 | .1869 | .1031 | .0673 | .0559 | .0656 | .0627 | .0771 | .0955
Bio (r,5/3/24) | 6273 | .3663 | .3923 | .4103 | .4167 | .5316 | .9610 | .9983 | .9656 | .5443
Bio (r,v/3/12) | .6300 | .3537 | .3583 | .3190 | .2698 | .2919 | .3433 | .1825 | .1429 | .1261
Bib (r,v/3/21) | .6012 | 2979 | .2574 | .1629 | .1190 | .1077 | .1098 | .0889 | .0989 | .1033

Table 5.4.6: The empirical significance level and empirical power values under HA for ¢ €
{5+/3/24, v/3/12,/3/21} with N = 10000 and n = 10 at = .05.

have the empirical power 87 (r,v/3/12) < .36 with maximum power is .3433 and is attained at
r =2, and ,@fb (r =3,53/ 24) = 1. So, for small sample sizes, moderate values of r are more
appropriate for normal approximation, as they yield the desired significance level and have the
property that more severe association yields higher power.

The empirical significance levels and empirical power Bﬁ (r,e) values under HEA for € €
{5 \/?:/24, \/3/12, \/5/21} are presented in Table 5.4.6.

Note that even for n = 10, the plots of the empirical power Bi%(r) resembles the curves of

the asymptotic power function II4(N}j) in Section 5.4.10.

5.4.8 Pitman Asymptotic Efficacy

For a detailed discussion of PAE, see [22] and [13]. Under segregation or association alternatives
" 2
] (N;,E,&':O)

NT L) since pi (Npg,e = 0) # 0 but

the PAE of p,(N&g) is given by PAE(Npg) = (
p# (Npg,e=0)=0.
5.4.8.1 Pitman Asymptotic Efficacy Under Segregation Alternatives

Consider the test sequences p(r) = {pn(N5p)} for sufficiently small ¢ > 0 and r € [1,v/3/(2¢)).
In the PAE framework of Section 2.7.2.1,8 = ¢ and 6 = 0. Suppose, n () = EZ[pn(Npg)] =

ps(Npp,<). For & € [0,v3/8),
5
ps(Npg,e) =Y _w1,;(r,e) I(r € ;)
=1
with the corresponding intervals Z; = [1,3/2 - \/ﬁa), I, = [3/2 - \/35,3/2), I3 = [3/2, 2—

4 5/\/?;), Iy = [2 —4¢e//3, 2), Is = [2, V3/(2 6)) See Appendix Section B.4.1 for the explicit

form of u(N%g,e) and Appendix Section B.3 for derivation. Notice that as e — 0, only Z; =
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[1,3/2 — \/35), I3 = [3/2, 2—4 5/\/3), Is = [2, V3/(2 5)) do not vanish, so we only keep the
components of pug(Npg,€) on these intervals.

Furthermore,

(n—-2)

Var £ [h12(Np )]+ )

o%(n,e) = Var 2 (p,(Npp)) = Cov 2[h12(Npg), his(Npg)]-

2n(n—1) n (n

The explicit forms of Var 5[hi5(N% )] and Cov 2[his(NF ), his(NF )] are not calculated, since
we only need lim,_, 02(¢ = 0) = v(N§ ) which is given in Equation 5.4.3.
Notice that E§|h12(N17;E)|3 < 8 < > and EES[h12 h13] - Efg[hlz]z = COVf[hlz,hlg] >0

then by Callaert and Janssen [2],

SUP teR < CES |ha(Npp)® [vs(Npp,e)] /> n /2

P ( /o ep) — ps(Npy:€))

VS(NITDEas)

< t) — 3(t)

where C'is a constant and ®(-) is the standard normal distribution function. Then (PC1) follows
for each r € [1, V3/(2 5)) and € € [0, \/5/4) (see Section 2.7.2.1 for Pitman’s conditions).

Differentiating us(Npg,€) with respect to € yields

Mﬁh@E@):aﬁJQ@)IO%Eﬂ;ﬁ2—v@e»—+wiﬂndl(reFVZZ—4E/¢$)

+ @ 5(r,e) I (r € [2,\/5/(25)))

where

2e (1442 (r? — 1) + 36 — 3772)
W2 1P@e+ 1P

wll,l(r75) =
@} 4(r,6) = [2\/3((21« —3)64 %+ (Tr2 +r* — 24 1+ +20) 16 V3> + (r — 3) 48 + 331

+96\/§r—36\/§—60\/§r2)5]/[9 (2¢ +1)3(2¢ — 1)37-2],

83 (48 + (31" +31r7 —20)4 V3e2 + 36 +9V3 —9V31?)
B 27r2(2e +1)3(2e —1)3

Hence, p's(Npg,e = 0) = 0, so we need higher order derivatives for (PC2). A detailed

discussion is available in Kendall and Stuart [22].
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Differentiating p's(Npg,€) with respect to € yields

Ws(Np,2) = @1 (r) 1 (r € [1,3/2 = V3e) ) + @l (r,2) T (1 € [3/2,2— 4 2/V3))
+ o 5(r,0) I (7 € [2,V3/(29)))
where

2(r2 —1)1728e* + (72 — 77r%) 4 €2 + 36 — 377>
27 (42 — 1) ’

Wi’,l(TaE) ==

@i 5(r,e) = -2 [(2r —3)512v3e% + (20 +r* + 7r% — 24 r) 576 + (27 — 3) 1024 V33 +
(20 — 10872 + 96 + 97) 362 + (—3 + 27) 96 V3¢ — 108 + 914 — 18072 +288r]/
[9r2(2s+ 1)42¢e — 1)4},

@y 5(r,e) = -8 [128 V3% 4+ (=20 + 37" +3r2) 48 4+ 256 V3% + (=5 — 1272 + 37%) 122

+24 6\/§+9—9r2]/[9r2(25+1)4(25— 1)4].

Thus,
-2+ 22 for re€[1,3/2),
W5 (Npig,e=0) = g g EATBE IO g 1 e [3/2,2), (5.4.5)
_8(1T+T2)’ for r€[2,v3/(2¢)).

Observe that p¢(Npg,e = 0) > 0 for all r € [1,\/3/(2 E)), so (PC2) holds with the second
derivative. (PC3) in the second derivative form follows from continuity of @4 (Npg,€) in € and
(PC4) follows from continuity of o2(r,¢) in €.

Next, we find
Npp,e=0) _ ps(Npp,e =0)

o B =
Cs(p(r)) = lim non(r,e =0) v(Npg)

where numerator is given in Equation 5.4.5 and denominator is given in Equation 5.4.3. We
can easily see that Cs(p(r)) > 0, since Cs(p(r)) is increasing in r and Cs(p(r = 1)) > 0. Then

(PC5) follows. So under segregation alternatives H?, the PAE of p,(Nby) is given by

1 r — 2
PABS (V) = C3(p(r)) = LECREZ=0)
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Figure 5.4.17: Pitman asymptotic efficacy against segregation (left) and against association
(right) as a function of r.

In Figure 5.4.17 (left), we present the PAE as a function of r for segregation. Notice that

PAES (N3 = 160/7 ~ 22.8571, lim, o, PAE®(N}hj) = co. Based on the PAE analysis, we

suggest, for large n and small ¢, choosing r large for testing against segregation. However, for

small and moderate values of n, normal approximation is not appropriate due to the skewness

in the density of p,(N§g), Therefore, for small n, we suggest moderate r values.

PAE analysis is local (around € = 0) and for arbitrarily large n. The comparison would hold

in general provided that u(Np g, €) is convex in ¢ for all £ € [0, V3/ 3). As an alternative, we fix

an ¢ and then compare the asymptotic behaviour of p,(Np ) with Hodges-Lehmann asymptotic

efficacy (HLAE) in Section 5.4.9.1.

5.4.8.2 Pitman Asymptotic Efficacy Under Association Alternatives

Consider the test sequences p(r) = {pn(Npg)} for sufficiently small € > 0 and r € [1, c0).

In the PAE framework of Section 2.7.2.1, 0 = ¢ and §y = 0. Suppose, p,(g) =

pa(NE g, €). Fore € [O, (7V3-3V15) /12~ .042),

6
pa(Npg,e) =Y w;(r,e) I(r € T;)
j=1

with the corresponding intervals Z; = [1, (1+2v3e)/(1— \/35)), Ty = [(1 +2v3¢) / (1-V3e),
4 (1-v3e) /3),Ta = [4 (1-V32) /3,4 (1+2v3e) /3),Za = [1 (1+2V3¢) /3,3/(2 (1 - V3¢))),
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Is = [3/(2 (1- \/55)),2), and Zg = [2,00). Notice that as e = 0, only Z; for j € {2,4,5,6} do
not vanish, so we only keep the components of ps(N}p,€) on these intervals. See Appendix
Section B.4.2 for the explicit form of pa(Nhg,e) and Appendix Section B.3 for derivation.

Furthermore,

(n—-2)

o2 (e) = Var 2(pn(Npg)) = n(n—1)

Varf[hlz(N};E)H Covf[hlz(N};E), h13(Npg)]

2n(n—1)

whose explicit form is not calculated, since we only need lim,, oo /10y (€ = 0) = ¥(N&g) which
is given Equation 5.4.3.
(PC1) follows for each r € [1,00) and ¢ € [0,1/3/3) as in the segregation case.

Differentiating pa (N5, €) with respect to €, then we get

wa(Nppg,€) = @15(r, ) I(r € [1,4/3)) + @ 4(r,e) I(r € [4/3,3/2))

+ @ 5(r,e) I(r € [3/2,2)) + wy 6(r,6) I(r € [2,00))
where

w o(r,€) = —2 [\/:E(—1152 rted + 720 V31t — 2887t e + 11 V3 7% 42592312 — 10368 /3 7e?
3 3
+432/37 + 6480 v/3<> — 864 V3r + 432/3) <] /[(~6c + V3) (6 +v3) 2],
@ 4(r,e) = —2 [\/?_,(—1152 re? 1720 V3 rte? — 28871 + 111374 — 12963122 + 108 v/312

— 216032 — 144\/5)5]/“—6e+ \/5)3 (65+\/§)3r2],

2 (3rt — 7272 — 2402 + 1927 — 124)

! —
@1,5(r:€) = r2(12e2 — 1) ’

40¢

! —
Z16(8) = ~ a2 — 1

Hence p'y (N5 g, e = 0) = 0, so we differentiate p'y (Nhg, ) with respect to € and get

:U'iéll(ngE’E) = wlll,2(ra E) I(T’ € [174/3)) + wlll,4(7'a E) I(T € [4/37 3/2))

+@15(r ) I(r € [3/2,2)) + @y s(r,€) I(r € [2,00))
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where

@i 5(r,e) = -6 [\/5(—27648 rte® 4 25920 v/3rtet — 18432 74¢% 4 2820 v/3rte? 4 93312 /3 12
— 576 7% ¢ — 373248 V3ret + 113 1" + 33696 V3 r2e? + 233280 V3 — 82944 /3 re?

+ 432372 + 45360 V3<% — 864 V37 +432«/§)]/[(65+\/§)4 (—65+\/§)4r2],

! 4(r,6) = —6 [\/:? (—27648 red 4 25920 V3 it — 184327463 + 2820 V3 11e? — 46656 /32t
— 576 e + 113 + 259231262 — 77760 v/3e* + 108 V372 — 15120 /32 — 144 \/3‘,)]

4 4
/[(65+\/§) (—65+\/§) 7'2],
_ 2(1807%* 4 37 — 43207%% — 8640 + 11520 7¢® — 727° — 8160 + 1927 — 124)

wy5(r,e) = r2(12e2 — 1)* ’
40 (3622 + 1)
" - 7
w1,6( ) ) - 7‘2(1262 _ 1)3'
Thus,
)
—2,2 419271 — 9672 - 96, for r € [1,4/3),
—22,2 4 39,72 _ 24 for r€[4/3,3/2),
HA(Np e = 0) = (5.4.6)

—672 —384r 1 +248r 2+ 144, for r€[3/2,2),

—407r~2 for r€[2,00).

\

Note that p'4(Nbp,e = 0) < 0 for all r € [1,00), so (PC2) follows with the second derivative.

(PC3) and (PC4) follow from continuity of p'y (Npp,€) and o2(r,€) in €.

— T wa(Npg,e=0) _ pa(Npg,0) o
Next, we find Ca(p(r)) = lim,, 0 im0y = \*}V (;ZE) , by substituting the numerator

from Equation 5.4.6 and denominator from Equation 5.4.3. We can easily see that C4(p(r)) < 0,

for all 7 > 1. Then (PC5) holds, so under association alternatives HA, the PAE of p,(Npy) is

(W4 (Np e = 0))

PAEA(NE) = C4(p(r)) = v(NLL)

In Figure 5.4.17 (right), we present the PAE as a function of r for association. Notice that
PAEA(N3g!) = 174240/17 ~ 10249.4118, lim, o, PAEA(NF ;) = 0, argsup,[1 o) PAE* (N5 ) &
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1.006 with supremum = 10399.7726. PAE*(N%,) has also a local supremum at r; ~ 1.4356
with local supremum = 3630.8932. Based on the PAE analysis, we suggest, for large n and small
€, choosing r small for testing against association. However, for small and moderate values of
n normal approximation is not appropriate due to the skewness in the density of p,(Npg).
Therefore, for small n, we suggest moderate r values.

We also calculate Hodges-Lehmann asymptotic efficacy for fixed alternatives in Section

5.4.9.2.

5.4.9 Hodges-Lehmann Asymptotic Efficacy

Unlike PAE, HLAE does not involve the limit as € — 0. Since this requires the mean and,
especially, the asymptotic variance of p,(NEy) under an alternative, we investigate HLAE for

specific values of e.

5.4.9.1 Hodges-Lehmann Asymptotic Efficacy Under Segregation Alternatives

In the HLAE framework of Section 2.7.2.2, § = E %[p,(N5g)] = ps(Npg,€) and 6o = u(Nbg).

Then testing Ho : ¢ = 0 versus HY : ¢ > 0 is equivalent to Hy : E[pn(Npg)] = w(Npg)

versus H? : EZ[p,(Nbgp)] = us(Nbg,e) > w(Nbg). Let d(r,e) = ps(Npg-e) —(Npg) o4

\/VS (N;E,E)
R(r) = expel lNEs) hen R(r) 5 N(0(r,e),1)-
vg PE’E

Then HLAE of p,(N} ) is given by

(s (NP 2) = (N )

HLAE® (Np g, €) == 8(r,e)? =
(Npp,€) :=é(r,e) vs(NDpse)

We calculate HLAE of p,,(N},,) under H? for e = 1/3/8, e = v/3/4, and ¢ = 2/3/7.

With € = v/3/8, p,(Nhy) is non-degenerate for € [1,4), and the mean is given by

4

2287 .2 1
m’f’ — 13> fOI‘ r e [1,9/8),
4_ 3 2_
__ 5905 7*—36864 r J56122%1T02r 46656 r+13122’ for re[9/8,3/2),
T _ 4_ 3 2 .
1S (NPEJ\/S/S) = { 617" 7687 +3§139§1T72~ 5120r+2466’ for re[3/2,2),
_ 37*-422r24606 for r€[2,3)
33872 ) 19/
3r*—48 3453072768 for 7€ [2,4]
338 r2 ? ) Xy
\
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and the variance is given by vs (Npgr,V/3/8) = Z;il vj (r,v/3/8) I(Z;) where

v (r, \/5/8) = [9959911 r'% — 46006272 r° — 430526 r® + 258785280 " — 385799609 r° + 162699264 r°
— 83976048 7 + 201277440 r> — 129392640 r2 + 12939264] / [104104845 1"4],

v (r, \/5/8) = [9959911 0 — 46006272 r° — 430526 r® + 258785280 " — 415110891 r® + 272331072 r°
— 158725008 7* — 16174080 ° + 315394560 > — 310542336 7 + 90574848] / [104104845 r4] ,

vs (r, \/5/8) = [3144167 ™ 415335424 r'' — 378655166 70 + 2750459904 r° — 11800111467 r°
+ 31878202752 7" — 54792387144 r° + 60339341664 r° — 42745183272 r* + 19903426272 r°
— 6790168926 1> + 1989715104 7 — 373071582] / [104104845 rﬁ],

V4 (r, \/5/8) =— [8177689 r'? — 54153216 r'' + 320428478 r'° — 2459326464 r° 4 11854698987 r®
— 32751603072 7" + 55010737224 r® — 59029241184 r° + 42131073672 r* — 20886001632 1

4 7379714142 1> — 1694942496 1 + 170415414] / [104104845 rﬁ] ,
vs (r,V/3/8) = —[8177689 1™ — 54153216 r'* + 320428478 r'* — 2450326464 r° + 12509010411 1°

— 37904305536 7 + 71918042184 r® — 88617024864 r° + 71256548232 r* — 36176875776
+ 10724592861 1° — 1694942496 r + 170415414] / [104104845 r6].
ve (r, \/5/8) =— [2718937r12 — 39596544 r' + 434455742 r'° — 3154811904 r° + 14086429683 r®
— 39680803584 17 + 72881433288 r° — 88893062496 r° + 71547681672 r*
— 36487418112 1 + 10828106973 r> — 1694942496 7 + 170415414] / [104104845 1“6],
vy (r, \/5/8) =- [1027 P12 — 19968 7' + 205626 0 — 3265792 r° + 23210081 7
— 103077696 " + 289042360 r° — 511170304 r° + 553668600 r* — 343186304 r®

+ 109133095 > — 20431008 r + 5845554] / [428415 1"6],
s (r, \/5/8) =— [637r12 — 19968 7' + 299370 7% — 3265792 r° + 23199551 r°

— 103077696 7 + 289042360 r° — 511170304 r° + 553700190 r* — 343186304

4109133095 72 — 20431008 7 + 5788692] / [428415 1"6],
vo (r, \/5/8) S [637r12 — 19968 71 4 209370 r'° — 3265792 r° + 24051519 7
— 112023360 7 + 328179640 r° — 602490624 r° + 673558110 r* — 427086848 >

+ 133604087 % — 20431008 r + 5788692] / [428415 1"6],
w10 (r, \/5/8) - [130 12 — 2496 1" + 22134 710 — 122720 #° + 452225 r® — 1010880 7 + 1075400 r°
+ 26624 r° — 1993566 r* + 5324800 3 — 5083895 1> + 303264 r — 37908] / [428415 7"6] ,
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i1 (7", V/3/8) = — [3307° — 8896 1" + 85445 r° — 342624 r° + 332000 7 + 1148560 7

— 1180986 7% — 5324800 r + 6678947] / [428415 1"4] ,

_ (3307r° — 4936 7" + 12453 r® + 47388 72 — 12992 r — 128256)(r — 4)®
iz (7"’ \/5/8) - 428415 1

I

and the corresponding intervals are Z; = [1,12/11), Z, = [12/11,9/8), Z3 = [9/8,\/6/2), Iy =
[V6/2,21/16), Ty = [21/16,4/3), Ts = [4/3,3/2), Tr = [3/2,V3), Ts = [V3,7/4), Ty
[7/4,2), Tio = [2,3), T11 = [3,7/2), and T1» = [7/2,4). See Section B.3.1 for derivation and

Figure 5.4.19 for the graph of s (Npp,v3/8) and vg (Np g, V3/8).

r — T 2
Then we get HLAE® (Npg, V3/8) = (”S(NZ’E;\}/E/?\/;(SPE)) by substituting the relevant
v pET

terms. See Figure 5.4.18.
With € = v/3/4, pn(Npp) is non-degenerate for r € [1,2), and the mean is given by

67,2 4 40, 3 for re€[l1,3/2)
54 9 ) ’ ’
ns (Npg, V3/4) =

7rt—48 r34122r2—-128 448
- - +2r2T t ’ for r € [3/272)7

and the variance is given by
5
vj (7‘, \/5/4) I(Z;)

1

vs (N;;Er, \/5/4) -

J

where

Vi (r, \/?_,/4) =— [14285 r’ — 28224 r® — 233266 r° + 1106688 r* — 2021199 r* + 1876608 >
880794 7 + 165888] / [3645 r],

Vo (r, \/5/4) = [14285 10 — 28224 r° — 233266 r° + 1106688 1 — 1234767 r° — 3431808 r°
+ 14049126 7* — 22228992 1° + 18895680 1 — 8503056 r + 1594323 /[3645 %],

vs (r, \/5/4) =— [14285 10 — 28224 r® — 233266 r° + 1106688 r” — 2545713 r® + 5903280 r°
13456044 r* + 20636208 #° — 18305190 1> + 8503056 1 — 1594323] / [3645 r4] ,

4 (r, \/?_,/4) = [104920 8 — 1110727 + 1992132 r® — 15844032 r° + 50174640 r* + 6377292

— 34012224 1 + 73220760 r2 — 81881280 r° + 1909 7% — 27072 r"] / [14580 r4],
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vs (r, \/5/4) = [—1187904 5 4 1331492 r° + 433304 72 + 611163 710 — 850240 r° — 198144 7
+ 955392 r* — 705536 r® — 387680 r'' + 1118472 r® — 1308960 r" + 175984 r'>

— 46176 7% + 51207 4 56016] / [20 r4],

and the corresponding intervals are 7y = [1,9/8), Zo = [9/8,9/7), I3 = [9/7,4/3), 14 =

[4/3,3/2),and I5 = [3/2,2). See Figure 5.4.19 for the graph of s (N5, v3/4) and vs (N5 57, v3/4).

(s (Npg,V3/4)—u(Npp))?
vs (N}:,Er,\/g/4)

Then we get HLAE® (N}, v/3/4) = by substituting the relevant

terms. See Figure 5.4.18.
With € = 2/3/7, pn(Np ) is non-degenerate for 7 € [1,3/2), and the mean is given by

_2i,2 38, g for re[1,9/7),

us (NITDEa2 \/5/7) =

4_432¢8 2_ 24
807 3 r+gf75gr 756 r+ 37 for T€[9/7,3/2),

and the variance is given by
vs (N;Er,zﬁ/7) =Sy (r,zx/§/7) 1(Z))
7j=1

where

v (r,2V/3/7) = — 249508717 — 50673421° — 20145379 " + 134149248 14 — 2307135031
+ 20226277872 — 90317349 + 16336404] / [14580 r] ,

Vo (r, 2 \/5/7) = [2495087 r10 — 506734219 — 20145379 1® + 134149248 17 — 140359071 r®
— 37858714275 + 1465530651 r* — 2206303596 ° + 178605000072 — 765450000
+136687500| / [145807%],

vs (r,2V/3/7) = — [2495087 71° — 50673421 — 29145379 1° + 1341492487 — 309668679 7°
+ 731864538 r° — 1559738349 r* + 2174176404 r* — 1767825000 7% + 765450000 r
— 136687500] / [14580 %],

va (r,2V3/7) = [1000147® — 654768 7 + 77561559 1° — 527363136 1° + 1468526760 1
+ 176782500072 — 765450000 r — 2157840000 7° + 136687500 + 24337 710

— 321426 r9] / [14580 r4] ,
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24 1 100014 181 17411 1
V5(r’2\/?—)/7) 337 o _ 17857 5 1000147 , 18188 , 174113 , 8IT6 ..

14580~ 810 | 14580 ' _ 405 ' _ 1620 ' ' 45
(876 — 10675 + 870974 — 39684 r* + 6800072 — 511927 + 14256) (27 — 3)"*
2014 ’

Vg (r,2\/?_>/7) = —

The corresponding intervals are Z; = [1,15/14), Z, = [15/14,15/13), I35 = [15/13,7/6), T, =
[7/6,5/4), s = [5/4,9/7), T6 = [9/7,3/2). See Figure 5.4.19 for the graph of us (N5 g, 2v3/7)
and vg (Np5r,2V/3/7).

r _ r 2
Then we get HLAES (N7, 2/3/7) = (5 (Nbe2 V3/T)—is(Nop 2 V3/7))

vs(Nppr2V/3/7)
relevant terms. In Figure 5.4.18 are the graphs of HLAES (N, ¢) for e € {\/3/8, V3/4, 2 \/5/7}

by substituting the

From Figure 5.4.18, we see that, under H?, HLAE® (N} g, €) appears to be an increasing
function, dependent on e, of r. Let r5(¢) be the minimum r such that p,(N}g) becomes
degenerate under the alternative HS. Then rs (v/3/8) = 4, 75 (v/3/4) = 2, and rs (2V/3/7) =
3/2. In fact, for ¢ € (0,v/3/4], rs(e) = V/3/(2¢) and for € € (V3/4,V3/3), rs(c) = V3/e — 2.
Notice that lim, ;) HLAE® (pn(Npg),€) = oo, which is in agreement with PAE analysis
because as ¢ - 0 HLAE becomes PAE, and as ¢ — 0, r5(¢) — 0o and under Hy, pp(Npp) is
degenerate for r = 0o. The above result for HLAE can also be generalized for arbitrary ¢ as

follows.

Proposition 5.4.7. Let T := argsup,c(i r(e)] HLAE®(N}%,,¢) where r5(c) is the minimum
value of r at which p,(Nby) is degenerate under HS. Then ¥ = rs(e). In particular, for
e € [0,v/3/4], rs = V3/(2¢) and for e € (v/3/4,v/3/3], rs =/3/e — 2.

2
Proof: Recall that HLAES (NT 5, ¢) = (“S(N‘;f(’]?g;g”)) . Fore € [0,v/3/4], ps(Np,) =

1 and v(Nhg,e) = 0 as r — rs(e) = v/3/(2¢). Hence HLAE®(N%,,€) — o0 as 7 — 75(e) =
V3/(2¢). Sofore € [0,v/3/4],7 =/3/(2¢). Fore € (\/§/4, \/§/3] , the result follows similarly.
|

So HLAE suggests choosing r larger as the segregation gets more severe, but choosing r too
large will reduce power since r > rs(e) guarantees the complete digraph under the alternative
and, as r increases therefrom, provides an ever greater probability of seeing the complete digraph
under the null.

In Figure 5.4.19, we plot the graphs of mean and asymptotic variance for r € [1,4] under seg-
regation with ¢ € {0,v/3/8,v3/4,2+/3/7}. Notice that pus(Nphy,€) gets larger as e gets larger

at each r which is in agreement with the pus(N} g, ) expressions in Appendix Section B.4.1.
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Figure 5.4.18: Hodges-Lehmann asymptotic efficacy against segregation alternative HY as a
function of r for e € {V/3/8,v/3/4,2/3/7} (left to right).
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Figure 5.4.19: The mean ps(Npg,€) (left) and asymptotic variance vs(Npg,€) (right) as a
function of 7 under segregation with ¢ € {0,v/3/8,v/3/4,2+/3/7}.

However, the same ordering holds for vg(N}p,€) at each r only for large r, but for small 7 the
ordering is reversed. Furthermore, both the sup,.c(; ) ¥s(Npg,€) and argsup, ¢, o) Vs (Npg, €)

seem to decrease as € increases.

5.4.9.2 Hodges-Lehmann Asymptotic Efficacy Under Association Alternatives

In the HLAE framework of Section 2.7.2.2,0 = EA[p,(Np)] = pa(Npg,e) and 8y = pa(Npg, e =
0). Then testing Hy : € = 0 versus H, : € > 0 is equivalent to Hy : E [p,] = p(Npg) versus H, :
EAlpn] = pa(Npp,e) < p(Npp). Let o(r,e) = “allbn) MNee) and R(r) = Lolen ilie),

on(r,e) on(r,e)
then R(r) 5 N(é(r,e),1).
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Hodges-Lehmann asymptotic efficacy (HLAE) [16] is given by

2
A — 2 _ (ra(Npg:€) — B(Npg))
HLAE”(Npg,¢e) = d(r,e)* = AN e) .

Rather than an arbitrary e we pick specific values: 5+/3/24, v/3/12, and v/3/21. Recall that
pn(Npg) is degenerate as r — oo. Furthermore, p, (N5 ) is degenerate when r = 1.

With & = 5/3/24, the mean is given by

—%7’72+%, for rel[l,3),
NA(N,’;E,5\/§/24): Lp2 _8p_ 85,2410 for ye[3,4),

_% r2 +1 fOI', (S [45 OO)’

and the variance is given by

va (N;E,5\/§/24) -

5
Jj=

vi (r,5V3/24) 1(Z;)

1

where

" (7‘, 5 \/3/24) %

Vo (r, 5 \/5/24) = [120 710 — 2176 1° + 1534078 — 50304 77 + 58754 r° + 74880 7° — 248577 rt
+ 1382407 + 4717272 + 23328 1 — 7305] / [405 rG] ,

Vs (r, 5 \/5/24) =- [120 10— 217679 + 15180 18 — 4896017 + 58754 r® + 4744015 — 176547 r*
+ 1382407 — 7047712 + 23328 1 — 7305] / [405 rﬁ] :

vy (7‘, 5 \/3/24) - [10 P12 — 10271 + 1320710 — 2044 1° — 759078 + 4992077 — 69986 ¢ — 46480 °

+ 18413714 — 1433607 + 71917 r2 — 235207 + 7315] / [405 r6] :

787 r% — 7601 r2 — 16032 + 9265
Y5 (’"’ 53/ 24) - 13576 '

The corresponding intervals are 7, = (1,3), Zo = [3,7/2), Ty = [7/2,2+\/§), T, = [2+\/§, 4),
and Zs = [4,00). See Figure 5.4.21 for the graph of pa (Npg,5v3/24) and va (Npg,5v3/24).

r _ r 2
Then we get HLAE" (Np5,5/3/24) = (HA(NPAE(’IF:,\T/E/: 25 /ZS)VPE)) by substituting the rele-
v PE>
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vant terms. See Figure 5.4.20.

With € = 1/3/12, the mean is given by

6r'-16r°4187°=5 gy g [1,2),
" (N}TDE;\/g/IQ) = 18 r2
7 241, for r€[2,00),

and the variance is given by
3
4 (N,’;E,\/§/12) =3y (r, \/3/12) 1(Z;)
7j=1

where

” (r, \/3/12) = [10 P12 — 96711 4+ 240710 4+ 19279 — 1830+ + 336077 — 2650 16 + 240 1
4138374 — 128073 + 54072 — 1447 + 35] / [405 rﬁ] ,
Vo (r, x/§/12) = [10r12 — 9671 + 240710 + 1921° — 167078 + 2784 17 — 265076 + 2400 7

— 104774 — 128073 + 126972 — 1441 + 35} / [405 r“] ,

537r% — 68372 — 2448 r + 1315
(r, \/5/12) 4057

The corresponding intervals are 7; = [1,3/2), I = [3/2,2), and Z3 = [2,00). See Figure 5.4.21
for the graph of pa (NIQE, \/5/12) and vy (NIQE, \/5/12).

2
Then we get HLAE* (N5 5,v/3/12) = (”A(NPE(’\/_/ 1?} /’IL;])VPE)) by substituting the relevant
PE’

terms. See Figure 5.4.20.
With ¢ = 1/3/21, the mean is given by

.
7839 r*—27648 r +49152 2 —35840 r+9216

for re€[1,8/7),

16200 72
2719 r*—5592 7>+ 5760 r2—1536
r ot , for r € (8/7,3/2),
4 | ¢ 3 2
) 53742744 r 72772(;906:2 48064 r73104’ for r € (3/2,12/7),
A (Npe, v3/21) = 4
4 2
2719 r 1612%)%]072 +21127 for r c (12/777/4)7
__ 2401 7% —73szzi6r20461T53664 r— 88548 for 1€ (7/4,2),
-8 for r€[2,00),

\
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and the variance is given by

A (Npp, V3 /21)=ZO (rv3/21) 1Z)

where

v (r, \/5/21) = [4124031 % — 22708224 7' — 389826 r'° + 369129408 r° — 1592672721
+ 3532359672 r” — 4721848374 r°® 4 4050858048 r° — 2387433568 r* + 995033088 7>
200048784 % — 43352064 r + 25952256] / [65610000 re] ,

vo (r, \/5/21) = [6594660 7% — 31178952 r'" — 14911074 r'® + 441735648 77 — 1578842961 °
+ 3311083512 r” — 4669163574 r° 4 4366966848 r° — 2522908768 r* + 778272768 >
— 93443280 > + 14450688 1 — 8650752] / [65610000 7"6],

vs (r, \/5/21) = [826701 P12 — 7118748 r'' + 14155864 r'° + 18467640 r° — 104968680 r°

+ 165877272 r" — 128355690 r® + 27338184 75 + 47304144 r* — 52684800 r*

+ 24413592 1% — 7225344 1 + 1966080] / [32805000 7"6] ,
va (r, \/5/21) = [826701 P12 7118748 r1t 14155864 10 + 18467640 r° + 20074008 7
— 671672808 77 + 2194076310 r® — 3382581816 r° + 2840904144 r* — 1262284800 r°

4 240413592 7% — 7225344 7 + 1966080] / [32805000 rﬁ],
vs (r, \/5/21) = [826701 12 — 7118748 r'! + 14155864 r'° + 18467640 r° — 137116617 r°

+ 512952192 7" — 1511673690 r° + 2773418184 r° — 2883095856 * + 1560115200 r*

— 335586408 r2 — 7225344 1 + 1966080] / [32805000 rﬁ],

ve (r, \/5/21) = [826701 r1? — 7118748 r'* + 14155864 r'° + 18467640 r° — 91939401 r®
+ 125718912 77 — 128697690 r° + 139178184 r° — 60695856 r* — 52684800
4 48413592 1% — 7225344 7 + 1966080] / [32805000 TG] ,

vy (r, \/5/21) = [226415 r'? — 1426740 r'' + 334536 7'° + 17196648 r° — 87678147 r®

+ 311364480 r7 — 711864862 r® + 944809880 r° — 684036240 r* + 238099456 r>

— 24048504 7% — 7633920 r + 4761088] / [10935000 rﬁ] ,
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ve (r, \/5/21) = [5786907 12 — 42712488 r'! + 76274888 70 + 51865788 r® — 300043296 7
+ 132202536 7° + 171413760 r° — 93614976 r* + 147517440 r* — 194460480 7
+ 67608576 1 — 29061120] / [262440000 rﬁ] ,

Vo (r, \/5/21) =— [2470629 r'? — 25412184 r*! + 112001848 r'° — 1958438076 r®

+ 5449924256 77 + 6150612888 r® — 55820599296 r° + 109663683136 *

— 97335694848 1> + 40552466112 r2 — 9825887232 1 + 3078523200] / [262440000 r6] ,

493829 rt — 433645 1% — 1765008 r + 929955
V1o (r’ v3/ 21) = 455625 1 ‘

The corresponding intervals are Z; = (1,2\/ﬂ/7), Iy = [2 V14/7, 8/7), I3 = [8/7,5/4), Iy =
[5/474/3)a Iy = [4/35 10/7)7 Is = [10/73 3/2)7 Ir = [3/27 12/7)3 Is = [12/757/4)7 Iy = [7/47 2);

and 719 = [2,00). See Figure 5.4.21 for the graph of pua (NIT;.E, \/5/21) and v4 (NIT;.E, \/5/21).

(pa(NppV3/21)—p(Npp))®
va(N3g,V3/21))

Then we get HLAE? (N}, v/3/21) = by substituting the relevant
terms. See Figure 5.4.20.
Notice that for e = 5/3/24 and ¢ = v/3/12, argsup, >4 HLAE#(N5,e) = 1. This result for

HLAE can be generalized for arbitrary € as follows.

Proposition 5.4.8. Let r* := argsup, >4 HLAE*(Nbj,¢) and € > /3/12. Then r* =1.

Proof: Recall that HLAE4(N% . ¢) = (”A(fo(’jv);j;gv?r?)f. For ¢ € [\/3/12, \/5/3),
pa(Nbp = 1,6) = 1 and vg(Nhy = 1,6) — 0. Hence HLAEA (N5 ,,6) — o0 as 7 — 1.
So the desired result follows. B

Fore € [O, \/5/12] , it seems that for a while 7* = 1 with respect to HLAE, e.g.,for ¢ = v/3/21.
But for sufficiently small £, r* > 1 holds. This can also be seen as ¢ — 0 in which case HLAE
becomes PAE and the optimal value is about 1.006 with respect to PAE. Furthermore, observe
that the argsup for HLAE gets closer to 1 as e — 0 and v4(Npg,e) > 0 fore € (0, \/5/12) and
V(Npg,€) gets larger as e — 0.

Figure 5.4.20 contains a graph of HLAE against association as a function of r for ¢ €
{51/3/24, v/3/12, \/3/21}. Notice that since v4 (N5, e) = 0fore > /3/12, HLAEA(NiZ,¢) =
oo for £ > \/3/12 and lim,_, HLAEA(NIT,E,e) = 0. In Figure 5.4.20 we see that, against HEA,

HLAE#(N}j,€) has a local supremum for some 7 > 1. Let 7; be the value at which this local

supremum is attained. Then 7 (5/3/24) ~ 3.2323, 7 (V/3/12) =~ 1.5676, and 7 (v/3/21) =~
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Figure 5.4.20: Hodges-Lehmann asymptotic efficacy against association alternative H” as a
function of r for e € {V/3/21, v/3/12, 5/3/24} (left to right).

0.87

\\MA (Npi5v/3)24) ™ ““‘““f
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0.4

0.2

Figure 5.4.21: The mean ps(Npg,e) (left) and asymptotic variance va(Npp, ) (right) as a
function of r under association with £ € {0,/3/21,v3/12,5/3/24}.

1.533. Note that, as £ gets smaller, 7; gets smaller. Furthermore, HLAE“ (r =1, \/3/ 21) < >
and as € — 0, so 7; becomes the global supremum and PAE4(N53') = 0 and argsup,>q PAE4(
Nr57) ~ 1.006. So HLAE suggests choosing moderate r when testing against association,
whereas PAE suggests choosing small r.

Derivation of pa(Npp,€) and va(Npy, €) or association with e € {5v/3/24, v/3/12, v/3/21}
are similar to — with the supports being the complements of— the corresponding segregation
cases.

In Figure 5.4.21, we plot the graphs of mean and asymptotic variance for r € [1,8] under
association with e € {0,1/3/21,+/3/12,5+/3/24}. Notice that ua(Npy,€) gets smaller as & gets

larger at each r which is in agreement with the ps(Njp,€) expressions in Appendix Section
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B.4.2. However, the same ordering does not hold for v4(Npg,€) at each r. For small r the
ordering is same as in pa(Nbg,€), but for large r the ordering is reversed. Furthermore,
SUP,.¢[1,00] VA(Np s, €) seems to decrease as ¢ increases while argsup,.¢(1,o0) ¥4 (Npp,€) seems to

increase as € increases.

5.4.10 Asymptotic Power Function Analysis

The asymptotic power function (see e.g.,[22]) can also be investigated as a function of r, n, and

€ using the asymptotic critical value and an appeal to normality.

5.4.10.1 Asymptotic Power Function Analysis Under Segregation

Under segregation, for sufficiently large n, we reject Ho when v/n (p"(NjE)(_;f(NiE’E)) > 2(1—a)-
vs(Npgse

Then size « critical region for large samples is

pn(Npg) > p(Npg) + 2a—a) - \/V(Npg) /1.

Under a specific segregation alternative HS, the asymptotic power function is given by

Us(Npgon,e) = P(pa(Npp) > m(Npp) + 20 ) - \/v(Npg)/n)

_ e (Z(l—a) VP ONEg) | Vi (0(Np) = us(N;E,e))> |
VVs(Nbg,€) VVs(Npg,€)

With & = v/3/8, s (N}, n,€) at level a = .05 is plotted in Figure 5.4.22. Observe that
Ms(Npp,n,v3/8) — 0 as r — 4 for n € {5,10,15}. Let r;(n,€) be the the value at which
Is(Nfpg,n,€) attains its global supremum and 7} (n, €) be the the value at which IIs(Npp,n,¢€)
attains its local supremum. Then rj (5, V3/8) ~ 1.260, 7, (10, V3/8) ~ 1.3741 and r} (10,/3/8) ~
2.3818, r;(15,1/3/8) ~ 3.3724 and r}(15,/3/8) ~ 1.45, r}(20,v/3/8) = 4 and r}(20,V3/8) ~
1.5. Finally, r}(n,/3/8) = 4 for n € {20, 50,100} and IIs(N} 5,7, v/3/8) has a hump for n = 10
and n = 15.

With ¢ = v/3/4, Tls(Nhy,n,€) at level @ = .05 is plotted in Figure 5.4.23. Observe that
Og(Npg,n,v/3/4) » 1 asr — 2 for n € {3,5}. Moreover, r}(n,v/3/4) = 2, for n = 3, 5.
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Figure 5.4.22: Asymptotic power function against segregation alternative H \% /g 85 2 function
of r for n € {5,10,15,20, 50,100} .
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Figure 5.4.23: Asymptotic power function against segregation alternative H \% /4 35 2 function
of r for n = 3 (left) and n = 5 (right).
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Figure 5.4.24: Asymptotic power function against segregation alternative H \S/g /7382 function

of r for n = 3 (left) and n = 5 (right).

With ¢ = 2v/3/7, Ils(Npy,n,€) at level a = .05 is plotted in Figure 5.4.24. Observe that
Os(Npg,n,2v3/7) = 1asr — 3/2forn € {3, 5} and r}(n,2v/3/7) = 2, for n € {3, 5}.

5.4.10.2 Asymptotic Power Function Analysis Under Association

Under association, for sufficiently large n, we reject Hy when /n (p "(NjE)&C f(N’;” E’E)) < 24
VA PE’E

Then size « critical region for large samples is

pn(Npg) < W(Npg) + 20 - \/V(Npg)/n.

Under HA, we have

Ma(Npgnse) = P(pn(Npg) < i(Npg) + 2a - \[v(Npg) /)

. ( 20 V/VNEg) | Vi ((Npp) — uA<N;sE,e)))_
V VA(NITJEas) V VA(NITDEaE)

With ¢ = v/3/21, IT4o(Npy,n,€) at level @ = .05 is plotted in Figure 5.4.25. Observe that
M4 (n,r,v3/21) — .057 as r — oo for n = 5, 10, 100. Let 7 (n,e) be the value at which
I4(Nppg,n,€) attains its supremum. Then, 7 (5,v/3/21) = 2.01, and 7 (10,+/3/21) ~ 1.875,

and 7 (100, /3/21) = 1.645. Moreover, I14 (r,100,/3/21) attains a local infimum at ~ 1.065.

With ¢ = v/3/12, Ta(Npp,n,¢) at level a = .05 is plotted in Figure 5.4.26. Observe

that I14 (n,r,v/3/12) — .0766 as r — oo for n = 5, 10, 100. Moreover, 7 (5,v/3/12) ~ 1.99,
7 (10,v/3/12) ~ 1.75, and 7 (100,v/3/12) ~ 1.60. Moreover, I 4 (r,100,/3/21) attains a local

infimum at ~ 1.105.
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Figure 5.4.26: Asymptotic power function against association alternative H \’% /19 35 @ function

of r for n € {5,10,100}

With & = 54/3/24, T4 (Np,n,€) at level a = .05 is plotted in Figure 5.4.27. Observe that

IT (n,r,5v/3/24) > 1 as r — 2 for n € {5, 10}.

5.4.11 Multiple Triangle Case
Suppose Y is a finite collection of points in R? with || > 3. Consider the Delaunay triangulation
(assumed to exist) of ), where T, denotes the j'* Delaunay triangle, J denotes the number of

triangles, and Cg()) denotes the convex hull of ). We wish to test

Ho: X; “uUCr )

against segregation and association alternatives.

Figure 5.4.28 and Figure 4.6.1 are graphs of realizations of n = 100 and n = 1000 observations

which are independent and identically distributed according to U(Cg())) for |Y| = 10 and
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Figure 5.4.27: Asymptotic power function against association alternative H, 54 V/3/24 35 2 function
of r for n € {5,10}.
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Figure 5.4.28: Realization of segregation (left), Hy (middle), and association (right) for |V| = 10,
J =13, and n = 100.

J = 13 and realizations under segregation and association for the same ), respectively.

The digraph D is constructed using Njp(-,Y;) as described in Section 1.1, here for X; € T}
the three points in Y defining the Delaunay triangle T; are used as );. Let p,(Npg, J) be the
relative density of the digraph based on X,, and )Y which yields J Delaunay triangles, and let
w; = A(T;)JA(CH(Y)) for j € {1,...,J} where A(Cr(Y)) = ijl A(T}). Then we obtain the

following as a corollary to Theorem 5.4.2.

Corollary 5.4.9. The asymptotic null distribution for p,(N%g, J) conditional on W = {w1,...,ws}
forr €[1,00) is given by N(u(Np g, J),v(Npg, J)/n) provided that v(Npg, J) > 0 with

WNpg,d) = p(Npg) Sw? and
j=1
2
J J J
v(Npg,J) = v(Npgp) Y wd +4u(Npp)? |D wi— (S w? ] |, (547)
Jj=1 j=1 j=1
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where pW(Npg) and v(NEg) are given in Equations (5.4.2) and (5.4.3), respectively.

Proof: In the multiple triangle case,

WV}, 7) = Blou(Np, ] = s o 30 Blhas (V)] = 5B (o (V)

i<j

=E[I(412)] = P(X» € Npp(Xy)).

By definition of N} (-), P(X2 € Npg(X1)) = 0 if X; and X, are in different triangles. So by
the law of total probability
J

p(Npg, J) = P(Xy € Npp(X1)) = ) P(X2 € Npp(X) [{X1, Xo} € Tj) P({X1, Xa} C T))

= ZM(NFE) P({X1,X2} CTj) (since P(Xy € Npy(X1) [{X1, X2} C Tj) = u(Npp))
J

= u(Npe) S [AT/ACH )] (since P({X1, X0} € Ty) = (AT)/ACH (D))

=1

Then pu(N5g,J) = u(Npg) - (ijl wf) where p(N§ ) is given in Equation (5.4.2).

Furthermore, the asymptotic variance is

v(Npg,J) = E[h2(Npg)hs(Npg)] — E[h2(Npg)] E [h3(Npg)]

P({Xs, X3} C Npp(X1)) +2P(Xs € Npy(X1), X3 € T1 (X1, Npy))

+P({X27X3} C Fl(XlaNITDE)) -4 (M(N};Ea‘]))2'

Let Pan(Npp) = P({X2, X3} C Npg(X1)), Poc(Npg) = P({X2, X3} C [1(X1, Npp)),
and Py (Npp) := P(X» € N p(X1), X3 € T1(X1,Npg)). Then for J > 1, we have

P({X2,X3} C Npp(X1))

J
> P({X3,Xs} C Npp(X1)|{X1, X2, X3} C T;) P({X1, X2, X5} C Tj)
j=1

I
&MK

J
P (Npi) (A(T)/A(CH(Y)))” = Pan (Np ) (Z w?) :

1 =1

J

Similarly, P(X; € N} (X1), X5 € T1(X1, Npg)) = Pur(Npg) (572 w?) and P({Xz, Xs} C
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T4 (X1, Npp)) = Pac(Npg) (S w}), hence,

J
v(Npp,J) = (Pon (Npg) + 2 Py + Poag(Npg)) ngg —4 p(Npp, J)* =
j=1
2

J
v(Npg) Zw +4 p(Npg)? Zw - 2 j )
=1

so conditional on W, if v(N}, J) > 0 then v/n (pn(Np g, J) —u(Np g, J)) N N(O,v(N%g, J)).
|

2
By an appropriate application of Jensen’s inequality, we see that Ejzl wf > (Ejzl wf) .

Therefore, the covariance v(N%y,J) = 0 iff both v(N%L;) = 0 and ijl w} = (Ele w?)2
hold, so asymptotic normality may hold even when v(N}y) = 0.

Similarly, for the segregation (association) alternatives with 4 £2/3 x 100% of the trian-
gles around the vertices of each triangle is forbidden (allowed), we obtain the above asymp-
totic distribution of p, (N5, J) with u(N%g,J) being replaced by u(Nhg, J,€), v(Npg, J) by
v(Npg, J;€), l(Npg) by i(Npg,¢€), and v(Npg) by v(Npg,€).

Thus in the case of J > 1, we have a (conditional) test of Hy : X; “u (Cu(Y)) which once
again rejects against segregation for large values of p,(Npg,J) and rejects against association
for small values of p,,(NEg, J).

The segregation (with § = 1/16, i.e., ¢ = v/3/8), null, and association (with § = 1/4, i.e.,
€ = 1/3/12) realizations (from left to right) are depicted in Figure 5.4.28 with n = 100 and in
Figure 4.6.1 with n = 1000. For both n = 100 and n = 1000, for the null realization, the p-value
is greater than 0.1 for all r values and both alternatives. For the segregation realization, with
n = 100 we obtain p < 0.001 for » < 3, p = 0.025 for r = 5, and p > 0.1 for r > 10 and with
n = 1000 we obtain p < 0.0031 for 1 < r < 5 and p > 0.24 for r = 1 and r > 10. For the
association realization, with n = 100, we obtain p < 0.05 for r = 1.5, 2, and p > 0.06 for for
other values of r and with n = 1000, we obtain p < 0.0135for 1 <r < 3,p= .14 forr =1, and
p > 0.25 for for » > 5. Note that this is only for one realization of A,.

We implement the above described Monte Carlo experiment 1000 times with n = 100,
n = 200, and n = 500 and find the empirical significance levels ag(n, J) and @4(n,J) and the

empirical powers B\f (r,"/3/8,J) and Eﬁ‘ (r,+/3/12,J). These empirical estimates are presented
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r | 1 Ju/iof[e6/5] 4/3 ] v2 [32] 2 | 3 | 5 |10
n =100, N = 1000

as(n,r,J) 144 ] 141 [ .124] 101 | .095 | .087 [ .070 | .075 | .071 | .072
B3 (r,\/3/8,J) | 191 | 383 | .543 | .668 | .714 | .742 | .742 | .625 | .271 | .124
aan,r,J) 118 [ 111 [.089 | .081 [ .065 | .062 | .067 | .064 | .068 | .071
BA(r,v/3/12,J) | 231 | 295 | .356 | .338 | .269 | .209 | .148 | .095 | .113 | .167
n = 200, N = 1000
as(n,r,J) 095 [ .092 [.087 [ .077 | .073 [ .076 [ .072 | .071 [ .074 | .073
B3 (r,/3/8,J) | 135 | .479 | .743 | .886 | .927 | .944 | .959 | .884 | .335 | .105
aa(n,J) 071 ] 071 [.062 ] .057 [ .055 | .047 | .038 | .035 [ .036 | .040
BA(r,/3/12,J) | 182 | .317 | .610 | .886 | .952 | .985 | .972 | .386 | .143 | .068
n = 500, N = 1000
as(n,r,J) 089 [ .092 |.087 [ .086 | .080 [ .078 [ .079 | .079 | .076 | .081
B3(r,\/3/8,J) | 145 | .810 | .981 | .997 | .999 | 1.000 | 1.000 | 1.000 | .604 | .130
aa(n,r,J) 087 ] .085 [.076 [ .075 | .073 [ .075 [ .072 | .067 | .066 | .061
BA(r,v/3/12,J) | 241 | .522 | .937 | 1.000 | 1.000 | 1.000 | 1.000 | .712 | .187 | .063

Table 5.4.7: The empirical significance level and empirical power values under H \S/g /8 and

H\%/lz’ N = 1000, n = 100, and J = 13, at a = .05 for the realization of ) in Figure

4.6.1.

in Table 5.4.7 and plotted in Figures 5.4.29 and 5.4.30. Notice that the empirical significance
levels are all larger than .05 for both alternatives, so for the given realization of ) and n values
this test is liberal in rejecting Hy against both alternatives. The smallest empirical significance
levels and highest empirical power estimates occur at moderate r values (r = 3/2, 2, 3) against
segregation and at smaller r values (r = /2, 3 /2) against association. Based on this analysis, for
the given realization of ), we suggest the use of moderate r values for segregation and slightly
smaller for association. Notice also that as n increases, the empirical power estimates gets larger

for both alternatives.

Remark 5.4.10. The conditional test presented here is appropriate when w; € W are fixed, not
random. An unconditional version requires the joint distribution of the number and relative
size of Delaunay triangles when ) is, for instance, a Poisson point pattern. Alas, this joint

distribution is not available (see [30]). O

5.4.11.1 Related Test Statistics in Multiple Triangle Case
For J > 1, we have derived the asymptotic distribution of p,(Nhg,J) = %. Let A; be

the number of arcs and p,,;(Npg) be the relative density for the component of the PCD on
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Figure 5.4.29: Monte Carlo power using the asymptotic critical value against H \S/g /g7 35 @
function of r, for n = 100 (left), » = 200 (middle), and n = 500 (right) conditional on the
realization of ) in Figure 5.4.28. The circles represent the empirical significance levels while
triangles represent the empirical power values.
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Figure 5.4.30: Monte Carlo power using the asymptotic critical value against H \% /12 35 2

function of r, for n = 100 (left), n = 200 (middle), and n = 500 (right) conditional on the
realization of ) in Figure 4.6.1. The circles represent the empirical significance levels while
triangles represent the empirical power values.

triangle T; and n; := |X, NT}|, for j € {1,...,J}. So

d n;j(n; —1)
J J ] NT — NT‘
gin(n—l) PnJ( rE) = pn(Npg,J),

since

T s (s — i1 A

Let U, := ijl w? - pn; (Npy) where w; = A(T;)/A(Cu(Y)). Since pn;(Npp) are asymp-
totically independent, v/n (ffn — (N5 g, J)) and v/n (pn(Npg, J) — u(Npg, J)) both converge
in distribution to N'(0,v(Npg,J)).
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In the denominator of p,(NEg, J), we use n(n—1) as the maximum number of arcs possible.
However, by definition, we can at most have a digraph with J complete symmetric components
of order nj, for j € {1,...,J}. Then the maximum number possible is n; := Z;=1 nj(n; —1).

So the (adjusted) relative density is prdJJ (NEg) = % and

.A J
Pad](NPE)_Z | | Z p"j(ngE)'

Since w > 0 for each j, and Ej:1 n(n=t) — q pfb',i’J'(N};E) is a mixture of pp,(Npg).

Then E [pfld’J(Nf, E)] = u(N%Lg, J) and the asymptotic variance of pr‘Z(NIT)E) is

2
J

2
J J J
v(Npg) Zwi/ Zw]z +4p(Nbg)? wa/ Zw? —-11]|.0
j=1 i=1

i=1 i=1

| =

5.4.11.2 Asymptotic Efficacy Analysis for J > 1

The PAE, HLAE, and asymptotic power function analysis are given for J = 1. For J > 1, the
analyses will depend on both the number of triangles as well as the relative sizes of the triangles.
So the optimal r values with respect to these efficacy criteria for J = 1 do not necessarily hold
for J > 1, so the analyses need to be updated, given the values of J and W.

Under segregation alternative HY, the PAE is given by
. 2

Ng(NPE‘J Je = 0))

V(NITJE‘v J)

5\ 2
( 5(Npg,e =0) EJ 1“’;‘) (

T J 3 T )2 J 3 J 2 2\

v(Npg) Do wi +4pu(Npg)? | Xoi wi — <Zj:1 wj)

PAE](Npp) = (

Under association alternative H# the PAE is similar.

In Figure 5.4.31, we present the PAE as a function of r for both segregation and association
conditional on the realization of ) in Figure 4.6.1. Notice that, unlike J = 1 case, PAEJ (N5 ) is
bounded. Some values of interest are PAES (NEZ!) = .3884, lim, o, PAES (N5 ;) = (8 E}']=1 w?) /
(256 (Z] LW — (ijl wf)2>) ~ 139.34, argsup,.¢[; o PAES(N5) ~ 1.974. As for associ-
ation, PAES (N3z!) = 422.9551, lim,_,oo PAE} (Nj ) = 0, argsup,»; PAE (Njg) ~ 1.5 with

PAE‘}(NIZ?'S) ~ 1855.9672. Based on the asymptotic efficacy analysis, we suggest, for large n
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Figure 5.4.31: Pitman asymptotic efficacy against segregation (left) and association (right) as a
function of r with the realization of ) in Figure 5.4.28. Notice that vertical axes are differently

scaled.

and small €, choosing moderate r for testing against segregation and association.

Under segregation, the HLAE is given by
Npg: .€) = t(Npp, J))?
HLAES N7 ,€ .— (/J’S( PE> PE>
J( PE) ) VS(NEE;J;E)
2
(1s(Npgse) (S)mw?) = n(Npg) (S w?))
r J 3 T 2 J 3 J 22\
vs(Npg,€) Zj:l w; +4ps(Npg,e€) Zj:l wy — (23:1 wj)

Notice that HLAES (N5y),e = 0) = 0 and lim_, o, HLAES(N5,),€) = 0.
We calculate HLAE of p,,(Nbhp, J) under HS for e = v/3/8, ¢ = v/3/4, and e = 2/3/7. In

Figure 5.4.32 we present HLAES (N5 ), €) for these & values conditional on the realization of )

in Figure 5.4.28.
Note that with ¢ = v/3/8, HLAE] (r = 1,V/3/8) & .0004 and argsup,¢|; o) HLAE] (N5,

~ .0544. With ¢ = v/3/4, HLAE] (Npp) = 1,V/3/4) ~

V3/8) ~ 1.8928 with the supremum
0450 and argsup,.c(; o] HLAE] (Nj 5, v/3/4) ~ 1.3746 with the supremum = .6416. With ¢ =

2v/3/7, HLAES (Npp) = 1,2+/3/7) ~ .045 and argsup,.(; o) HLAES (Npj),2v/3/7) ~ 1.3288
with the supremum ~ .9844. Furthermore, we observe that HLAE7 (N5g),2V3/7) > HLAE]

(r,v/3/4) > HLAES (Npp,V/3/8) at each r. Based on the HLAE analysis for the given ) we

suggest moderate r values for moderate segregation, and small r values for severe segregation.
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Figure 5.4.32: Hodges-Lehmann asymptotic efficacy against segregation alternative HY as a
function of r for ¢ € {v/3/8,/3/4,2+/3/7} (left to right) conditional on the realization of ) in
Figure 5.4.28.
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Figure 5.4.33: Hodges-Lehmann asymptotic efficacy against association alternative HA as a
function of r for ¢ € {v/3/21,v/3/12,5+/3/24} (left to right) conditional on the realization of Y
in Figure 5.4.28.

The explicit form of HLAE}(N5y),¢) is similar which implies HLAES (N5),e = 0) = 0
and lim,_,o HLAES (N5),€) = 0.

We calculate HLAE of p, (N5, J) under HA for ¢ = /3/21, ¢ = v/3/12, and € = 5/3/24.
In Figure 5.4.33 we present HLAES (N, €) for these ¢ values conditional on the realization of
Y in Figure 4.6.1

Note that with e = v/3/21, HLAE] (N7, v/3/21) & .0009 and argsup,.c(; o) HLAES (N},
V3/21) ~ 1.5734 with the supremum ~ .0157. With ¢ = v/3/12, HLAE] (Nj3',v3/12) ~
0168 and argsup,c(; o) HLAES (Nb 5, v/3/12) ~ 1.6732 with the supremum = .1818. With
e = 5v/3/24, HLAE] (Np3',5v/3/24) ~ .0017 and argsup,cj; o) HLAES (N5y),5/3/24) ~
3.2396 with the supremum = 5.7616. Furthermore, we observe that HLAE/ (Npp),5v3/24) >
HLAE? (N5p,v/3/12) > HLAE] (Nbp,1/3/21) at each r. Based on the HLAE analysis for the

given Y we suggest moderate r values for moderate association and larger r values for severe
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association.

5.5 Relative Density of Random 7-Factor Central Similarity Proximity

Catch Digraphs

We have defined the 7-factor central similarity proximity maps and the associated random
digraphs in Section 3.3.3.

The test statistic used here is the relative density p,(NZg) = p(Xn;h,Nig, M) where
N{g defined with M-edge regions. The asymptotic distributions under both the null and the
alternative hypotheses are determined in Sections 5.5.1 and 5.5.2 by using the standard U-

statistic central limit theory. Pitman asymptotic efficacy is analyzed in Section 5.5.7.

5.5.1 Asymptotic Normality Under the Null Hypothesis

First, we present a “geometry invariance” result which will simplify our subsequent analysis by

allowing us to consider the special case of the equilateral triangle.

Theorem 5.5.1. Suppose X,, is a random sample from U(T(Y)). Then for any T € [0,1] the

distribution of pn, (Ngs) is independent of ) and hence the geometry of T()).

Proof: Similar to the proof of Theorem 4.7.3. B

Based on Theorem 5.5.1 and our uniform null hypothesis, we may assume that T'()) is a
standard equilateral triangle with Y = {(0,0), (1,0), (1/2,v/3/2) } henceforth for p, (N7g).

For our 7-factor central similarity proximity map and uniform null hypothesis, the asymptotic
null distribution of p, (N74) can be derived as a function of 7. Let u(NZg) = E[p,(NZg)] and
v(Ngs) = Cov [hia (N, M), hua(Ngs, M)

Lemma 5.5.2. The expected relative density for NZg(-, M) with M € T(Y)° is E [p,(NZg)] =
72/6.

Proof: For 7-factor M-central similarity proximity regions, recall that Zs (N5 g, M) C {M}
with Zs (NZg, M) = {M}form =1, #s (NLg, M) = 0 for 7 € [0,1). Without loss of generality,
assume M = (mq, ma) with my > ¢, then

3

P(X, € N5g(X1,M)) = > P(Xz € Nig(X1, M), X1 € Ru(e;)).
j=1
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The geometry invariance of pu (N5 g, M) can be proved as in Theorem 4.7.3. So we consider
the standard equilateral triangle T-.
In Rps(es),

mi  pmox/mq A ))
P(X2 € NgS(Xl,M),Xl S RM(63)) :/ / dyd:c
0

(1 M1) A Ncs((xay) )) — 2n’L
/m/ o dydz = /37> my /9.

(NE'S((may)a M
A(T())?

where A(NES(($7y)7M)) = \/57—221/2.

In RM(el)J
(1— z)A T,
P(X2 € NZg(X1,M), X1 € Ry ( 61 /1 /Cm NC?((( S)U))Q,M)) dyda+
V(=2) A(NZ((z,9), M) ,
/m1/2(1 " C:Z O dydz =371 (\/g(l—ml)—mz) /18.

472 \/5(3 (1—m)—x/§y)2
9 (ma+v/3 (m1—1))”

(2m2 \[) z+mi1v3—m2

2m1 1

where A(NES((-T,Z/);M)) =
In RM(62)7

and Lo () =

/ﬁw AWNEs (@), 0D) |

1/2 T,
P(X3 € Nig(X1, M), X1 € Ru(e2)) =/0 y A(T(Y))?

[ 5 (e

VAT (1-Via)’

where A(NZg((z,y), M)) = ()

Therefore

W(NEs) = p(NEs, M) =12/6. B

Notice that pu(NZg, M) is not only independent of the geometry of T'()) but also of the
choice of M. See Figure 5.5.1 for the plot of u(NZg) for T € [0,1].

By detailed geometric probability calculations, the asymptotic variance of the relative density
of the -factor central similarity proximity catch digraph can be explicitly computed. The central
limit theorem for U-statistics then establishes the asymptotic normality under the uniform null

hypothesis. These results are summarized in the following theorem.
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Figure 5.5.1: The asymptotic null mean u(NZg) for NZg(-, M) (left) and asymptotic null
variance v(N(g) from Equation 5.5.2 in Theorem 5.5.3 (right).

Theorem 5.5.3. For 7 € (0,1], and NZg4(-, M¢)
Vit (0n (VE3) = 1(N5)) 5 A (0,/o(V) ) (551)

where

(675 — 37 — 2573 + 72 + 497 + 14)

#(NGs) =7°/6 and v(NEs) = Br+D2T+1)(7+2)

(5.5.2)

Fort =0, p, (N(T;S) is degenerate.

See Lemma, 5.5.2 for the derivation of the mean and Appendix Section C.2 for the derivation
of the variance.

Consider the form of the mean and the variance functions, which are depicted in Figure
5.5.1. Note that u(NZg) is monotonically increasing in 7, since NJg(z, M) increases with 7
for all z € T(Y)°. In addition, u(NZ5") = 1/6 and pu(NZ3%) = 0. Note also that u(NZg) is
continuous in 7.

Regarding the asymptotic variance, note that v(NZg) is continuous in 7 and v(NZ3') =
7/135 and v(NZ35°) = 0 — there are no arcs when 7 = 0 a.s.— which explains why p,,(NZ3°%)

is degenerate.
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Figure 5.5.2: The graph of w(NZg) = Var [h12(NZg, Mc)] as a function of 7.

To illustrate the limiting distribution, 7 = 1/2 yields

1/2y 1/2
Vit (o (NEG) = (V) 50 (o, (22) ~ 1/24) S 01

v(NS)

or equivalently,

1/2\ approx i 19
pn(Nos) N (24’ 2880n> ‘

The finite sample variance and skewness may be derived analytically in much the same
way as was Cov [h12(Nig, Mc), h13(NEg, Mc)] for the asymptotic variance. In particular, the

variance of hi2(Nfg, Mc) is

T3(837+463-97%—27%—1173
( -;(T+3)(2T+5) ) for T €[0,1/2),

w(Ng.S) =

204 5 =.2 _3
it thi_‘_g; ), for 7e€[1/2,1].

In Figure 5.5.2 is the graph of w(N(g). Note that w(r = 0) = 0 and w(r = 1) = 23/63 ~
.3651. Furthermore, w(NZg) is an increasing continous function of 7.

In fact, the exact distribution of p,, (Ng s) is, in principle, available by successively condition-
ing on the values of the X;. Alas, while the joint distribution of hi2(NZg, Mc), hi3(Nlg, Mc)
is available, the joint distribution of {h;;(Nig, Mc)}i<i<j<n, and hence the calculation for the
exact distribution of p, (Ng), is extraordinarily tedious and lengthy for even small values of n.

Figure 5.5.3 indicates that, for 7 = 1/2, the normal approximation is accurate even for small
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Figure 5.5.3: Depicted are p, (Né/;) RN (%5 35m—) for 10, 20, 100 (left to right). His-

tograms are based on 1000 Monte Carlo replicates. Solid curves represent the approximating
normal densities given in Theorem 5.4.2. Note that the vertical axes are differently scaled.
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Figure 5.5.4: Depicted are the histograms for 10000 Monte Carlo replicates of pig (Né/; ) (left),

p10(N2/2) (middle), and pio(Ng) (right) indicating severe small sample skewness for small
values of .

n (although kurtosis and skewness may be indicated for 10, 20). Figure 5.5.4 demonstrates,

however, that the smaller the value of 7 more severe the skewness of the probability density.

5.5.2 Asymptotic Normality Under the Alternatives

Asymptotic normality of relative density of the proximity catch digraph can be established under
the alternative hypothesis of segregation and association by the same method as under the null

hypothesis.

Theorem 5.5.4. Let pus(NZg,€) be the mean, EZ[p,(NZg)] and vs(Nig,e) be the covari-
ance, Cov S[h12(NGg, Mc), hi3(NEg, Mc)] for 7 € (0,1] and € € (0, \/3/3) under HS, then
Vn(pn(NZg) — us(Nig,€)) =Y (0,v5(N%g,€)) for the values of the pair (1,€) for which

vs(NEg,€) > 0. Likewise for HA.
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Sketch of Proof: Under the alternatives, i.e., € > 0, pj, (N(T;S) is a U-statistic with the
same symmetric kernel h;;(NZg, Mc) as in the null case. Under HY, the mean ps(NZg,¢) =
EZlpn(NZs)] = EZ[Ma(NEg, Mc)]/2, now a function of both 7 and ¢, is again in [0,1].
vs(NEg,€) = Cov Z[ha(NEg, Mc), his(NGg, Mc)], also a function of both 7 and ¢, is bounded
above by 1/4, as before. Thus asymptotic normality obtains provided that vg(NZg,e) > 0;
otherwise p,(NZg) is degenerate. Likewise for HA. The explicit forms of pus(NZg,e) and

pa(NZg,¢€) are given, defined piecewise, in Appendix Section C.3. Note that under HY,

vs(N&g,e) > 0iff (1) € (0,1] x (0,3\/5/10] u (%,1} x (3\/5/10,\/5/3),
and under HA,

va(NEs,e) > 0iff (r,2) € (0,1] x (0,v/3/3) .M

Notice that under the association alternatives any 7 € (0,1] yields asymptotic normality
for all € € (0, V3/ 3), while under the segregation alternatives only 7 = 1 yields this universal

asymptotic normality.

5.5.3 The Test and Analysis

The relative density of the central similarity proximity catch digraph is a test statistic for the
segregation/association alternative; rejecting for extreme values of p, (N(Tj S) is appropriate since
under segregation we expect p, (NZg) to be large, while under association we expect pp(NGg)

to be small. Using the test statistic

R(Nzg) = Vilen(Nes) — n(Nes)) (5.5.3)

v(NGs)

the asymptotic critical value for the one-sided level a test against segregation is given by

2e =711 - ).

Against segregation, the test rejects for R(N(T;S) > zo and against association, the test rejects

for R(N(T;S) < Zl—q-
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5.5.4 Consistency

Theorem 5.5.5. The test against HS which rejects for R(NGg) > za and the test against HA

which rejects for R(NZg) < z1—a are consistent for 7 € (0,1] and £ € (0,v/3/3).

Proof: Since the variance of the asymptotically normal test statistic, under both the null
and the alternatives, converges to 0 as n — oo (or is degenerate), it remains to show that
the mean under the null, u(NZg) = E[p,(NZg)], is less than (greater than) the mean under
the alternative, pus(NZig,¢) = EZ[pn(NZg)] against segregation (ua(NZg,€) = E2[pn(NEGg)]
against association) for ¢ > 0. Whence it will follow that power converges to 1 as n — co.

Detailed analysis of ug (NE,S,E) in Appendix Section C.3.1 indicates that under segregation
ps(NEg,€) > p(NEg) for all € > 0 and 7 € (0,1]. Likewise, detailed analysis of a4 (NZg,¢)
in Appendix Section C.3.2 indicates that under association g (N&g,€) < p(NZg) for all e > 0
and 7 € (0,1]. Hence the desired result follows for both alternatives. B

The Remarks 5.4.5 and 5.4.6 also hold for u(r,¢).

5.5.5 Monte Carlo Power Analysis Under Segregation

In segregation alternatives with £ > 0, we implement the above described Monte Carlo exper-

iment for 7 € {.1, .2, .3, 4, .5, .6, .7, .8, .9, 1.0}. For each 7 value, we estimate the empirical

S
me

power 35 _(7,n,¢) under HS with € € {v/3/8, v/3/4, 2/3/7}.

The kernel (probability) density estimates of the relative density under the null case and

critical value ¢ (7) and the empirical significance level a3 .(7,n) under Hy and the empirical

the segregation alternatives under H? with ¢ € {v/3/8, v/3/8,2v3/7}, 7 € {2, 4, .6, .8, 1.0},
n = 10 and N = 10000 are plotted in Figures 5.5.5, 5.5.6, and 5.5.7, respectively. Observe that
under Hy kernel density estimates are skewed right for small 7 values, (with skewness increasing
as 7 gets smaller) and almost symmetric for large 7 values, with most symmetry occurring

at 7 = 1. Kernel density estimates are skewed right under H \S/g symmetric under H \S/g

/8’ /9
and skewed left under H,f NTiE The empirical critical values, empirical significance levels, and
empirical power estimates under H \5/5 /8 with 10000 Monte Carlo replicates are presented in
Table 5.5.1. Notice that the estimated significance levels are all below .05, and about .05 at
T €{.2,.8,.9}. Under H \S/g /8 with n = 10, the null and alternative probability density functions

for p1o(7) are very similar, implying small power. Notice also that more severe the segregation,

larger the empirical power estimates at each 7 value. These empirical power estimates are

178



DENSITY ESTIMATE

DENSITY ESTIMATE
10 15

DENSITY ESTIMATE
6 8 10

004 00

2 008 o010 005 010 015 020 01 02 03
RELATIVE DENSITY RELATIVE DENSITY RELATIVE DENSITY

DENSITY ESTIMATE
4 6
DENSITY ESTIMATE
W & 80

Figure 5.5.5: Kernel density estimates for the null (solid) and the segregation alternative H \S/g
(dashed) for 7 € {.2, 4, .6, .8, 1.0}, n = 10, and N = 10000 (left-to-right).

/8

plotted in Figure 5.5.8. Maximum Monte Carlo power estimate occurs at 7 = .8 for ¢ = v/3/8
and € = v/3/4. Furthermore, Monte Carlo power estimate tends to increase as 7 gets larger.
With n = 100, there is more separation between null and alternative probability density

functions. See Figure 5.5.9 for the kernel density estimates under Hy and H \S/g 8 with N = 1000

/
Monte Carlo replicates. Notice that the probability density functions are almost symmetric
for all 7 values. The corresponding empirical critical values, empirical significance levels, and
empirical powers are presented in Table 5.5.2. The estimated significance levels are all about .05
and under H \5/5 /4 and H f V37 the empirical power estimates are all 1 at each 7 value. As n gets
larger, the normal approximation gets more accurate and the separation between the null and
alternative density estimates increase. See for example Figure 5.5.10 for 7 = .5 with n = 10,
N =10000 (left) and n = 100, N = 1000 (right). The empirical power estimates are plotted in
Figure 5.5.11. Note that for £ = /3 /8, maximum Monte Carlo power estimate occurs at 7 = .8.

For a given alternative and sample size, we may consider analyzing the power of the test

— using the asymptotic critical value— as a function of the proximity factor 7. For each 7

value, the a-level asymptotic critical value is u(NZg) + 21 —q) - /¥ (NEg) /n- In Figure 5.5.12,
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Figure 5.5.6: Kernel density estimates for the null (solid) and the segregation alternative H \5/5
(dashed) for 7 € {.2, 4, .6, .8, 1.0}, n = 10, and N = 10000 (left-to-right).
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Figure 5.5.7: Kernel density estimates for the null (solid) and the segregation alternative H. 5 NI
(dashed) for 7 € {.2, 4, .6, .8, 1.0}, n = 10, and N = 10000 (left-to-right).
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T 1 2 3 A 5 6 7 8 9 1.0
e (1) 01 .02 .05 .07 1 14 18 2 .26 .32
Qppe(T, M) .0456 | .0498 | .0324 | .0384 | .0387 | .0452 | .041 | .0498 | .0483 | .0422
Bre (T,m,V/3/8) | 0777 | .0876 | .0647 | .0912 | .0994 | .1172 | .1139 | .14 | .144 | .1234
Bme (T,m,V/3/4) | 4044 | 635 | .8556 | .9538 | .9777 | .9887 | .9939 | .9943 | .9939 | .991
Boe (T,m,2/3/7) | 9486 | .9998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

Table 5.5.1: The empirical critical values, empirical significance levels, and empirical power
estimates under H\S/E/s’ N =10000, and n = 10 at o = .05.
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Figure 5.5.8: Monte Carlo power using the empirical critical value against segregation alterna-

tives H\%/S
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Figure 5.5.9: Kernel density estimates for the null (solid) and the segregation alternative H :9/5
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(dashed) for T € {.2, 4, .6, .8, 1.0}, n = 100, and N = 1000 (left-to-right).
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Figure 5.5.10: Kernel density estimates for the null (solid) and the segregation alternative H \S/g
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(dashed) for 7 = .5 with n = 10 and N = 10000 (left) and n = 100, N = 1000 (right).

/4

T 1 .2 3 4 5 6 7 .8 9 1.0
a5 (1) .0029 | .0102 | .0216 | .0376 | .0578 | .0809 | .1092 | .1405 | .1751 | .2132
ane(T,n) .049 .05 .049 .05 .05 .05 .05 .05 .049 .05
Boe (T,m,V/3/8) | 225 | 363 | 461 | .501 | 544 | .606 | .625 | .639 | .628 | .609
Bre (7,m,V/3/4) 1 1 1 1 1 1 1 1 1 1
Bave (T,m,2/3/7) 1 1 1 1 1 1 1 1 1 1

Table 5.5.2: The empirical critical values, empirical significance levels, and empirical power
estimates under H\S/g/s, N = 1000, and n = 100 at o = .05.
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Figure 5.5.11: Monte Carlo power using the empirical critical value against segregation alterna-
(right) as a function of 7 for n = 100.

tives H\%/s
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Figure 5.5.12: Monte Carlo power using the asymptotic critical value against segregation al-
ternatives H \% /s (left), H \S/?: /4 (middle), and H. 25 N (right) as a function of 7 for n = 10 and

N =10000. The circles represent the empirical significance levels while triangles represent the
empirical power values.

we present a Monte Carlo investigation of power 85(r,e) against H \S/g s H \S/g /4 and HS Vi
as a function of 7 for n = 10. The empirical significance level, ag(r,n), is about .10 for all 7
values which indicate that n = 10 is not large enough for normal approximation. The empirical
significance levels and empirical power B\;f (1,€) values under H? for £ € {v/3/8, V/3/4, 2/3/21}
are presented in Table 5.5.3. Notice that the smallest estimated significance level is .0866 at
7 = 1 with estimated power values 35 (r = 1,v/3/8) = .2289, BS (r=1,v3/4) = .9969, and
B\ﬁ (r =1,2+/3/7) = 1.000. With n = 20 and N = 10000 the estimated significance levels get
smaller (except for 7 = .1), but still are larger than .05 with smallest being .0763 at 7 = 1 with
the corresponding power estimate Bfo (T =1,V/3 /4) = .3038. With n = 100, N = 10000 the
estimated significance levels get even smaller, but still are larger than .05 with smallest being
063 at 7 = .8 with the corresponding power estimate B, ( = .8,v/3/4) = .786. In Figure
5.5.13, are the plots of the estimated significance levels and the empirical power estimates for
n € {10,20,100} under H \S/g /" Observe that as n increases the estimated significance levels
decrease, while the power estimates increase.

Based on the Monte Carlo power analysis, we see that for small n moderate 7 values,
T € [4,.6], and for large n, large 7 values 7 = 1.0 yield better performance for the normal

approximation and the empirical power against association.

5.5.6 Monte Carlo Power Analysis Under Association

In association alternatives with ¢ > 0, we implement the Monte Carlo experiment for £ €

{V3/21,V3/12,5+/3/24} and 7 € {.1, .2, .3, 4, .5, .6, .7, .8, .9, 1.0}. For each 7 value, we
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n =10 and N = 10000
T 1 2 3 4 5 6 7 8 9 [ 10
as (1,n) .0932 | .1916 | .1740 | .1533 | .1101 | .0979 | .1035 | .0945 | .0883 | .0868
Bs ( %) 1286 | .2630 | .2917 | .2811 | .2305 | .2342 | .2526 | .2405 | .2334 | .2289
ﬁn ( ,i) .5821 | .9011 | .9824 | .9945 | .9967 | .9979 | .9990 | .9985 | .9983 | .9969
ﬁn ( T, £> .9834 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
n =20 and N = 10000
as (1,n) .2018 | .1707 | .1151 | .1099 | .0898 | .0864 | .0866 | .0800 | .0786 | .0763
ﬂn ( ,i) 2931 | .3245 | .2744 | 3021 | .2844 | .2926 | .3117 | .3113 | .3119 | .3038
100, N =1000
as (t,n) 0.155 | 0.101 | 0.080 | 0.077 | 0.075 | 0.066 | 0.065 | 0.063 | 0.066 | 0.069
ﬁn (T, 5 ) 0.574 | 0.574 | 0.612 | 0.655 | 0.709 | 0.742 | 0.774 | 0.786 | 0.793 | 0.793

Table 5.5.3: The empirical significance level and empirical power values under Hf for ¢ €

{V/3/8,V3/4,2+/3/21} at a = .05.

g g g
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Figure 5.5.13: Monte Carlo power using the asymptotic critical value against segregation al-
ternative H\%/s’ as a function of 7 for n = 10 and N = 10000 (left), n = 20 and N = 10000

(middle), and n = 100 and N = 1000 (right). The circles represent the empirical significance
levels while triangles represent the empirical power values.

estimate the empirical critical value ¢4 (7) and the empirical significance level @4 (7,n) under

H, and the empirical power 5mC(T,n €).

The kernel density estimates under the null case and under the association alternatives
HA with e € {V3/21,v3/12, 5/3/24}, 7 € {.2, 4, .6, .8,1.0}, n = 10 and N = 10000 are
plotted in Figures 5.5.14, 5.5.15, and 5.5.16, respectively. Observe that under Hy kernel density
estimates are skewed right for small 7 values, (with skewness increasing as 7 gets smaller) and
almost symmetric for large 7 values, with most symmetry occurring at 7 = 1. Kernel density
HA_ . and HA

V3/12° 5+/3/24°
empirical significance levels, and empirical power estimates under H, ;“ with 10000 Monte Carlo

estimates are skewed right under H \Af The empirical critical values,

3/21°

replicates are presented in Table 5.5.4. Notice that the estimated significance levels are all
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Figure 5.5.14: Kernel density estimates for the null (solid) and the association alternative H \% /a1
(dashed) for 7 € {.2, 4, .6, .8, 1.0} with n = 10 and N = 10000 (left-to-right).

below .05, and about .05 at 7 € {.6,.9}. Under H/, /1 and HY: /120 With n = 10, the null
and alternative probability density functions for p1o(7) are very similar, implying small power.
Notice also that more severe the segregation, larger the empirical power estimates at each 7
value. These empirical power estimates are plotted in Figure 5.5.17. Note that maximum
Monte Carlo power estimate occurs at 7 = .9 for all € values. estimate increases as 7 gets larger.

With n = 100, there is more separation between null and alternative probability density
functions. See Figure 5.5.18 for the kernel density estimates under Hy and H \% /21 with N = 1000
Monte Carlo replicates. Notice that the probability density functions are almost symmetric
for all 7 values. The corresponding empirical critical values, empirical significance levels, and
empirical powers are presented in Table 5.5.5. The estimated critical values are all about .05
for 7 > .3. As n gets larger, the normal approximation gets more accurate and the separation
between the null and alternative density estimates increase. See for example Figure 5.5.19 for
7 =.5 with n =10 and N = 10000 (left) and n = 100, N = 1000 (right). The empirical power
estimates are plotted in Figure 5.5.20. Note that maximum Monte Carlo power estimate occurs

at 7 = 1 for all € values.
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Figure 5.5.15: Kernel density estimates for the null (solid) and the association alternative H \% /12
(dashed) for 7 € {.2, 4, .6, .8, 1.0} (left-to-right).
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Figure 5.5.16: Kernel density estimates for the null (solid) and the association alternative

H;‘\/g/ﬂ (dashed) for T € {.2, .4, .6, .8, 1.0} (left-to-right).
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empirical power
empirical power
empirical power

Figure 5.5.17: Monte Carlo power using the empirical critical value against association alterna-

tives Hf}g/m (left), H\%/m (middle), and Hti/§/24 (right) as a function of 7 with n = 10 and
N = 10000.
T 1]2[3]A]5] 6 7 8 9 1.0
ca(r) olofofo|o]| a1 A1 .02 .04 .05
aA.(r,n) 0[0]0]0]|0].0471].0163 | .0217 | .0451 | .0343
BA. (r,n,v/3/21) | 0| 0| 0| 0|0 |.0763 | .0315 | .0384 | .087 | .0665
Ba.(r,n,v/3/12) | 0| 0| 0| 0| 0 |.1204 | .0568 | .0789 | .1724 | .1486
A.(5v3/24) | 0] 0| 0] 0|0 |.1213|.0583 | .0855 | .1918 | .1764

Table 5.5.4: The empirical critical values, empirical significance levels, and empirical power
estimates under H# with n = 10 at a = .05.
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Figure 5.5.18: Kernel density estimates for the null (solid) and the association alternative H \% /a1
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(dashed) for 7 € {.2, 4, .6, .8, 1.0} with n = 100, N = 1000 (left-to-right).
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Figure 5.5.19: Kernel density estimates for the null (solid) and the association alternative H \’% 12
(dashed) for 7 = .5 with n = 10 and N = 10000 (left) and n = 100, N = 1000 (right).
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Figure 5.5.20: Monte Carlo power using the empirical critical value against association alterna-

tives H\%/m (left), H\%/u (middle), and H?\/E/m (right) as a function of 7 with n = 100 and
N = 1000.
T 1 2 3 4 .5 .6 7 .8 9 1.0
é‘;‘(fr) .00070 | .0040 | .0092 | .0175 | .0284 | .042 | .0592 | .07952 | .1025 | .1303
aﬁc (r,m) .036 .045 .048 .049 .049 .048 .049 .049 .049 .049
,3,‘20 (T, n, \/5/21) .099 175 .252 315 .345 .399 .459 486 517 567
,3,’20 (T, n, \/5/12) 933 .768 .563 570 .634 .619 .704 .741 .759 .760
BA. (r,n,5/3/24) | 933 | 768 | 563 | 570 | 634 | 619 | 707 | .755 | 784 | 804

Table 5.5.5: The empirical critical values, empirical significance levels, and empirical power
estimates under H\%/m and n =100 at a = .05.
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Figure 5.5.21: Monte Carlo power using the asymptotic critical value against association alter-

natives H\%/m (left), H\%/u (middle), and Hg:l\/g/24 (right) as a function of 7 for n = 10. The

circles represent the empirical significance levels while triangles represent the empirical power
values.

We also estimate the power — using the asymptotic critical value— as a function of the
proximity factor 7. For each 7 value, the a-level asymptotic critical value is u(NZg) + za -
v(NZg)/n. In Figure 5.5.21, we present a Monte Carlo investigation of power Eﬁ (1,€) against
H:}g/zﬂ H\%/m’ and H;)“\/g/% as a function of 7 for n = 10. The empirical significance level
a4(7,n) is about .05 for 7 = .6 and much smaller for other 7 values which indicate that n = 10
is not large enough for normal approximation. The empirical significance levels and empirical
power B\;ﬁ (7,¢€) values under HA for e € {/3/21, V/3/12, 51/3/24} are presented in Table 5.5.6.
Notice that the estimated power values 34 (r = .6,v/3/21) = .0767, BA (r = .6,v/3/21) = .1181,
and B2 (1 = .6,5/3/24) = .1187.
In Figure 5.5.21, we present a Monte Carlo investigation of power against H f}g /a1 H \‘% /127
and HA

5+/3/24
for 7 = .6 which have the empirical power 37} (1,v/3/12) = .1181 with maximum power at also

as a function of 7 for n = 10. The empirical significance level, @ 4(n), is about .05

7 = .6, and Eﬁ) (T, 5\/3/24) = .1187. So, for small sample sizes, moderate values of 7 is more
appropriate for normal approximation, as they yield the desired significance level and have the
property that more severe association yields higher power.

The empirical significance levels and empirical power B\S (1,€) values under HEA for e €
{5+/3/24, V/3/12, \/3/21} are presented in Table 5.5.6.

With n = 20 and N = 10000 the estimated significance levels gets closer to .05 for 7 €
{4, .7, .8,.9, 1.0}, with closest being .0496 at 7 = .6 with the corresponding power estimate
BA (t = .6,v/3/12) = .1497. With n = 100, N = 1000 the estimated significance levels gets even

closer to .05 for all 7 values, with closest being .049 at = € {.5,.9,1} with the corresponding
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n =10 and N = 10000
T 1 2 3 4 .5 .6 7 .8 9 1.0
aa(r,n) 0 0 0 0 0 .0465 | .0164 | .0223 | .0209 | .0339
aa(n) 0 0 0 0 0 .0465 | .0164 | .0223 | .0209 | .0339
B8 (7', \/?:/21) 0 0 0 0 0 .0767 | .0286 | .0386 | .0419 | .0700
B84 (7', \/?:/12) 0 0 0 0 0 .1181 | .0569 | .0831 | .0882 | .1490
B8 (7', 5 \/?;/24) 0 0 0 0 0 .1187 | .0581 | .0863 | .0985 | .1771
n =20 and N = 10000
aa(r,n) .6603 | .2203 | .1069 | .0496 | .0338 | .0301 | .0290 | .0267 | .0333 | .0372
g (T, \/?:/12) 7398 | .3326 | .2154 | .1497 | .1442 | .1608 | .1818 | .2084 | .2663 | .3167
n =100, N = 1000
aa(r,n) .169 .075 .053 .047 .049 .044 .040 .044 .049 .049
g4 (7-, \/?:/12) .433 .399 .460 .559 .687 .789 .887 .938 977 .997

Table 5.5.6: The empirical significance level and empirical power values under HEA for ¢ €
{5v/3/24, v/3/12, v/3/21} with N = 10000, and n € {10, 20, 100} at o = .05.

power

04 0s
power
power

o000 o ——o—o

Figure 5.5.22: Monte Carlo power using the asymptotic critical value against segregation alter-
native H\%/m , as a function of 7 for n = 10 and N = 10000 (left), n = 20 and N = 10000

(middle), and n = 100, N = 1000 (right). The circles represent the empirical significance levels
while triangles represent the empirical power values.

power estimates 8 (1,v/3/12) € {.687, .977, .997}, respectively. See Figure 5.5.22 for the plots
of the estimated significance levels and the power estimates for n € {10,20,100} under H \% /1"
Observe that high power estimates with small significance levels occur for 7 > .5, and for these
T values, as n increases, the power estimates increase, while the significance levels decrease.
Based on the Monte Carlo power analysis, for both small and large n, we see that large 7
values, e.g.,7 = .8, yield the better performance for the normal approximation and the empirical

power against association.
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5.5.7 Pitman Asymptotic Efficacy

. A . o) s _ (N” (Nés,5=0))2
For segregation or association alternatives the PAE of p,, (NC S) is given by PAE(7) = T
v{Ngs

)

since pi" (NZg,e =0) # 0 but p' (N5, e =0) = 0.

5.5.7.1 Pitman Asymptotic Efficacy Under Segregation Alternatives

Consider the test sequences p(1) = {pn(NZg)} for sufficiently small € > 0 and 7 € (0, 1].
In the PAE framework of Section 2.7.2.1, 0 = € and 6y = 0. Suppose, pin(e) = EZ[pn(Nig)] =
p15(Ng,z). For e € [0,\/5/5),

s(NE&gs¢) ZWUT, I(r € Z;)

with the corresponding intervals 7; = [1, 1-— \/55), I = [1 — V3, 1). See Section C.3.1 for
the explicit form of pg(NZg,€). Notice that as e — 0, only Z; = [1,3/2 - \/35) does not
vanish, so we only keep the component of ug (Ngs,s) on 7.

Furthermore,

0721() Var (Pn(NCS))

1
= 7Var‘§[h12(N(T;s; MC)] +

2n(n—1) (n—2) Cov 2[h2(NEg, Mc), his(NEg, Mo)].

n(n—1)
The explicit forms of Var 5[hi2(NGg, Mc)] and Cov Z[h12(NGg, Mc), h13(NGg, Mc)] are not
calculated, since we only need lim,_, 0%(e = 0) = v(NZg) which is given in Equation 5.5.2.
Notice that E 5 |hi2(NZg, Mc)|? < 8 < oo and E Z[h12(NGg, Mc) h13(NE g, Mc)]=E Z[h12]? =
Cov 5 [hi12(NEg, Mc), hi3(NGg, Mc)] > 0 then (PC1) follows for each 7 € (0,1] and € €
[0,v/3/3).
Differentiating ps(NZg,e) with respect to e yields

8et(5e%r — 92 —-37+3)
01 —2032e + 1P =7

MIS'(NE’SHE) =

hence ps(7,e = 0) = 0, so we need higher order derivatives for (PC2). Differentiating pi's (NG, ¢)
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with respect to €, we get

872(20e*T — 1521 — 36t + 112 — 7+ 1)
3(2e —1)*(2e+ 141 =1)

/"g (NESJE) =
Hence
pe(NEg,e =0) =877/3. (5.5.4)

Observe that % (N g,e = 0) > 0 for all 7 € (0, 1], so (PC2) holds with the second derivative.
(PC3) in the second derivative form follows from continuity of ps (NZg,€) in € and (PC4) follows

from continuity of o2(7,¢) in e.

Next, we find Cs(p(7)) = limp 00 'ijr_b(ivc(i z:g)) = ”S\;N(CS’E:)O) , where numerator is given in
o v Ngs

Equation 5.5.4 and denominator is given in Equation 5.5.2. We can easily see that Cs(p(7)) > 0,
then (PC5) follows.

So under segregation alternatives HY, the PAE of p, (NZg) is given by

PAES (NZg) = C%(p(r)) = (1 (szir;): 0)”
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Figure 5.5.23: Pitman asymptotic efficacy against segregation (left) and against association
(right) as a function of 7.

In Figure 5.5.23 (left), we present the PAE as a function of 7 for segregation. Notice that
lim,_,0 PAE® (NZ5) = 320/7 ~ 45.7143, argsup, ¢ (o 1] PAE® (NZs) = 1.0, and PAE® (NZ3') =

960/7 ~ 137.1429. Based on the PAE analysis, we suggest, for large n and small ¢, choosing 7
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large for testing against segregation.

5.5.7.2 Pitman Asymptotic Efficacy Under Association Alternatives

Consider the test sequences p(1) = {pn(NZg)} for sufficiently small ¢ > 0 and 7 € (0,1].
In the PAE framework of Section 2.7.2.1, 6 = € and 6 = 0. Suppose, pi,(¢) = EA[p,, (NZg)] =

pa(NEg,€). For e € [0,v/3/21),

NCSa Z’wleE (r€Ij)

with the corresponding intervals
— 3v3 — 3V3 23 _ | 2v3 3v3 — | 3v38 3v3
5 o). 7= [ 20) 7= [ 20,7~ [ 2

1-v3¢) —V3e)71-2v3¢ ) 1-2v3e’1—/3¢ 1—/3:71-4 /3¢
_|_3v3 63 _ | 6v3 63 _|_6v3 :
Is = [1_4 \/%E, 1—\/565)’16 = [1—\/565’1—4 \/%E), and Z; = [1_4 \/655’1)' Notice that as € — 0,

only Z7 does not vanish, so we only keep the component of p4 (N(T; S E) on Z7. See Section C.3.2
for the explicit form of u(r,e).

Furthermore,

02( g) = Var (Pn(Ncs))

_ #Var?[hu(N(T:SaMC)] + %

2n(n—1) Cov £ [ha(NEs, Mo), s (NEs, Mo)]

whose explicit form is not calculated, since we only need lim,,_, o v/n o, (e = 0) = V(Ng s) which
is given Equation 5.5.2.
(PC1) follows for each 7 € (0,1] and £ € [0,/3/3) as in the segregation case.

Differentiating pa (NZg,€) with respect to €, we get

pa (NGs,€) = —72 [\/??(10\/§r2+1073\/§—90574+19874 36 —3607"e® 9077 e+126 V3 17—
3
36072 % — 2257 + 495 7°V/3 > — 90078 €® — 144 V3 &” — 396 V37 + 4 74\/?_,)5]/[(\/5+ 65)

(\/5—65)3(1 +27)(7+2)].
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Hence p/s (N&g,e = 0) = 0, so we differentiate p'y (NG g,€) with respect to € and get

i (NGg,e) = 648 [1920 V3e37? +1920 V3374 — 1072 — 17820 7% + 5184 £ —107° — 4 7 —
978 %72 — 2085 27° 4 14256 £ — 4536 172 4 4800 v3e37° + 150 V3e 7 + 60V3e 72+
2880 /3772 + 72003773 + 2880 v/3eP7t — 7128 et + 43267 + 11887 — 834 274+

605\/?_)7-4]/[<\/§+ 65)4(\/5 - 65)4(1 +27)(r + 2)].

Thus,
2(5+57+272)

"(NT — - _1 ]
Ha(Nes e =0) = =16 o)

(5.5.5)

Note that p" (7,6 = 0) < 0 for all 7 € (0,1], so (PC2) follows with the second derivative. (PC3)
and (PC4) follow from continuity of " (NZg,¢) and o2(r,€) in e.
Next, we find Ca(p(r)) = limy_,o “AN6s2=0) _ i (NGs=0)
V1 oy (T,6=0) \/l/ (NT
cs

merator from Equation 5.5.5 and denominator from Equation 5.5.2. We can easily see that

, by substituting the nu-

Ca(p(T)) < 0 for all 7 € (0,1]. Then (PC5) holds, so under association alternatives H, the
PAE of p, (NE,S) is

(14 (N&s,e = 0))
v(NEs)

PAE*(NZs) = C4(p(7)) =

In Figure 5.5.23 (right), we present the PAE as a function of 7 for association. Notice that
lim,_,o PAE* (N7 ) = 72000/7 ~ 10285.7143, PAE4(NZ35!) = 61440/7 ~ 8777.1429,
arginf o ) PAE4(NZg) ~ 4566 with PAE4(NZE45%%) ~ 6191.0939. Based on the PAE
analysis, we suggest, for large n and small €, choosing 7 small for testing against association.
However, for small and moderate values of n normal approximation is not appropriate due to

the skewness in the density of p, (Ng S). Therefore, for small n, we suggest large 7 values.
Remark 5.5.6. Hodges-Lehmann asymptotic efficacy HLAE of p, (N[ g) is given by

(1(NEs:€) = M(NES))Q_

HLAE(NZg,¢) = S (Vee)

Unlike PAE, HLAE does only involve n — oo at a fixed € > 0. Hence HLAE requires the mean

and, especially, the asymptotic variance of p, (N(SS) under o fixed alternative. So, one can
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investigate HLAE for specific values of ¢, if not for all € € (0, \/5/ 3). O

Remark 5.5.7. The asymptotic power function allows investigation as a function of 7, n, and
€ using the asymptotic critical value and an appeal to normality. Under a specific segregation

alternative HS, the asymptotic power function is given by

Z(1-a) "/ v(NEg) +v/n (W(NEs) — us(Nes:€))

M5(Nig,n,e) =1 -
vs(NEs:€)

Under H”, we have

Za \/’/(N(TJS) +vn - (u(NEs) — pa(Nes,e))

4 (NZg,n,e) =@
va(Ngs,e)

.0

5.5.8 Multiple Triangle Case

As in Section 5.4.11, we wish to test

Ho: X X U(Cn(Y))
against segregation and association alternatives.

Figure 5.4.28 and Figure 4.6.1 are graphs of realizations of n = 100 and n = 1000 observations
which are independent and identically distributed according to U(Cg())) for |Y| = 10 and
J = 13 and under segregation and association for the same ).

Let pn, (Ngs, J) be the relative density of the digraph based on X, and ) which yields J
Delaunay triangles, and let w; = A(T;)/A(Cu(Y)) for j € {1,...,J}. Then we obtain the

following as a corollary to Theorem 5.5.3.

Corollary 5.5.8. The asymptotic null distribution for p,(NZg, J) conditional on W = {wy,...,ws}
for 7 € (0,1] is given by N (u(NZg,J),v(NZg, J)/n) provided that v(N5g,J) > 0 with

J
w(NEg,J) = p(N(T;S)ZwJZ and
j=1
2
J ) J J
v(NGs,J) = v(Nis) Y wd +4p(Ngs)™ |D wi— (D wi] |,  (556)
Jj=1 j=1 j=1
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where 1(Nzg) and v(NZg) are given by equation (5.5.2).

Proof: Similar to the proof of Corollary 5.4.9. B

By an appropriate application of Jensen’s inequality, we see that E;Zl wf > (ijl wf)2
Therefore, the covariance v(NZg, J) = 0 iff both ¥(NZg) = 0 and Ejﬂ wd = (ijl w?)z
hold, so asymptotic normality may hold even when v(NZg) = 0 (provided that u(NZg) > 0).

Similarly, for the segregation (association) alternatives with 4 €2/3 x 100% of the triangles
around the vertices of each triangle is forbidden (allowed), we obtain the above asymptotic dis-
tribution of p, (NZg, J) with u(NZg, J) being replaced by pj(NZg,€), v(NEg, J) by v(r, J,¢),
p(NEs) by p(NGs,€), and v(NEg) by v(NEsg, ).

Thus in the case of J > 1, we have a (conditional) test of Hq : X; “uy (Cu (Y)) which once
again rejects against segregation for large values of p, (Ngs, J) and rejects against association
for small values of p,(NGg, J).

The segregation (with § = 1/16, i.e., ¢ = v/3/8), null, and association (with § = 1/4, i.e.,
e = V/3/12) realizations (from left to right) are depicted in Figure 5.4.28 with n = 100 and
in Figure 4.6.1 with n = 1000. With n = 100, for the null realization, the p-value is zero for
all 7 values relative to the segregation alternative, so p-value is one relative to the association
alternative. For the segregation realization, we obtain p ~ 0.0 for all 7 values. For the association
realization, we obtain p & 1.0 for all 7 values. Note that this is only for one realization of X,
with n = 100.

With n = 1000, for the null realization, the p > .34 for all 7 values relative to the segregation
alternative, so p > .32 for all 7 values relative to the association alternative. For the segregation
realization, we obtain p < .021 for all 7 > .2. For the association realization, we obtain p < .02
for all 7 > .2 and p = .07 at 7 = .1. Note that this is only for one realization of X,, with
n = 1000.

We repeat the null and alternative realizations n = 1000 times. The estimated significance
levels and the empirical power values are presented in Table 5.5.7. In the null case, we find
the estimated significance level @io(7, J) to be less than .10 for all 7 > .6 with respect to both
alternatives, with smallest being .09 for segregation and .07 for association. This indicates that
n = 100 is not large enough for normal approximation. In the segregation alternative with
0 = 1/16 we find the empirical power Bfo (1, J) to be greater than .6 for all 7 > .7 with highest

being .613 at 7 = .8. In the association alternative with 6 = 1/4 we find the empirical power
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Figure 5.5.24: Monte Carlo power using the asymptotic critical value against H :9/5 /8 (left),

A
H V3/12
The circles represent the empirical significance levels while triangles represent the empirical
power values.

(right) as a function of 7 for n = 100 conditional on the realization of Y in Figure 5.4.28.

Eﬁ)(T, J) to be greater than .7 for all 7 > .7 with highest being .91 at 7 = 1. This analysis
suggests that, conditional on these ) values, 7 = .8 or 1, (higher values of 7) should be used for
small n. See Figure 5.5.24 for the plots of the power estimates with n = 100.

With n = 500, the corresponding power estimates are plotted in Figure 5.5.25. Note that,
relative to segregation the empirical significance levels are about .05 for 7 > .3 and relative to
association about .07 for 7 > .5 (larger for other 7 values). This indicates that for moderate
n, approximate normality yields an approximate level a = .05 test against segregation, but the
test is liberal against association for n € {100, 500}. Based on the analysis of the empirical
power curves, we suggest moderate or large 7 values for both alternatives.

Remark 5.4.10 applies for p, (Ngs) also.

Remark 5.5.9. We can derive related test statistics in multiple triangle case similar to the ones

in Section 5.4.11.1, by replacing r with .

5.5.8.1 Asymptotic Efficacy Analysis for J > 1

The PAE, HLAE, and asymptotic power function analysis are given for J = 1. For J > 1, the
analyses will depend both the number of triangles as well as the size of the triangles. So the
optimal 7 values with respect to these efficacy criteria for J = 1 are not necessarily optimal for
J > 1, so the analyses need to be updated, conditional on the values of J and W.

Under segregation alternative HY, the PAE of p,(NZg) is as in Equation 5.4.8 with r be-
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Figure 5.5.25: Monte Carlo power using the asymptotic critical value against H \S/g /8 (left),
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The circles represent the empirical significance levels while triangles represent the empirical

power values.

right) as a function of 7 for n = 500 conditional on the realization of ) in Figure 5.4.28.

T 1] 2] 3] 4] 5] 6 [ 7] 8 9 ] 10
n =100, N = 1000
as(r,n, J) 496 | 366 | 302 [ .242 [ 190 [ .103 | .102 [ .092 [ .095 | .091
Bal(r,V/3/8,J) | .393 | 429 | 464 | .512 | .551 | .578 | .608 | .613 | .611 | .604
as(r,n,J) [.726 ] 452 .322 ] .310 [ .194 | .097 | .081 | .072 | .063 | .067
B (r,v/3/12,J) | 452 | 426 | 443 | .555 | .567 | 667 | .721 | .809 | .857 | .906
n =500, N = 1000
as(r,n, J) 246 | 162 [ .114 | .103 | .097 [ .092 [ .095 [ .093 | .095 | .090
Ba(r,v/3/8,J) | 829 | .947 | 982 | .988 | .995 | .995 | .997 | 998 | .997 | .997
au(r,n,J)  [.255 [ .117].077 [ .067 [ .052 | .059 | .061 | .054 | .056 | .058
B (r,v/3/12,J) | .684 | .872 | .953 | .991 | .999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

Table 5.5.7: The empirical significance level and empirical power values under H \S/g /s and

A
H\/§/12’

N = 1000, n = 100, and J = 13, at «

.05 for the realization of ) in Figure

4.6.1.

ing replaced by 7. Under association alternative HA the PAE of p,(NZg) is similar. In
Figure 5.5.26, we present the PAE as a function of 7 for both segregation and association
conditional on the realization of ) in Figure 5.4.28. Notice that PAE curves for J > 1

are similar to the ones for J = 1 case. See Figure 5.5.23. Some values of interest are
lim, o PAES (NZs) ~ 38.1954, argsup, ¢ (o1 PAES (Ngg) = 1 with supremum a 100.7740. As

for association, lim, 0 PAE} (NZ) ~ 8593.9734, PAE; (NZ3') ~ 6449.5356, arginf, ¢  ; PAES

~

(NGg) ~ 4948 with infimum a .4948) ~ 5024.2236. Based on the PAE analysis, we suggest,
for large n and small &, choosing large 7 for testing against segregation and small 7 against

association. However, for moderate and small n, we suggest large 7 values for association due
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Figure 5.5.26: Pitman asymptotic efficacy against segregation (left) and association (right) as
a function of 7 with J = 13. Notice that vertical axes are differently scaled.

to the skewness of the density of p, (NGg)-

Under segregation, the HLAE is as in Equation 5.4.9 with r being replaced by 7. Notice
that HLAES (N, e = 0) = 0. The functional form of HLAE] (Ngg,¢) is similar which implies
HLAE] (NZg,e =0) = 0.
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CHAPTER 6

Conclusion

In this thesis, we analyze the PCDs for data from one class &, in the triangle, T(Y) (based
on Y with |Y| = 3) and then extended the results to multiple triangle case. Our PCDs are
defined based on the relative positions of the class X, points with respect to class ) points.
The distribution of X, is conditional on some quantity related to ), e.g., the relative sizes or
the number of the Delaunay triangles based on ).

The first proximity map related to our proximity maps that appeared in the literature is the
spherical prozimity map Ng(z) := B(z,r(z)) (which is called CCCD in the literature, see [35],
[10], [29], [36], and [37]) where r(z) = d(z,)).

We define the arc-slice prozimity map Nag(-, M), which is a slight variation of Ng(-), the r-
factor proportional-edge proximity map Nj (-, M), and the 7-factor central similarity proximity
map Nl g(-, M).

In this section, first, we compare the proximity maps with respect to the appealing properties
in Section 3.1. The CCCDs based on Ng(-) for data in compact intervals in R satisfies all of
the appealing properties. Among the appealing properties in Section 3.1, for data in triangles,
Ng(-) satisfies properties P1, P2, P3, and P8; Nas(-, Mcc) satisfies properties P1, P2, P6,
P7, and P8; N}, (-, M) satisfies the properties P1, P2, P4, P5, and P7. Moreover, P6 holds
for Npp(-, M), if M € ", and P8 holds for M = M¢ and r = 3/2; NS g(-, M) satisfies all of
the properties P1—P8 for all M € T(Y)°.

The proximity map Nk g(-, M), when compared to the others, has the advantage that the
asymptotic distribution of the domination number 7, (N%y) is available (see Section 4.4 for the
asymptotic distribution) and the exact distribution of v, (N% ) can be obtained by numerical
methods (which is open for future research). Although we have a.s. upper and lower bounds,
the exact and asymptotic distribution of the domination number of the proximity catch digraphs

based on Ng(-) and Nas(-, Mcc) are not tractable and that of N5 g(-, M) is an open problem
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for 7 € (0,1]. For N € {Npg(-,M),N.g(-, M)}, the asymptotic distribution of v(X,, N) does
not require conditioning on Y but the number of Delaunay triangles based on Y should be large,
whereas the exact distribution of v(X,,, N) requires conditioning on ) (in fact, conditioning on
the relative sizes of Delaunay triangles based on V). Furthermore, N7 ¢(-, M) and Npp(-, M)
enjoy the geometry invariance property for uniform data on triangles. While finding an exact
minimum dominating set is an NP-Hard problem for Ns(-), Nas(-, M), and N§4(-, M), a par-
ticular exact minimum dominating set can be found in polynomial time for NLg(-, M). The
mean and variance of the relative density p, (V) is not analytically tractable for PCDs based on
N € {Ng(-), Nas(:, M)}, but —in principle— can be obtained by numerical methods, condi-
tional on the inner angles of triangle (or equivalently on (¢, ¢2)). The asymptotic distribution
of pp(N) for PCDs based on N € {Npg(-,M), Nig(-, M)} is available for both one-triangle
and multiple-triangle cases. However, removing the conditioning on the set ) (more explicitly
conditioning on the relative sizes of the Delaunay triangles) is an open problem. Additionally,
Nas(z, M), Npg(z, M), and NLg(x, M) are well defined only for € Cx()), the convex hull
of Y, while Ng(z) is well defined for all z € R?. The extension of proximity maps Ns(-) and
Nas(-, M) to higher dimensions is straightforward, which is not the case for Nhg(z, M) and
NEg(z, M).

We develop a technique to test the spatial patterns of segregation or association against
some form of complete spatial randomness. There are many tests available for segregation
and association in the literature. See [12] for a survey on these tests and relevant references.
Two of the most commonly used tests are Pielou’s x? test of independence and Ripley’s test

based on K (t) and L(t) functions. The null hypotheses we consider (Hy : X; u UTY)) or

Hy:X; %¢C m(y)) are considerably more restrictive than current approaches, which can be used
much more generally. The null hypothesis for testing segregation or association can be described

in two slightly different forms (see [12]):

(i) complete spatial randomness, that is, each class is distributed randomly throughout the
area of interest. It describes both the arrangement of the locations and the association

between classes.

(ii) random labeling of locations, which is less restrictive than spatial randomness, in the sense

that arrangement of the locations can either be random or non-random.
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Our null hypotheses are closer to the latter in this regard. Pielou’s test provides insight only
on the nearest neighbor type relationships between classes, hence there is no assumption on the
allocation of the observations, which makes it more appropriate for testing the null hypothesis
of random labeling. Ripley’s tests can be used for both types of null hypotheses, in particular, it
can be used to test a type of (random) spatial pattern against another type of (random) spatial
pattern.

We use the mean domination number of the components of the PCD, G;(Npg) and the
relative densities, p,, (Npy) and p,(NZg) as our test statistics in testing the spatial patterns of
segregation and association.

The test based on the mean domination number, G (N5 ), of the components of the PCD in
Section 4.6 is not a conditional test, but requires both n and number of Delaunay triangles J to
be large (with n being much larger than J). The comparison of this test with the existing tests in
the literature for large values of J is possible. Furthermore, under the segregation alternatives
we consider, PAE is not applicable to the mean domination number (of components) case,
however, for large n and J, we suggest the use of it over relative density since for each € > 0,
Hodges-Lehmann asymptotic efficacy is arbitrarily large for the mean domination number case;
while HLAE is bounded for relative density case with J > 1. For the association alternative,
HLAE suggests moderate r values for which p,(Npy) has finite HLAE. So again, for large J
and n mean domination number is preferable. The basic advantage of p, (N5 ) and pp(NZg)
is that they do not require J to be large, so for small J, they are preferable.

The tests based on the relative densities p,(Npg) and p,(NZGg) are conditional tests —
conditional on W (the set of relative areas of the Delaunay triangles) and we require the number
of triangles J is fixed and relatively small compared to n = |X,|. Furthermore, our method
deals with a slightly different type of data than most methods to examine spatial patterns. The
sample size for one type of point (type X, points) is much larger compared to the the other
(type Y points).

There are two major types of asymptotic structures for spatial data (see, e.g., [24]). In
the first, any two observations are required to be at least a fixed distance apart, hence as the
number of observations increase, the region on which the process is observed eventually becomes
unbounded. This type of sampling structure is called “increasing domain asymptotics”. In the

second type, the region of interest is a fixed bounded region and more or more points are
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observed in this region. Hence the minimum distance between data points tends to zero as the
sample size tends to infinity. This type of structure is called “infill asymptotics” due to Cressie
[7]. The sampling structure for our asymptotic analysis for the mean domination number case
can be viewed as increasing domain asymptotics or infill asymptotics for ) since we can assume
Y is from a distribution on a compact region or from a process for which minimum distance
between ) points is fixed and infill asymptotics for X, since in the convex hull of ), the size of
X, tends to infinity (faster than the size of )), while for the relative density case, the sampling
structure is infill since only the size of X, tends to infinity, while the support, the convex hull
of Y, Cy()) is a fixed bounded region.

Moreover, our statistic can be written as a U-statistic based on the locations of X, points
with respect to ) points. This is one advantage of the proposed method; most statistics for
spatial patterns can not be written as U-statistics. The U-statistic form avails us the asymptotic
normality, once the mean and variance is obtained by tedious detailed geometric calculations.

The expressions of the mean and the variance of p, (NZg) have a simpler form than those
of pn(N%g). The means of relative densities have the relation u(Npp) > u(Ngg) for all r > 1
and 7 € [0,1]; the asymptotic variances v(N%) and v(N7g) are both less than 7/135 for all
7 € [0,1] and for extreme r values (r 5 1.443 and r g 4.215). Note that when J = 1 ( one
triangle case), p, (NZg) is degenerate at 7 = 0, while p, (N5 ) is degenerate at 7 = oo.

The comparison of the empirical significance levels (see Sections 5.4.6, 5.4.7, 5.5.5, and 5.5.6)
in the case of J = 1 (one triangle case) indicates that py, (Nf; E) is appropriate for moderate r
values (2 < r < 3 against segregation and v/2 < r < 5 against association) while p, (Ngs) is
liberal for all 7 € (0,1] for moderate and small n. Moreover, a larger n is required to attain
normal approximation for p,, (N5 g) compared to p, (N5 ) with moderate r values. Additionally,
for small n the kernel density estimate of p, (N(’} S) is skewed right, while p, (NIZE) is skewed
right for values of r close to 1 and skewed left for values of r larger than 5.

For J = 1, PAE compares as PAE®(Np ) > sup, (o) PAE® (NZg) for r 2 1.1316 and
PAEA(N}py) < inf,cjo1]PAEA(NZ) for r 2 1.057. Hence based on the PAE analyses in the
one-triangle case, for large n and small e, we suggest the use of p,, (N}; E) with moderate r values
(r € [3/2,3]) against segregation and the use of p,(NZg) with large 7 values (7 S 1) against
association.

For the realization of Y given in Figure 4.6.1, against segregation, p,(Npg) and p,(NZg)
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are both liberal with p, (N};E) being less liberal in rejecting Hy for small and moderate n.
Against association, p,(NZg) is appropriate for large 7 values, while p,, (Npy) is again liberal
in rejecting Ho. In terms of PAE analysis, PAES (N}5) > sup, (o ) PAE] (NZ) for r % 1.6387
and PAEY (Npy) < inf, cjo1] PAES (NZg) for all r > 1. Hence in the multiple-triangle case, for
large n and small e, we suggest the use of p,(N5g) with moderate r values (r € [2,3]) against
segregation and the use of p,, (N(T;S) with large 7 values (7 S 1) against association.

In addition to the open problems mentioned so far, we suggest the investigation of the
underlying graphs of the PCDs we have defined for further research. For any given digraph,
there are two associated underlying graphs; namely AND and OR underlying graphs. For
digraph D = (V, A), the AND underlying graph is constructed with the same vertex set V and
the edge set Eanp defined by (u,v) € Eanp iff both uv and vu are arcs in A. Similarly, the OR
underlying graph is constructed with the same vertex set V and the edge set £or defined by
(u,v) € Eor iff either uv or vu are arcs in A. One can construct these underlying graphs based
on the PCDs and investigate their properties (such as domination number, relative density, etc.)

as well as possible applications.

204



Part III

Appendices and Bibliography

205



APPENDIX A

Proofs of Some of the Theorems in Chapters 3 and 4

A.1 Proof of Theorem 3.4.30

First, we begin the proof with a remark that introduces some terminology which we will use for

asymptotics throughout this dissertation.

Remark A.1.1. Suppose X, is a random sample from F with support S(F) C Q. If over a
sequence ), C Q, n=1,2,3,..., X restricted to Q,, X|q,, has distribution F, with F,(z) =
F(z)/Ppr(X € Q) and Pr(X € Q,) — 1 as n — oo, then we call F,, the asymptotically
accurate distribution of X and Q,, the asymptotically accurate support of F' . If F has density
fy fn= f(@)/Pr(X € Q,) is called the asymptotically accurate pdf of X. In both cases, if we
are concerned with asymptotic results, for simplicity we will use F and f for asymptotically
accurate distribution and pdf, respectively. Conditioning will be alluded to by stating that

X € Q, with probability 1, as n — oo or for sufficiently large n. O

A.1.1 Proof of Theorem 3.4.30

Forr = 3/2and M = M, and sufficiently large n, I'y (X, (n), Nbg, Mc)NRca(y;) is a triangle
for each j € {1,2,3} w.p. 1. See Figure A.1.1 (left). Let X, (n) € argminycy d(X,e;) be
the closest edge extrema for edge e;. Note that for n > 3, X, (n) uniquely exist for each edge
ej w.p. 1. Suppose in a realization of A}, the edge extrema are denoted as z.,(n) = (z;,y;)
and are close enough to e; for j € {1,2,3} that T'y (X, (n), Npg, Mc) N Rea(y;) is a triangle.
Then I'y ($e1 , Ng/;, MC) N Reoar(yr) is the triangle with vertices

V3 1 1 11 33 1 V3.
(71/24‘372—5,—6 (—3\/§+2y2+2\/§m2) \33 —T+2y2+2\/§m2 \3:7% )}
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Iy <m82 , N;/Ez, MC) N Reoar(yz) is the triangle with vertices

(%,% (\/3+4ys —4\/5373)) ) <% - ?93 +$3,—é <—\/§+2y3 —2\/3333)) ) (%7§> ;

and Ty (we3,N13:,/]§, Mc) N Rcar(y3) is the triangle with vertices

<_

+

>[S
A

[SCIR )

276 )\ 6

(—\/§+4y1),?+§y1),<1 \/§)<\/§ (\/§+4y1),

)

vam (1/2,7/3/2)

T, = (21.91)
i =00 y2 = (1,0) =00 y2 = (1,0)

Figure A.1.1: The shaded regions are the triangular T’y (wej ) Nfg/bg , Mc) N R (y;) regions for

J € {1,2,3} (left); the figure for the description of the pdf of X,,(n), the shaded region is T(g’)
(right) given X, (n) = xe; = (x;,y;) for j € {1,2,3}.

For a realization of &,, with X,;(n) = z., = (z;,y;) close enough to e; for j € {1,2,3}

A0 (1053 0)) = 3 (VB = VB ) 3 (B )+

9 9 9
3
=§ (31'3_6{1}2—}-2\/31/21'2—2\/§y2+y§+3+y§—2\/§y3x3+3$§+4yf)'

To find the expected area, we need the joint pdf of the X, (n). The edge extrema are all distinct
with probability 1 as n — oo (see Theorem 3.4.12). Let T(O be the triangle formed by the lines

at x.; parallel to e; for j € {1,2,3} where = (z1,y1,%2,Y2,%3,y3)- See Figure A.1.1 (right).
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Then the asymptotically accurate joint pdf of X, (n) is

_am-n@m-2) (AT
50 = ~aoy (A(Toz)))

W <\/§/36 (—2\/§y1 +/3ys —3$3+\/§y2+3m2)2)n3.

where the support Dg of f3 (C-) is a region in T'(Y) so that (x;,y;) are distinct. Here the joint
pdf is asymptotically accurate in the sense that P(X,;(n) € Ds) = 1 as n — 00, so we can just
use this function as a pdf for X, (n) in asymptotics.

Then for sufficiently large n,

E [A (1“1 (Xn,Nli/g,MC))] ~ /D A<F1 (Xn,NIi/,j,MC)) f:(0)dC

~ [ a(r (a3 o)) MDD (A(T(c“)))"‘3 i

A(TD))? A(TO))

where dC = dx1 dy: dzs dys dzs dys. Let

G(C) = AT(0)/AT YY)

Notice that the integrand is critical when z; € e;, since G(C-) = lwhenz,; €e;forj€ {1,2,3}.
So we make the change of variables y; = 21, y2 = \/3(1 — 3) — 22, and y3 = \/33:3 — y3, then
G(¢) and A (Ty (%, N2, Mc) ) become

2
(221-1—23—\/54'22) /3 and \/5(,2%-{-2%4-42%)/9,

respectively. Hence the integrand does not depend on zj,z9,z3 and integrating with respect
to x1,%2,23 yields a constant K. Now, the integrand is critical at (z1,22,23) = (0,0,0),
since G(0,0,0) = 1. So let Ef be the event that 0 < z; < ¢ for j € {1,2,3} for suf-
ficiently small ¢ > 0. Then making the change of variables z; = w;/n for j € {1,2,3},
we get A(I‘l (Xn,Nl?;/Ez,Mc)) =0 (n_z) and G(z1,22,23) becomes G(wy,ws,w3) = 1 —
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1 (2/V3(2w1 + w2 +w3)) + O (n2) . Hence, for sufficiently large n

E [A (1“1 (;v NP/E?,MC))] ~

-1 -2
K/ / / Fl XH,N;/;,Mc)) %G(wl,w2,w3)"73dw1dw2dw3,

~ K/ / / (n"?) exp (—2/\/5(2 w1 + wp + wg)) dwydwsdws = O (n~?),

since fooo fooo fooo exp (—2/V3 (2w1 +ws + w3)) dwidwadws = 3+/3/16 which is a finite con-
stant. Hence E [A (Fl (Xn,N;/EQ,Mc))] — 0 at rate O (n™2). W

A.2 Proofs of Some of the Theorems in Chapter 4

A.2.1 Proof of Proposition 4.3.4

ca—ci(1—c1)

o ) and the circumradius is r.. =

Recall that the circumcenter in T} is Moo = <%,
1 (c2—c1(1—c1))?

Suppose T'()) is an acute triangle. Then ¢Z — ¢;(1 — ¢;) > 0. Moreover, d(Mcc,e3) =

m, d(Mcc,e2) = (ze)yerte; ‘M, and d(Mcc,e1) = Vier—ea)ter By algebraic manip-

2 co 2co - 2c2

ulations, we can see that r.. > d(Mcc,e;) for each j € {1,2,3}. Geometrically, this can be
seen by using the appropriate right triangles. See Figure A.2.1. So let € > 0 be small enough
that for each y € ), d(z, Mcc) < € and z € Roc(y) will imply Rece(y) C Nas (z, Moc), hence
X, N Rec(y) C Nas (z, Mcc). Such an € exists since r.. > d(Mcc,e;) for each j € {1,2,3}.
Then for each y € Y, P (X, N[Rcc(y) N B(Mcc,e)] #0) = 1 as n — oo. So at most three
points are required to dominate X, as n — oo.

Now suppose T'(Y) is a right triangle; Then in T} the circumcenter is Mcc = (1/2,0) and

the circumradius is r.. = 1/2. Then

2 , and d(Mco,e1) = 2

2/t + ¢ 2/ -2+

Notice that d(M¢c,e2) < ree and d(M¢oc,e1) < re.. Hence the desired result follows as in the

d(Mcc,e3) =0, d(Mcc,e2) =

acute triangle case.

Finally, suppose 7'()) is an obtuse triangle. Then in T, we have c2—c;(1—c;) < 0 and Moo €

T(Y). Then Roc(ys) is the pentagon with vertices ys, Ma, 21,22, My where 2, = (c1+c2 0)

2c1

29 = (% 0) Recce(y1) is the triangle with vertices y1, 21, Ma; and Roc(y2) is the triangle
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3= (017 02)
Roolys) &
€2

cc

Reo(y2)
Roolyr) © ”

Y1 = (U,0) €3 y2 = (170)

Figure A.2.1: A figure for the description of the ball B(M¢¢,¢).

with vertices ya, My, 25. See Figure A.2.2. Since, the latter two triangles are right triangles, it
follows that d(z1,e2) < d(y1,21) and d(22,e1) < d(21,y2). The explicit forms of these distances
are d(z1,e2) = cz\{@ and d(ze2,e1) = CQ—W So we need one point for each of
Rec(y1) and Ree(y2) around z; and 22 to cover Roco(y1) and Roc(y2), respectively. Note
also that 2d(z1,y1) > 1 — 2d(22,y2), since ca > 0. This implies that picking points sufficiently
close to z1, 22 in Rec(y1) and Roc(y2), say x1, 2, B(z1,7(z1)) and B(zs,r(2z2)) intersect as
in Figure A.2.2. As for Rcc(ys), in the basic triangle Ty argsup,cp,(y,) 4(Z,y3) = 22 and
we see that d(z2, M3) > d(22,y3). See Figure A.2.2. So it seems that two points are required
for Roo(ys); one around 2; and one around z». However, if the closest points in Roe(y1) and
Roc(y2) are sufficiently close to z; and 2o respectively, only a small region in Reoc(ys) is not
covered by B(z1,r(x1)) U B(z2,7(z2)) (see the solid ball and dashed ball in Figure A.2.2). To
cover the remaining region, pick a point sufficiently close to (c1,0), say z3 as in Figure A.2.2.
So three points will suffice to cover T'()). An € argument as before will imply that this happens

with probability 1 for three points in A}, as n — co. Hence the desired result follows. K.
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Y3 = 1162)

2 Reolys)

Reolyr) s Reely2)

Figure A.2.2: The vertex regions Rcc(y) in an obtuse triangle.

A.2.2 Proof of Theorem 4.3.5

Suppose T'()) is an acute triangle, then Moo € T(Y), i.e., ¢ —c1(1—c1) > 0. Observe that, as
n — 00, Xy NRee(ys) C Nasg <X3f (n), MCC) with probability 1, where X ]f (n) —when exists—
is one of the furthest points from y; in Rcc(y;); ie., XJf(n) € argmaXy cx,nReo(y;) UXs Y;)
for j € {1,2,3} whenever X, N Rcc(y;) # 0. Note that at least one of the X ]f (n) uniquele
exists for some j w.p. 1 and as n — oo all Xf(n) are unique w.p. 1. See also Figure A.2.3.
Then if we can show that as n — oo, the domination number of the induced digraph on
X, N [Ree(y1) U Rce(y2)] and {y1,y2} is 1 with probability 1, the desired result will follow.
Restricted to Roc(y1) U Roc(y2), the set X, N [Roc(y1) U Ree(y2)] is a random sample from
U(Reo(y1) URcc(y2))- Let Yina (Xn, Nas) be the domination number for this induced digraph
where Nys (z) := B(z,r(z)) N [Rec(y1) U Rec(y2)]. Consider the proximity region Ni(zq =

(1,91)) defined for 21 € Roc(y1) as

{(u,v) € Roo(y1) U Rco(y2) - u <min(2zy,51(21))}, if B(z1,7(21)) Ney # 0,

Ni(z) =<
Nas ((z1,91))), otherwise,

z1+3—\/§y1+\/(z1—\/§y1)2+3 (221-1)
4

where s1(z1,y1) = in the standard equilateral triangle Te.

See Figure A.2.4 (left). For (z1,y1) € Reoco(ys), Ni((z1,y1)) is defined similarly. Then for
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= (C1; &

yi[= (Y U) y2 = (L, U]

Figure A.2.3: A figure for the description of the pdf of X7 (n) with a given XJ (n) = 7.

sufficiently large n,

P(y(X,,N1)=1) <P ('Yind(XmNAS) = 1) ;

since Ny(z) C Nag (z) for all z. Next, consider the transformation, (z,y) — =, then the

transformed variable X is distributed as F' with density
f(z) =y/A(Rce(y1) U Ree(y2)), for (z,y) € 8 (Roc(y1) U Reco(y2)) \ es. (A.21)
See also Figure A.2.4 (right) where f(z) is multiplied by the area of Rcc(y1) U Rec(y2). Let
No(z) := {u € (0,1): u<min(2zy,s1(z1,91))}-

Then (X, N1) = 1 iff v(X,, N2) = 1.

,R,CC(/yl),(

L 72 —2 1,0
T / 207 /g 0 § o709 172 z (107

1, %1

Figure A.2.4: The explanatory figure for Ny ((z1,¥1)) for (z1,vy1) € Rec(y1) (left); the graph of
f(z) in Equation A.2.1 multiplied by A(Rcc(y1) U Roc(y2)) (right).
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If z; sufficiently close to 1/2, then min (21, s1(21,¥1)) = 221 will hold. Then min(2 X3, s1(
X1,Y1)) = 2X; with probability 1 as n — oo. Hence y(X,,, N2) = 1 by a Lemma in [3] since
F(0) = £(1) = 0 and f(1/2) = g len.

Hence lim,,_, o, P(7(X,, N2) = 1) = 1 which in turn implies lim,,_, o, P ('yind()(n, NAS) = 1) =

1. Then as n — oo two points suffice to dominate the data set A, with probability 1. Hence

P(y(Xn,Nas,Mcc) <2) > lasn— oco. B

A.2.3 Proof of Theorem 4.4.8

Let M = (my,m2) € 0(J"), say M € g3(r,z) (recall that g;(r,z) are defined such that

A(y;e;) = 7+ dlg;(r,),y;) for j € {1,2,3}), then my = Y2L=") and my € [2G70, 8],

27 2r 7 2r

Let X, (n) be one of the closest point(s) to the edge e;; i.e., X, (n) € argminy ., d(X,e;) for
j €{1,2,3}. Note that X, (n) is unique a.s. for each j.

Notice that for all j € {1,2,3}, X¢;(n) ¢ Npg(X) for all X € &, N Ry(y;) implies that
v (Xn, Npg, M) > 1 with probability 1. For sufficiently large n, X¢;(n) ¢ Npg(X) for all
X € X,NRu(y;) with probability 1, for j € {1,2}, by the choice of M. Hence we consider only

X, (n). The asymptotically accurate pdf of X, (n) is

[ ASu@ )\t 1
fe “”’”‘”( AT0) ) AT’

where Sy (z,y) is the unshaded region in Figure A.2.5 (left) (for a given X, (n) = z., = (z,y))
whose area is A(Su(z,y)) = V3 (2y — \/5)2/12. Note that X (n) ¢ Nhg(X) for all X €
Xn N RM(YS) iff X, N [Fl (Xna N};EJ M) N RM(y3)] = 0. Then given Xes (n) = (.’L‘, y)a

P (Xn n [Fl (Xn,N;)E,M) ﬂRM(y3)] _ 0) _ (A(Su(x,y)) - Ag‘(ls(;v(’;’];)%E’M) nRM(YS)))nf ’

where A (T'y (Xp, Npg, M) N Rpr(ys)) = 3ﬁy12)r (see Figure A.2.5 (right) where the shaded

region is 'y (X, Nhg, M) N R (ys3) for a given X, (n) = (z,y)), then for sufficiently large n

P (X, N [Ty (Xn, Np, M) N R (ys)] = 0) =

A(SU($7y)) _A(Fl (Xn;N}gE,M)ﬂRM(y:;)) n—l
/( AGu9) )t ndyds

_ n A(Su(2,y)) — ATt (Xn, Npg, M) N R (ys))\" ™ .
-/ ATO) ( ATO) ) dy de.
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Let

Gla.y) = ALBU@Y) ~ A (X0, N, M) N Ru(ys)) _ 4 (V3 QRy=V3)' By
T, y) = A(T())) -3 12 3(r—1)r )’

which is independent on z, so we denote it as G(y).

@ =(1/2,V3/2)

a

» = (0,0) 2 = (1,0)

@ =(1/2,V3/2)

y1+(0,0) - e y2 = (1,0)

Figure A.2.5: A figure for the description of the pdf of X., (n) (left) and I'y (X,,, N, M) (right)
given X, (n) = z¢y = (z,9).

Let £ > 0 be sufficiently small, then for sufficiently large n,

P(Xn N [Fl (Xn7N}1;EJM) N RM(yB)] = @) ~

/ /1 y/\/_ )"t 4/V3dydr = (1—2y/\/_)/ G(y)" ' 4/V3dy.

The integrand is critical at y = 0, since G(0) = 1 (i.e., when z., € e3). Furthermore, G(y) =
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1-4y/V/3+0 (y?) around y = 0. Then letting y = w/n, we get

(1 — %) % /OnE (1 - ﬁw+0 (n_z))nldw.
letting n — oo, ~4/V3 /Ooo exp (—4w/\/§) dw =1.

P(XoN[[1(Xn,Npgp, M) N Ru(ys)] = 0)

Q

Hence lim,, oo P (7 (Xn, Npg, M) > 1) = 1. For M € ¢;(r,z) N J7" with j € {1,2} the result

follows similarly. B

A.2.4 Proof of Theorem 4.4.9

Let M = (my,ms) € 0(T")\ {t1, t2, t3}, say M € g3(r,z). Then my = w Without loss

of generality, assume % <my < 32;[ See also Figure A.2.6.

5= (1/2,v/3/2) 5= (1/2,/3/2)

IEUAY €3 ‘ Vo = (1,0) yi= (0,07 €3 ‘ V> = (1,0)

Figure A.2.6: A figure for the description of the pdf of Q;(n) and Q3(n) (left) and the unshaded
region is Npgp(Gi, M) U Npg(ds, M) (right).

Whenever X,, N Rar(y;) # 0, let

~

Qj(n) € argminy ¢y (g, (y;) (X, €;) = argmaxxc x, (g, (y;) A5, X),y;) for j € {1,2,3}.

Note that at least one of the ;(n) uniquely exists w.p. 1 for finite n and as n — oo, @j (n) are

unique w.p. 1. Then

7 (X, Nbg, M) < 2 iff X C [N,ZE (él(n), M) UNL (QQ(n),M)} or

X, C [N;,E (QQ(n), M) UNLg (Qg(n), M)] or X, C [N;E (@1 (n),M) UNL (@3(n), M)] .

Let E%7 be the event that X,, C N5 (@i,M)U[NIZE (@](n),M)] for (i, j) € {(1,2),(1,3),(2,3) }.
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Then

P(y (X, Nps, M) < 2) = P (EY?) + P (2?) + P (EL) — P (X" N E2®) — P (EX 0 ELY)

n

-P(E)’NEY)+P(E"NEYNE?).
But note that P (E}?) — 0 as n — oo by the choice of M since

SUP weRar(y)) Npp (U, M) U Npg(v, M) CT(Y),
vERM (y2)

and

P (Xn NT)\ lsupueRM(yl)Nf)E(u,M) U N;E(U,M)] # (0) — 1asn — oo.
vERM (y2)

Then,

P (EY

n

>)-P(E,*NEZ*)—-P(E}*NE,?)+P (Ey*NEX NEL?) <4P (E)?) — 0as n — oo.

Therefore,

lim P (y (X, Npg, M) <2)= lim (P (E2®) + P (E)?)).

n— oo n— o0

Furthermore, observe that P (EL3) > P (E23) by the choice of M. Then we first find
lim,, 0 P (EL3). Given a realization of X, with Q1(n) = ¢ = (z1,51) and Q3(n) = g =
(z3,y3), the remaining n — 2 points should fall, for example, in the undshaded region in Figure

A.2.6 (left). Then the asymptotically accurate joint pdf of @1(n), ©3 (n) is

_nm=1) (ATY) - < 5)5)
hs ) = Zamy ( )

where { = (xl,yl,mg,y3 Sk( C-) is the shaded region in Figure A.2.6 (left) whose area is

3(2rys—v3(r—1) V3[2V3ry1—3(r—1)+67 (x1—m1)
A(SR({)): 1237'(7‘—1) r + 7 721 (1—r (2m1—1)) ]

Given @J(n) =q; = (x5,y;) for j € {1,3},

p(E1) = (A (Nps @, M) U Npp (@, M) = A(&(O))”‘z
" AT(Y)) - A(Sk(C))
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then for sufficiently large n

1,3\ A(NIQE(Z]\I’M)UNIEE(Z]\&M))—A(SR(E)) n—2 3
P(E”) = /( A(T(Y)) — A(Sr(0)) ) frs (€) dC,
= /n(n—l) A(NI)E(ZI\I’M)UNIT’E(EI\&M))—A(SR(E)) n—2 dg
ATO)Y AT
where

A(Nbg @1, M) U Nbg (G, M)) = ? _ ((x/ﬁryl +3ro —3)6(\/3(1‘— 1) —Zry3)> |

See Figure A.2.6 (right) for N5z (G1, M) U N&g(gs, M). Let

A(N55 (G, M)UNEL (g3, M)) — A(S
(@) = AVbe (@ )%éﬁﬁ )~ A(Sr(C)

Note that the integral is critical at 1 = x3 = m; and y; = y3 = ms, since G(E) = 1. Since
Npp(z, Mc) depends on the distance d(z,e;) for x € Ra(y;), we make the change of variables
(xhyl) - (d(M7 61)+21,y1) where d(Ma 61) = W and (5’334/3) - ($3,m2+23) then

G (C_) depends only on 21, 23, we denote it G(z1,23) which is

Glor, 23) = 1 8722 B 4r22 _2rz (V3B —1)) +r (421 —2v/3m,)
1,23) = 3(1+r(1—2my)) 3(r—1) 3 .
The new integrand is %G (21, 23)" 2. Integrating with respect to x3 and y; yields 23‘(/§fi)r
and 3(2%5%—1)’ respectively. Hence for sufficiently large n

13y L [F [ nn=1) 2vV3z3r 431z o
P(En3)~/0 /0 1o (3(r_31)> (3(2rm1_7"_1))G(z17Z3) dz1 dzs.

Note that the new integral is critical when z; = 23 = 0, so we make the change of variables

z1 = w1 /y/n and z3 = w3 /n then G(z1, z3) becomes

_ 1 (2V3r(r—3+2rm) 8r 9 ~3/2
G(wl’w3)_1+ﬁ< 3 Ut s 1—2rmy) +O(" )
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so for sufficiently large n

Vne pne n— r 4 r
P(E}ﬁ)m/o /0 ( D?(;‘ﬁ )(3( V3 )(—4m1+2+\/§)w1w3

n3 (r—1) 2rmy —r—1)
n—2
1(2v3r(r—3+2rm) 8r 9 _3/2
1-—— d
n( 3 st s s i—2rmy) +O(" ) Wsthns
_ R e 237 (r—34+2rm) 8r
1 2
R~ - - d
0] (n )/0 /0 w1 W3 €xp ( 3 w3 5+ 1—2rmy) wy w3wy
=0 (n7")

237 (r—3+2rmi)
3 w

: o oo _ 8r 2 — 3
since [y” [~ wiws exp (_ 3 3(r+172rm1)w1) dwgw, = 87 (B—r (2mitD))’

which is a finite constant. Then P (EL?®) — 0 as n — oo, which also implies P (E2?®) — 0 as

n — oco. Then P (y (X, Npg, M) < 2) — 0. Hence the desired result follows. B

A.2.5 Proof of Theorem 4.4.10
Let M = (my1,ma) € {t1, ta2, t3}. Without loss of generality, assume M = ty then m; =
2_”++(T_1) and my = @ See Figure A.2.7.

3:(1/27\/§/2) 32(1/2,\/§/2)

yi[= (0, U] - €3 ‘ Yo =(1,0) yi|= (0, 0) - €3 ‘ V> =1(1,0)

Figure A.2.7: A figure for the description of the pdf of Q1(n) and Q3(n) (left) and the unshaded
region is Npg (G, M) U Npg(ds, M) (right) given Q;(n) = ¢, for j € {1,3}.

Let Q;(n) and the events E:7 be defined as in the proof of Theorem 4.4.9 for (i,j) €

{(1,2),(1,3),(2,3)}. Then as in the proof of Theorem 4.4.9,

P(y(Xn, Npg, M) < 2) = P (Ep?®) + P (Ep°) + P (Ey°) — P (Ep*n Ep) —

P(EX?NEL) — P(EX N EX?) + P(EX? N E>* N EL®).
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Observe that the choice of M implies that P (EL?) > P (E2®) and by symmetry (in T.)
P (EL?) = P (E2?). So first we find P (EL?). As in the proof of Theorem 4.4.9 asymptotically

accurate joint pdf of @1(n), Qs (n) is

Cnm-1) (AC®) - A\
512 €)= Zr oy ( ATO)) )

where { = (z1,y1,3,y3) and SR(E) is the shaded region in Figure A.2.7 (left) whose area is

2rys —V3(r—1?) V3 (Bryi+3zr—3)°
12(r=1)r * 36(r—1)r '

A(Sr(()) = Vs

Given @J(n) =q; = (x5,y;) for j € {1,3},

P (gL = (A(N;E (@, M) U Npp (@, M) - A(&(é)))"‘z
" A(TY)) - A(Sr(() ’

then for sufficiently large n

A(N};E (Q/:\(IDM)UNITDE(%,M))—A(SR(Q) " 3

1,3)

nEn /( A(T(Y)) — A(Sr(C)) f1s (€) dd,
_[moh (AR @00 UN G ) - AGKD)) T
] ATQ))? ATO)

where

A(Npg (@1, M) U Npg (33, M) =

@ _ (2rys —V3(r— 1)) (3—\/57“111 —3rmz)
4 6

See Figure A.2.7 (right) for N5 (g1, M) U Nhg(gs, M). Let

A(NLE (G, M)UN©L L (g3, M)) — A(S
(0 = AVbs @ )uA(,;E(gg) ) = ASr()

Note that the integral is critical when x1, = £3 = m; and y; = y3 = ma, since G(f) =1.

As in the proof of Theorem 4.4.9, we make the change of variables (z1,y1) — (d(M,e1) +
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z1,y1) where d(M,e;) = \/gérr_l) and (z3,y3) — (23, m2 + 23). Then G(f) becomes

4r 4r 872
=1- 2 _ 2_2° .
(1, 2) 3(r—1) ' 3(r—1)° 3 %
The new integral is
n (TL - 1) n—2
/WG(Z]_,Z[;) d$3dy]_d2’3d2’]_.
Note that G(z1,23) is independent of y;,z3, so integrating with respect to z3 and y; yields
23‘(/Ef12)1 and 23\(/§f1z)3, respectively. The new integral is critical at 23 = 23 = 0. Hence, for

sufficiently large n and sufficiently small € > 0, the integral becomes,

S fan—1) [ 12r2
PE1’3m// n (n "2 Qo dzs.
= ), Jy awonp \s—p) =2 GG - dada
Since the new integral is critical when z; = 22 = 0 we make the change of variables z; = w;/\/n
for j € {1,3} then G(z1, z3) becomes

4r

G(wl,w3) =1- m(

wi +wj +2r (r — 1) wy ws)),

SO

VRe Ve (n —1) 16 1272
— 1,3) ~ - i
pemr @)= [0 [ ET0 (2 (5 ) w)

4r o
g (2 Dw)| duso,

letting n — oo,
o0 %0 64 2 4
~ /0 /0 9 (ril) w1 W3 exp(Til)(uf+u§+2r(r—1)u1u3)) dwsw

which is not analytically integrable, but p, can be obtained by numerical integration, e.g.,

Pr—ys = 4826 and p,—5/4 & .6514.

Next, we find lim,,_,o, P (E2?). The asymptotically accurate joint pdf of Q2(n), Qs(n) is

_nn-1) [ATOD)) - A(Slzz(C-)) "
hﬂo_ﬂﬂﬂﬁ( ATO)) )
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where = (z2,y2,73,y3) and 5123(5) is the shaded region in Figure A.2.8 (left) whose area is

) _\/5(2ry3+\/§(1—r)) V3 (V3rys —3rzs —3r +6)
A(SR(C-)) B 12r(r—1) + 36(2—r)r '

5= (1/2,V3/2)

5= (1/2,V3/2)

t1 M= tl\ﬁq} / 0 M= tb\@z \

yi[= U, U] - €3 ‘ Y2 = (1,0) yi|=(0;0) €3 ‘ V. = (1,0)

Figure A.2.8: A figure for the description of the pdf of Q2(n) and Qs(n) (left) and unshaded
region is Npp(d2) U Njg(Gs) (right) given Q;(n) = g; for j € {2,3}.

As before,

2 A(JVPTE(CTZ,M)UNPTE(EIB;M))—A(SR(C))>n_2 =
P(E>?) = 2 (O) d
(E7) /( A(T(Y)) — A(S%(0)) s (€ &0

- [ masl) (AU @0 U NG @00 = ASH(E)) T
— ] ATD))y

ATO))

where

@ (2rys —V3(r—1)) (3—+v3rys+3rzs—3r7)
4

A(Npg (@, M) UNpp @, M) = ¥ - :

See Figure A.2.8 (right) for Ny (G2) U Npg(gs, M). Let

A(Npy (@2, M) UNEp (@3, M) — A(S
(@) = AWEp (@ )uA(J;,?Jg); )~ ASr()

Note that the integral is critical when x5 = £3 = m; and y» = y3 = ma, since G(f) =1.

We make the change of variables (z3,y3) = (23, m2 + 23) and (22,y2) = (d(M, e2) + 22, y2)
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where d(M,e3) = M. Then G({) becomes
2r

G(zo,23) = 1 — drzy  Arz _4\/§rz3(3_2r)_87.2z2z3‘

The new integral is

-1
/ %G(ZL 23)"72d$3dy2dz3d22‘

The integrand is independent of x3 and y2, so integrating with respect to x3 and y, yields

23‘(/5f12)3 and 23*(/2?:f :)2, respectively. Hence, for sufficiently large n

o3y [* [F nn=1) 472 o
P (En3) ~ ‘/0 /0 A(T(_‘)i))2 (3 (T — 1) (2 _ T)) 23 22 G(Z2,23) dzodzs.

Note that the new integral is critical when 25 = 23 = 0, so we make the change of variables

29 = wa/+/n and z3 = ws/n then G(z2, z3) becomes

Glwzws) =1= 0130 3

1 l 4rwl _4\/§rw3(3—2r)‘| +O(n*%),

so for sufficiently large n

Ve e (1) 64 r2
P (E?*® m/ /
(Ex”) o Jo w2 9r—DnE_n "

n—2
1{ 4rw? 4/3rws (3 —27) 3
ll_ﬁ (3(2—r) B 3 +O(n3)| dugws,

Rl e drw? 4+/3ruz(3—2r) _
~ -1 . _ 2 3 — 1
NO(n )/0 /0 wWa W3 exp( 35@=1) 3 dwswy O(n )

since

/°°/°°w i Arwi  4v3ruz(3-2r) dets — 27(2—r)
o Jo P EPATIR ) 3 392 = 38473 (3 21)2

which is a finite constant.
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Thus we have shown that P (E2%) — 0 as n — oo, which implies that as n — oo,

P (E.°) + P (Ey”) - P(By® N ER°) — P (Ep” N ERP)

- P(E*NE%2®) +P(EM*NEZNELY) <5P(E2%) —0.

Hencelimy, o0 P (7 (X, Npg, M) < 2) =limp,_,o0 P (E,ll’3) and limp,_yoq P(y (Xp, Npg, M) >
1) =1 implies that
lim P(y(Xp,Npgp, M) =2) =p,.

n—oo

A.2.6 Proof of Theorem 4.4.11
Whenever X,NRou(y;) # 0, let Q;(n) € argminy e v ARey (y;) AX; €5) = ATBMAXx ¢ ¥, (R p (y;)
d((y;, X),e;), where e; is the edge opposite vertex y; for j € {1,2,3} and let g; be a realization
of @J(n) for j € {1,2,3}. Note that for sufficiently large n, ij (n) uniquely exist w.p. 1 for each
j. Then
y (Xn,N,?;/,j,MC) = 1iff
X, C N2 (@u(n), Mc) or X, € NYZ (Q2(n), Mc) or X € NYE (Qs(n), Mc) .

Let E} := {Xn C N;/EZ (éj(n),MC)} for j € {1,2,3}. The events E} are not necessarily

disjoint. Then

P (v (%, N}z, Mc) =1) = P (E}) + P (E2) + P (ES) - P (E} N E2) - P (E} N E})

-P(E2NE3)+P(ENE.NE}) <4P(E2).

Let T(é](n)) be the triangle bounded by the median lines at yx and y; for k,! # j and
L(y;, éj (n)), then T(g>) has vertices

<1/2,\/?_)/6) , (1/2,y2 +\/§/2— \/5.%'2) ) (\/3/2 (—yz + \/5:132) ,—y2/2+\/?_)$2/2) .
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Then the asymptotically accurate pdf of Q- (n) is

f@Q (z2,92) =

where A(T(g2)) = (—\/§y2 -1 +3x2)2 /12 with domain Dy = {(22,42) € Rom(y2) : y2 >
—(1 4z, —¢€)/V/3} for € > 0 small enough that T(g2) C Rca(y2). See Figure A.2.9.

2 Yy Y2

Figure A.2.9: A figure for the description of the pdf of Qs (n) given Qa2(n ) = G2. The shaded
region is T'(g) (left). A figure for the description of the joint pdf of Q1 (n), ) given Q;(n) =

Q2(n
g; for j € {1,2}, and the event EL-2. The unshaded region is N%/2 (1) UN2 (d2)\[T(41)UT (G2)]
(right).

Then for a given realization of X, with ga = (22, y2), N13)/E2 (g2, M) is a triangle with vertices

(-1/2 (VBy2 +1—=32),0),(1,0), (-1/4 (V3ys — 1 —325),3/4 (V3 +y2 — vV322)). So for

sufficiently large n

P (Er)

Q

AN @ Me)) -T@)\ "
/ 3/2 I3, (@2,92) dy2da>
D 4 (N @ M)

) w (A0 @ M0) - am@)\"
b, ATD)) ATD)) Yot

where A ( P/E (qz,Mc)) =33 (—\/5 — Y2+ \/§$2)2 /16.
Let
A(NYE @, Mc)) — AT (@)

G($25y2) = A(T(y)

The integral is critical at (z2,y2) = (1/2,/3/6), i.e., when g = M¢ since G(1/2,+/3/6) = 1.
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So we make the change of variables z3 = ya/ V3+1 /3 + 22, then G(x2,y2) becomes G(z2,y2) =
(48 — 3(2 + 22)?)/4, which does not depend on y2, so we denote it as G(z2). Hence the integral

becomes

P(Ei) z//mG(zz)"_ldygdzz,

where the limits of integration for y, are \/3/ 2(1/3+ #2) and \/3/ 2(1/3 — 2 z2), so integrating
over ys we get

P(E2) ~ /05 m % 29 G(22)" dzs.

The integral is critical when 2z, = 0, since G(22 = 0) = 1. Let 23 = wa/n. Then for sufficiently

large n the integral becomes

Q

P (E2) /Omﬁ@ [(1-3%22 +O(n_2)>]n_1dw2

n

~ O (n_l) / 6 we exp(—3ws) dws = O (n_l)
0

since f0°°6w2 exp(—3ws) dwa = 2/3. Thus as n — o0, P (y(Xn, Nbgp, Mc) =1) — 0 at rate
O(nt).m

A.2.7 Proof of Theorem 4.4.12

Note that

” (Xn,N;/g,Mc) < 2iff X, c N3/2 (él(n),Mc) U N2 (QQ(n),MC) or
X, C N3/ (él(n),Mc)uNgfg (é3(n), MC) or X, C N2 (@2(n), MC)UN;/E% (ég(n),Mc) .
We have shown in Theorem 4.4.11 lim,, ,o, P ('y (Xn, N;/;, MC) > 1) =1, then
lim P (7 (Xn,N,?;/g,MC) < 2) = lim P(y (Xn,N;/g,MC) - 2).

n—oo n—oo

Let the events EiJ := X, C N2/2 (@ Mo)uNﬁ/g (@j(n),Mc) for (4, 5) = {(1,2),(1,3),(2,3)}.
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Then

P (7 (X, NY3. M) <2) = P (E}?)+P (BL®)+P (E>*)-P (E)* N EL®)-P (EL? 0 E2°)

- P (E)’NEY)+P(E"NEYNEL?).

n n

By symmetry, P (EL?) = P(EL?) = P(E*?) and P(E}?NEL®) = P(EY?NEX) =
P (EL*NE2®). Hence

P (7 (Xn, N¥2, MC) < 2) =3 [P (EL?) — P (EL2n E};3)] +P(EVNEY®nE2Y).

To find P (E}?), we need the asymptotically accurate joint pdf of Q1(n), Q2(n). Given
@J(n) = g; for j € {1,2}, let ¢ > 0 be small enough such that T'(g;(n)) C Rcm(y;) for

j € {1,2}, then the asymptotically accurate joint pdf of Q1(n), Q2(n) is

-1 (AT —A(T(@)) — A(T(@@)\"?
Ji2 (%1, 91,2, Y2) = Z((}L(y)))z ( TO) (T(q)) (T(q )))

where A(T(@1)) = v3/36 (—=2v3 + 311 + 3v321)” and A(T(@%)) = v/3/36 (=312 — V3 + 33 35)”
with domain Dy = {(xl,yl) € Rom(y1) : y1 > —\/3/3 + V321 +V3e, (z2,42) € Romly2) :

Yo < —\/?;/3 +v/3xy — \/55} See Figure A.2.9.
Note that P (EL2) = P (Xn c N2 (él(n), Mc) U N2 (Q”Q(n),Mc)), then

. / A (NY2 @, M) UNYE @, Mo)) — A(T(@)) - AT @
b, A(NY2 @, Mo)UNYE @, Mo))

) n—2 3
) fi2 (€) d¢

where { = (21,91, 2, 2) and A (N5 (@, Mo) UNYg (@, Mc)) = v/3/2+32/4-3V3 a2 /4
3V3y192/8—921y2/8 —3y1/8— 331 /8 + 92291 /8 + 9321 x2/8. The integrand simplifies

to

nn—1) (AN @ Me)UNYE @, Mo)) — AT@) - AT@) "
AT ATO) |

Let
A (N2 @, M) UNEE @, Mo)) - A(T(@)) - AT (@)
60 = ATO) |

226



The integral is critical at 1 = 22 = 1/2 and y; = y2 = \/3/6, i.e., when q; = g2 = M since
G() =1

Next, we make the change of variables z; = 1 —y1/v3—1/3—21 and x5 = y2/V3+1/3+ 23,
then G(C-) becomes G(z1,22) = 1 — 921 22/2 — 327 — 322, which does not depend on y;,¥s.

Hence for sufficiently large n the integral becomes

-1
P(Ei’z) z/%G(zh»22)"_2dyldygdzldzz,

where the limits of integration for y; are \/3/ 6+ 32 /2, and \/3/6 — /32 and for y, are
\/3/6 + \/522/2, and \/3/6 — V/3 29, so integrating for y; and y, yields

/ A 3\/_z1/2) (3\/§z2/2) G(z1,22)" 2dzidzs.

The integral is critical when z; = 2z, = 0, since G(0,0) = 1. Let z; = w;//n for j € {1,2}.

Then for sufficiently large n the integral becomes

Lo vn 1 n-127 1 ) N
P(En’ ) ~ W T ZU}l w2 1- E (9w1UJ2/2+3'I,U1 +3w2) dw1dUJ2,

> 16 2
/ / _6 _7 exp 9'11]111]2/2 — 311)1 3’[1)2) dwidwy ~ 4126

which is obtained by numerical integration.

Furthermore, to find P (E}? N EL3), we need the asymptotically accurate joint pdf of
Q1(n), Q2(n), Q3(n). Given @](n) = g; = (zj,y;) for j € {1,2,3}, let ¢ > 0 be small
enough such that T(¢;) C Rowm(y;), for j € {1,2,3} where T(gs) is the triangle with ver-
tices ((v3—3ys3) /v3,y3), (1/2,v/3/6),(V3ys,y3). Then the asymptotically accurate joint
pdf of @1(“)7 @2(”): @3(") is

fias () = M= D =2) (A<T0’>> ~ A(T@)) — AT@)) ~ A(T@)))“

A(TO))? A(T())

m

= ~ 2 . .
where ( = (21,Y1,T2,Y2,T3,y3) and A(T(g3)) = % (=V3+ 6y3)” with domain D; = {(ml,yl)
Rom(y1) © v > —V3/3 +V3x1 + V3¢, (x2,42) € Roar(ys) @ y2 > —V3/3 + V3zs —
V3e, (23,y3) € Rom(ys) : ys < \/5/64—5}. See Figure A.2.10.
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yi Y2 Y1 Y2

Figure A.2.10: A figure for the description of the pdf of Qi(n),Q2(n), Qs(n) and the event
EL2NEL3. The unshaded region is N2 (G1) UINY2 (G2) N N2 (32)]\ [T(G) UT(G2)] (left). A
figure for the description of the event E12 N EL3 N E23. The unshaded region is (N3 (§) U
N @) VINE (@) U NZ; (@) N INEy (@) UNEy (@) \ [T(@) UT(@) UT(@)] (right).

Note that
P(EX2NEY) =P (Xn c N2 (Ql(n),MC) U [N,?;/,;f’ (éz(n),MC> NN/ (@3(n),MC)]) ,

then for sufficiently large n

P (EY N ELS) ~ /

(A (NP @, M) U [NEE @, M) 0 N3 (@, Mo)))
Ry

A(T(Y)) — A(T(@1)) — A(T(g2)) — A(T(33)) ) frzs (€) dC
where

~ . . V3
A (Ni/é (q1, M) U [NI?;/; (@2, Mc) ﬂNg/E ((137MC)]) =3 (—6—2\/51112 + 6o+

4\/53/3 + 621 —6\/§x1y3—6y1y3+3\/§m1y2—3\/§x2y1 -9z 22+ 3y1 92 +2\/§y1).

The integrand simplifies to

wn—1) (= 2) (A (VR @ Me) U N2 G M) 0 NEE @, Me)] )\
AT ATO)) |
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Let
(N;/g (@1, M¢c) U [N%; (@2, Mc) N N (@, Mc)])
A(T(Y)) '

A
G(() =

The integral is critical at £; = 22 = 23 = 1/2 and y; = y2 = y3 = V/3/6, i.e., when ¢, = o =
Gs = Mg since G(C_) = 1. Next we make the change of variables ;1 = 1 — yl/\/?: —1/3— 2z and
Ty = yg/\/§+ 1/3 + 23 and y3 = \/3/6 + z3, then G(f) becomes

G(z1,20,23) =1 —322 =322 —422 —92120/2—3V32 23,
which does not depend on y1, y2, and x3.

Hence for sufficiently large n the integral becomes

n—1)(n—2)

P(E*NE) ~ / n( ATO)P G(z1, 29, 23)" 2 dyrdy2dr3dzy dzadzs,

where the limits of integration for y; are v/3/6 +v/321/2 and v/3/6 — v/3 21; for y» are v/3/6 +
V32:/2 and v/3/6 — /3 22; and for z3 are (1/2+ /3 23) and (—1/2+ v/323), so integrating

over yi, y2, and z3 we get

1,2 L [ [fn(n=1)(n-2) 33 33
P (En ﬁE"3)N/o /0/0 ATO))? ( 2 zl) ( 2 z“’) 23z

G(z1, 22, 23)”73dzldz2dz3.

The integral is critical when z; = 2o = 23 = 0, since G(0,0,0) = 1. Hence let z; = w;//n

for j € {1,2, 3}, the integral becomes

vne pvne pvne g (n—=1)(n—-2)
P (E¥?nELY® :/ / / 288wy wo w
S A A A T (67) A

n

1 ) n—2
[1 - = (3w§ + 3w% + 4w§ + 9wy wa/2+ 3\/511)1 wg)] dwydwadws, letting n — oo
n
o0 o0 oo .
x/ / / 288 exp (—3w§—3w%—4w§—9w1w2/2—3\/§w1w3) dw; dwsdws
o Jo Jo

~ .20087,

which is obtained by numerical integration.
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Next, we find P (EL? N EL® N E2®). Note that

P(E?NEYNE2®) =P (;v c [N (Qum), Mc) UNYE (Qa(m), Mo |
N V25 (Qum), Mc) NG (Qstm), M) | 0 [N (Qam), Mc) U NE (Qs(m), Mo)])
So, for sufficiently large n
PESNENNEY) ~ [ (A ([ @, Mo) U N @, Mo)| 0 [NRE (@, Me) U N (@, Mc))
N [N¥2 @, Mo) UNE @, Mc)]) [ (ATO) - AT@)) - AT@) - A(T(cz»,))) " @
where

A ( [NEE @, Mo) U NG @, Mo)| 0[N3 (@, M) UNZ (@, Mo)| 0

v3

3 (—3\/?_)m1y2+3\/§m2y1+5—6\/§x2y3+

[N @, Mo) UNY (@, M@]) =

6ysys +6y1ys + V3ys + 921 22 —3y1ys — 322 —2V3ys — 621 +6V3z1 43 —2\/51/1).

The integrand simplifies to

n(n—1)(n-2)

A(T(Y))? ([A(N3/2 (@, Mc) UN, (qg,Mc)] [Ng/]; (G, Mc)U

N @, Mo)| 1 [Ny (@, Me) UNY @, M) / A(T(y))) -

Let

6(0) = [A([NE2 @, Me) U NEZ @, Mo)| 0 [NE2 @, Me) U NEE @, M) n

[N/ (C_I2,MC)UNPE (13,MC])]/A

The integral is critical at z; = 2o = z3 = 1/2 and y; = y» = y3 = V/3/6, since G(C-) = 1. So,

we make the change of variables x; = 1 — yl/\/§ —1/3 — 2 and 22 = yg/\/§+ 1/3 + 23 and
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Y3 = \/5/6 + z3, then G(C_) becomes
G(z1,20,23) =1 =327 — 323 — 422 —9z1z;>/2—3\/§z1 23— 3V3 29 23.

Hence for sufficiently large n the integral becomes

n—1)(n—2)

P(E*NENE?) ~ / n ATO)P G(z1, 29, 23)" 2 dyrdyadr3dzy dzodzs,

where the limits of integration for y;, y2, and z3 are as above. So integrating over y;, yo, and

T3 we get

P (B N EL 0 E29) ~ /0 /0 /0 % (3v321/2) (3v32/2)

(2 \/g Z3) G(Zl, 22, 23)n73d21d2’2d2’3.

The integral is critical when z; = 2z, = 23 = 0, since G(0,0,0) = 1. Hence let z; = w;//n for

j € {1,2,3}, the integral becomes

vne pvne pvne g (n=1)(n-2)
1,2 1,3 2,3\
P (En ﬂEn ﬂEn ) N/O /0 /0 A(T(y))3 2 288w wo w3

1/, . n?
[1 - (3wf +3w? + 4wl + 9wy we/2 + 3V3w; ws + 3V3w, wg)] dwy dwydws,
letting n — oo,
oo oo o
~ / / / 288 exp (—3 (w} + wd) —4w? — 9wy wa/2 — 3V3 (wy ws +w2w3)) dw dwadws
o Jo Jo

~ .1062,

which is obtained by numerical integration.

Hence we get

lim P (7 (Xn,Nj;/g,Mc) - 2) ~ 7413, and lim P(fy (Xn,N,i/g,MC) - 3) ~ 2587. W

n—oo n—oo

A.2.8 Proof of Theorem 4.7.4

Let M = (my,ms) € T(Y)°. Recall that (X, NG5!, M) > 1iff X, N Ty (X, NG5, M) = 0.

The I';-region is determined by the (closest) edge extrema, i.e., by X, (n) € argminy» d(X,e; )
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for j € {1,2,3}. Note that X,;(n) is unique a.s. for each j and n > 3.

Let Ej(n,e) be the event such that X, (n) is in the strip {(z,y) € T(Y) : 0 <y < e};
Xe,(n) is in the strip {(z,y) € T(Y) : V3z —e < y < V3z}; and X,,(n) is in the strip
{(z,y) € T(Y) : V3(1 —z) —e <y < V3(1 — =)} (that is, the edge extrema are in ¢ strips
around the edges) and X, (n) are distinct. Note that P(E;(n,e)) = 1 as n — co. See Figure

A2.11.

- Ty = (23, Ys)

y2

Figure A.2.11: A figure for the description of the event E}(n,e) (left) and Ex(n,e) (right). The
unshaded regions are the corresponding e-strips around the edges given X, (n) = xe; = (z;,9;)
for j € {1,2,3}.

Let X.,(n) = x.; = (x;,y;) be given and let T(f) be the triangle formed by the lines at .,
parallel to e; for j € {1,2,3} where = (21,91, T2,y2,%3,y3). See Figure A.2.11 (left).

Then the asymptotically accurate joint pdf of X, (n) is

_ =)= (AT
2O = Taoy (A(T(y))> (422

= nn-1)(n-2) <\/§/12 (—2y1+y3—\/§x3 +y2+3m2)2)"3/(\/§/4)”.

with the support Dg = {z., = (2;,9;), j € {1,2,3}: d(z,,e;) <e}.

Given X, (n) = (z;,y;),

AT(Q) - A(T1 (X, N55', M) )

P (X, NIy (Xn, NGGH, M) =0) = ( AT
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0.7 Y, 0.7 Y,
0.6 0.6
0.5 - 0.5
o.a - Z 1 1) 0.4+
(w2, 2Xz1,9})
0.3 6 0.3 6
2 M,
0.2 0.2 5
] £4 K
0.1] 3 o.1] Y3
Vi Va2 Yo
S CE=3 o.a 0.6 o8 T o’ 0.2 oA 0.6 CX] 1

Figure A.2.12: The I'i-region for NZ35! (-, M) (left) and NZ3! (-, M) (right) in T().
where Iy (X, NZ5', M) is the hexagon with area

A (T (X, NZS', M) = ma 22+y2 m1 y3/V3—22 y3 ma/V3—y3 my 22+ys Y3 ma/3—ma2 y3/V/3
—mzyg/\/§+y3m2x1/\/§—y3w1m1 +y3y1m2/3—y3y1m1/\/§—mzylwz/\/f_}-l-
M2 Y1 Y2/3 + M2 1 Y2/ V3 + 2 y3 + ysm1 — Y2 y3/V3 — ma 1 T2
and

T(f)) _ V3 [(—2ys + y2 +i/21)+\/3(;v1 — )] -

See Figure A.2.12 (left) for a realization of I'y (X,, NZ5', M).
Then

mNéslvM))>n_3 I3 (5) ¢

P (X, NTy (X, NG5, )=®)=/< () - T

[ 2 (ATE)- mNesl,M)) e
AT Ete ’

where ( = (21, Y1, %2,Y2,3,Y3).

Let

(T(0)) - (X, NESH, M)
G(0) = A(T(y)) E—

The integral is critical when (z;,y;) € ej, i.e., when y3 =0, y; = V3 (1 —21), and y» = V322,
since G(E) = 1. So we make the change of variables y3 = 23, 11 = V3 (1 — #1) — 21, and
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y2 = V32 — z2. Hence G(f) becomes

G(z1,x2,T3,21,22,23) = \/§<3\/§—6(22 +223) +4\/§m1 (2223 — 21 23)+2\/§(zl 2o + 221 23)
+\/§(4z§+z§+zf) +4ma (2023 + 2123 — 21 zz))/Q

=1—2(21 + 22 + 2 23)/V/3 + higher order terms in z;,

which is independent of z;, so we denote it as G(z1,22,23). So for sufficienlty large n and

sufficiently small £ > 0, we have

P (X, NTy (X, NG5, M) = 0) ~

1-e/V3 ,p1/2 1— E/\/_ -1 9
/ / / / / / n ()35;33 )G(Zl, 29, 2’3)"73 d.fL’3 d;lfz d.??l le dZQ dZ3.

Integrating over z; for j € {1, 2,3}, yields
K. = (1-2¢/V3) (1/2-¢/v3) (1/2-¢/V3).
Then for sufficiently large n
1> 1> £ 64 ne3
P(X,NTy (X, NG5, M) = 0) ~ K. ——=n(n—1) (n—3) G(21, 22,23)" " ° dz; dzo dz3.
0 0 3v4

The new integrand is critical at (z1,22,23) = (0,0,0), so we make the change of variables

zj = w;j/n for j € {1,2,3}, then

P (X, Ty (X, NES!, M) = 0) ~ / / / K. 64 nn—l)(n—3)

n3

(1—% (2(w1 +w2+2w3)/\/_)+0( )) dw dws dws,

lettting n — o0

= / / / K exp (—(2 (w1 + w2 + 2w3)/\/§) dwy dws dws

16\/_K \/_—4K

Since lim, o K. = 1/4, the desired result follows by continuity of K, in . B
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A.2.9 Proof of Theorem 4.7.6

Recall that v (X, Nig, Mc) = 1 iff X, C Nig (X, M) for some X € X),, or equivalently,
Xy NI (X, Nog, Mc) # 0. Observe that

P (X£,(n) € T1 (Xa, Ni5, Mc)) > P(X €1 (X, Nos, Mo), X € Renaly;)
for all X # X/ (n). In fact, one can see that
P (X/,(n) ¢ T1 (X, Ngs, M) , X €Tt (X, Nis, Mo) N Ronly;)) 0 as n = 0

for all X # Xg:, (n). Hence for sufficiently large n, if v (X, N5 g, Mc) = 1iff X, C Nig (XgJ (n), MC)
for some j € {1,2,3} were true the conjecture above Theorem 4.7.6 would follow. Alas, proving
this assertion is still an open problem. Let ET be the event that X, C Nig (X efJ (n), MC) for

j € {1,2,3}. By symmetry in T,, P (EJ) are identical for all j € {1,2,3}. So we only consider
Jj=3.

The asymptotically accurate pdf of X7 (n) is

f3(1'3,y3) —n (A(T(y))A_]‘fl(g}S)I;(x&yS))) - . m’

where Sg(z3,ys) is the shaded region in Figure A.2.13 (left), whose area, for a given X/, (n) =

. V3 (2VEys-1)°
;,;53 = (z3,y3), is A(Sr(x3,y3)) = %

s =(1/2,v3/2) 5= (1/2,v/3/2)

yi[= (0, U] €3 Yo = (1,0) yi|= (0, 0) €3 > = (1,0)

Figure A.2.13: A figure for the description of the pdf of X/ (n) (left) and N7 4 (XZ, (n), Mc)
(right) given X/ (n) = zf, = (z3,ys).
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A(NZg(2f,,Mc))—A(Sr(zs,y3)) ) et

Given X/ (n) = of, = (z3,y3), P (E3) = ( A(T(V)~A(Sr(z345)) > then

oo A (N5 (21, Mo)) — A(Sp(@s,55)) "
P(E3) = /( A(T()) = A(Sr(zs,03)) ) fa(x3,y3) des dys

_/ (A(N(T:s(xgsa ))—Asﬁxs,yz))>"‘l
" A(T

- o) ds dys

A(T(Y))

where A (N7, Mc)) = 3+/372y32 and we use the fact that for fixed 7 € (0,1], Sr(z3,y3) G
cs 3

63 ?
Nig ( es,MC) with probability 1 for sufficiently large n. See Figure A.2.13 (right) for a real-
ization of N7 g (X (n), MC) given X/ (n) =z, = (23,y3).

Let

— T 1) 2 =
Glas,ys) = A(NC’S( 637])44(62()))))14(51%( 3,Y3)) _ 12 (\/5 31) y2—1

which is independent of z3, so we denote it as G(y3). Then for sufficiently large n and sufficiently

small € > 0, we have

V3ys 6 et 1 § (1 _ 2\/5313) n -
P(E]) / Ve /\{f—gnG(%) des dys =/‘/6§—5WG@3) dys.

The integrand is maximized when y3 = \/3/6, i.e., when (z3,y3) = Mc, since G(y3) = 72. So

we make the change of variable y3 = v/3/6 — 23, and G(y3) becomes
G(ZB) = 7'2 (]_ — 4\/52’3 + 1223) - 4Z§

Then we have

P(X C Nig (X (n )MC)) /0 (2\/?_>z3) nG(z3)"—lmdz3.

The new integrand is maximized when z3 = 0. So we make the change of variable z3 = ws/n,
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and for sufficiently large n and sufficiently small € > 0, we have

)= /0" (@) (N (1 - %4\/311;3 +0 (nZ))n

~ O (7'2("_1) n_l) /Ooo (2 \/§w3) exp (—4\/511;3) m dws = 0 (7'2(”_1) n_l)

-1

since [ (2v3ws) exp (—4v3ws) m dws = 1/6. Hence the desired result follows. B

A.2.10 Proof of Theorem 4.7.7

For sufficiently large n, if
¥ (X, NIZ', Mc) < 2iff X, C NEZ* (XL, Mc) UNGS (Xg; (n), MC) (A.2.3)

for some (i, j) € {(1,2),(1,3),(2,3)} were true then the conjecture above Theorem 4.7.7 would
follow. But proving the expression in A.2.3 is still an open problem. Let E be defined as
in the proof of Theorem 4.7.6. By symmetry in T,, P (EZ =1 UE}Zl) are identical for all
(i,5) € {(1,2),(1,3),(2,3)}. So we consider (i, ) = (1,3).

The joint density of X/ (n), X7 (n) is

AT -4 (sz @)\
fo(@=nn-1) ( A(T(y)() ; )) T

where % (() is the shaded region in Figure A.2.14 (left) for given X[ (n) = zf, = (x,y;) for

J € {1,3} with area

A(35(0) =3 (3o + VB -2) + (2Vim-1)') /12

Given Xg; (n) =zl = (z;,y;) for j € {1,3},

P (B U B =

(A (VG (o, Mo) U NS (et M) - A4 (53() )
ATW) - 4(53(0)
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5= (1/2,v/3/2) s =(1/2,v/3/2)

yi/= U, U] €3 Y> = (1,00 y1 ¥ = (1,0)

Figure A.2.14: A figure for the description of the joint pdf of X/ (n), X/ (n) (left), and
N (X, (n), Mc) U Ngg (XZ, (n), M) (right) given X/ (n) = &f, = (x;,y;) for j € {1,3}.

where

A (NEs" (af,, Mc) UNES" (a1, Mc)) = V3 (203 = 421 + V3 (ys +91) (31 — 1) + 3913 .

e1’ es’?

See Figure A.2.14 (right) for a realization of NZ5' (X7 (n), M¢) U NZ5' (X[, (n), M¢). The
configuration in Figure A.2.14 (right) can be assumed without loss of generality, since by sym-
metry it is equally likely to have the vertex of NZ5' (X/ (n), M¢) that is not on edge e; inside
N&s (XY, (n), Mc).

Then

fiz () d¢

P(E['UE™) =

_/ n(n—1)
) ATOD))?

Let

/ (A (NG5! (61, M0) U NS (e, M) — 4 (53(0) )
ATW) - 4(53(0)

<,4 (NZs' (o1, Mo) UNEZ" (s, Mc)) - 4 (3(0)) ) -

ATO)) .

(NGZ! (o1, M) UNE' (o, Mc)) — 4 (53(9)
A(T(O))

A
G() =

The integral is critical at (z1,y1) = (z3,y3) = Mg, since G(C-) = 1. So we make the change of
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variables y3 = v/3/6 — 23 and (z1,y1) — (1/2+ 7 cos(8),V/3/6 +r sin(d)). Then G(C_) becomes

G(r,23,8) =1 —4r cos(t) — 422 + 512 cos(t)® — 431 cos(t) z3 — r? sin(t)? — 12 23 7 sin(t)

+ 2372 sin(t) cos(t)

which is independent of z3. The new integrand is critical at » = 23 = 0, since G(r, 23,6) = 1.

So for sufficiently large n and sufficiently small € > 0, we have

1/24/3 23 /2 (n
T=1 T=1 ~ n—2
P(E{7'UE]™") = //2 ﬁzs//w/e AT_‘)J G(r,0,23)" ?rdrdfdzs des
7I'/2 1
= ////2\/?_>z3 (( )))2G(rt9z3)” 2pdrdfdzs.
/6

Next, we make the change of variables r = w/+/n, z3 = ws/\/n, then we get

P (E[= U EfTY) / /7;//26/ 2V3w; (n D

(1—%4wc05()+0( 3/2)) 2mwdwd0dw3,

/ /”/2 /Ooogﬁwg [1—%411; cos(t)+0(”3/2)]n_2 mwmd@dm_)o

/6
n—2
as n — oo since (1 - ﬁ 4w cos(t) + O (n_3/2)) — 0. Hence the desired result follows. W

A.2.11 Proof of Theorem 4.7.8

Consider the induced digraph on the triangle Ty := T'(y;, M3, M) based on X} = X, N T and
Y (conditional on the event that |X,,, N Ts| = n). See Figure A.2.15 (left) for Ty in T.. Let
Yina(Xn, N&S', Mc) denote the domination number for the induced digraph. Then to prove
Theorem 4.7.8, it will suffice to show that P(vind(Xn, N&5t, Mc) = 1) = 1 as n — oo. Note
that, conditional on X, N Ty # 0, the set X, N T; is a random sample from U (7). So, without
loss of generality, assume X, be a random sample of size n from U(T}).

Consider the extremum Z}, such that it is the closest data point to the line joining y; and

Mg inTsN {(x,y) € Rom(es): y> w} See Figure A.2.15 (right). The pdf of such an
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5= (1/2,v/3/2)

5= (1/2,v3/2)

yi/= U, U] 13 €3 Y> = (1,00 y1 ¥ = (1,0)

Figure A.2.15: The triangle T (left) and a realization of the special extremum Z3}, in T} (right).

5= (1/2,v3/2) 5= (1/2,/3/2)

2 :x(@hyl

Y2 = (1,0 yi|=(0,0] _1/0+¢/2 15 €3 > = (1,0)

Figure A.2.16: The explanatory figure for N35! (Z),) (left) and the asymptotically accurate
support for the pdf of Z}, (right) given Z}, = 23, = (x1,v1)-

extremum point is

where Sgr(x1,41) is the shaded region in Figure A.2.15 (right) for a given realization of Z}, =
2}, = (21,y1) whose area is A(Sg(z1,v1)) = ‘3/—65 (V3y1 — 1) -
(323 —3v3ys —2).

Let NZ5' (z, M) := N55' (2, Mc) N T, for all z € Ty. Given Z), = 2}, = (21, 11),

A (ng@l (z}\/[)) — A(Sr(z1,91))
A(T,) — A(Sg(z1,y1))

P (X, c Nz5" (Zhy)) =
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Then for sufficiently large n

n—1

/< (Nésl (2} )) A(Sg( x1,y1))) For, ) dy

Q

P (z"({1 c NZ5' (Zzlu)) A(T,) — A(Sr(z1,y1))

A(Nzz (b)) - AL\
/ ”( (e A)<Ts) : ) A(lTs)dyld”“‘

Let

: A (K@EI (z}u)) — A(Sr(z1,91))

G(z1,y1) = AT =1+4(y —21)/V3-4 (»’17%"'3?/%—2\/5371?/1)

where A (Négl (z}w)) = § (1 -6 (3-— \/§y1)2). See Figure A.2.16 (left) for a realization of
NE@I (Z11\4) The integral is critical when y; = x; /\/3, i.e., (z1,y1) lies on the line joining y;

and Mc. Then we make the change of variable y; = x1/v/3 — 21, then G(z1,y1) becomes
G(z1) =1—42/V3-1222

which is independent of z;. Let £ be small enough and the asymptotically accurate support
of Z}is {(z,y) € Ty : 1/6+e/2< 3 <1/2; y >x/v/3—¢c}. See Figure A.2.16 (right) for this

support. Then for sufficiently large n and sufficiently small € > 0, we have

Q

1/2 A\ n—1
/ / 1 —42/V3—-12 zf) dz dzy
1

P (X, c N&5* (7h) e
€

€ n—1
1/3—e/2) 220 (1-42 V3 —1222 dz.
| =) Zn (1= 0" da
The new integrand is critical at z; = 0, since G(z1) = 1, so we let z; = wy /n, then

P (%, c N&5* (Z4))

X

/0"5(1/3_5/2) 12 (1— %4w1/\/§+0(n2))n1 dw,

V3

letting n — oo, = /0 (1/3—5/2)% exp(—4w1/\/§) dw;
12 V3
= ap-ep 2L

which converges to 1 as € | 0. Hence the desired result follows by continuity in €. B
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APPENDIX B

Derivations of Mean and Variance Terms in Section 5.4.1

B.1 Derivation of y(N},) in Theorem 5.4.2

Let T, :=T(y1, M3, M¢). Then, observe that, by symmetry,
p(Npp) = P(X2 € Npp(X1)) = 6 P(Xy € Npg(X1), X1 € Ty).

Let £,(r,z) be the line such that rd(y;,4s(r,z)) = d(y1,e1), s0 €s(r,z) = v/3(1/r — ). Then if
x1 € T; is above £5(r, ) then Npg(2x1) = T(Y), otherwise, Npg(z1) C T'(V).
For r € [1,3/2), £s(r,2) NTs =0, so Npp(z) C T(Y) for all € T,. Then

12 ra/VB AN (21)) 37 37
N&g) =6P(Xs € Nop(X1), X1 €T,) = AWNpp(@)) 44y = 6.37 42 2 37
w(Npp) =6 P(X2 € Npp(X1), X1 €Ty) = 6 /0 / ATY))? =0 To06" ~ 216"
where A(NT (1)) = ¥ r? (y + v32)” and A(T()) = V3/4.
For r € [3/2,2), £s(r, z) crosses through M3M . Let the z coordinate of ¢(r,z) Ny M~ be

s1. Then s; = %. See Figure B.1.1.

Then
z/\[AN 1/2 ra:)AN
P(Xz € Npp(X1), Xy GT / / PE wl = PE Y dyda +/ / PE ;U)l))d da
/1/2/”*[ 1 a iy =364+ 647 — 3207
rz)A var = 482 )

Hence for r € [3/2,2),

1 9 _.
WNpg) = ~3 r2—8r 14 Erfz +4.

For r € [2,00), £s(r, z) crosses through y; M. Let the = coordinate of £,(r,z) Ny1 M5 be sa,
then s = 1/r. See Figure B.1.1.
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Es(r = \/57 I)
ly(r =1.25,x)
€1
S(T = 47 x) €o
Mc
y1 = (0,0) S1 82 M3 €3 Y2 = (1,0)

Figure B.1.1: The cases for relative position of £s(r,z) with various r values.

Then

s1 z/V3 r z1 EDY Ls(ryz) ;’E z1
P(X» € Npp(X1), X1 € Ts) =/0 /0 %dmxﬁL/ﬁ /0 %dmx

EDY z/V3 1 1/2 z/V3 1 —3+2T2
+ ———duyd. +/ / dyde = ————.
/81 /w,w) AN, L Aaron™T T T2

Hence for r € [2,00),

3
w(Npg) =1— 3 r2.

For r = o0, u(Npg) = 1 follows trivially.

B.2 Derivation of v(N};) in Theorem 5.4.2

Recall that P2N(NI’E) = P({XQ,X3} C N;E(Xl)), PQG(N}T;E) = P({XQ,X3} C Fl (Xl,N}TpE)),
and Py (Nby) := P(X2 € N5(X1), X5 € Ty (X1, N5g) . Then

v(Npg) = Cov [h2(Npg), his(Npp)] = (Pon(Npp) +2 Pu(Npg) + Pa(Npg)) — 2 u(Npp))*.
Recall the lines &;(r, z) in Section 3.4.2. To find the covariance, we need to find the possible
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types of 'y (21, Nbp) and NEg(z1) for r € [1,00).

We partition [1,00) with respect to the types of Nig(z1) and T'y (21, Npg) and obtain
[1,4/3), [4/3,3/2), [3/2,2), and [2, c0).

For r € [1,4/3), there are six cases regarding I'y (z1, Nhg) and one case for Ny, (z1). See
Figure B.2.1 for the prototypes of these six cases of I'; (z1, Nhy). Each case j, corresponds to
the region R; in Figure B.2.2, where £y, (z) = £/V3, qi(z) = 27 +32—3)/V3, @) =
V3(1/2-1/3), a3(2) = V3(z —1+7/2), a(z) =v3(1/2-1/4), q2(z) = V3(r/2 - z), and
s1=1-2r/3,89=3/2—7r, s3=1—71/2, s4 =3/2—5r/6, s5s =3r/8. The explicit forms of
R; for j € {1,...,6} are given by

Ry = {(z,y) € [0,51] X [0, £am ()] U [s1, 82] X [q1(2), lam ()]},

Ry = {(w,y) € [s1,52] x [0,q1(2)] U [52, 85] x [0, g2(2)] U [53, 8] x [43(2), @2(2)]},

Rs = {(w,y) € [s3,54] x [0,45()] U [54,1/2] x [0, g2 ()]},

Ry = {(2,y) € [s1,52] x [0,q1(2)] U [54, 85] X [g3(2), Lam (2)] U [55,1/2] % [g3(@), 12 (2]},
Rs = {(2,y) € [54,1/2] x [g2(2), ¢5(2)]}, R = {(z,9) € [55,1/2] % [q12 (), lam (2)]}-

By symmetry, Pon(Nbg) = 6P({X2,X3} C Npp(Xy), X1 € TS).
For r € [1,4/3),

12 plam (@) A(NT, (21))? 781
PUIXs. X N&o (X)), Xy €T,) = S2VPE\L)) ade = L8 4
({X2, X3} C Npp(X1), X1 €Ty) /0 / A(T())3 Y4 = 116640

where A(Npg(21)) = § r? (y+ \/5.'1:)2 Hence for r € [1,4/3), Pan(Npg) = 13}110 Note that

the same results also hold for r € [4/3,3/2).
Next, by symmetry, Pog(Npg) = 6P({X2,X3} CcI(X1,NEg), X1 € Ts) and
6

P({X2, X3} CT1 (X1,Npp), X1 €T,) =) P({X2, X5} C T (X1, Npp), Xi € R;).
j=1

For =1 € Ry,

Lam () r 2
P({Xz,Xs} c ' (X1,Npg), X1 € Rl) =/ / %

/ /“”"(”)A (T1 (z1, Npg))’ dyde = (211" — 1716 7% + 575172 — 6696 7 + 2511)(2 7 — 3)*
(&) A(T(Y))? 10935 74 ’

dydzx
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ys= (1/2,v3/2) = (1/2,v3/2)

€1 €1
€y €3
c c
&(r, )
zﬁ/&(?ﬂ z) (rz) 4
yi= (U, U] M3 €3 y2 = (L U] yi[=1U,0] M3 €3 y2 = (1,0)
case-1 case-2
€2 €1
€1
M:
€9 2 . .z L . 1
c c
Z(Tv $)
&a(r, ) .
1(r, z) )
T §1(T7 ) N
yi|=(0,0) My € 2 = (T,0) y1[= (0,0 M; e 2 = (1,0)
case-3 caset
y=(1/2,v3/2) = (1/2,V3/2)
€1 €1
23 e
rax
ra
c
51(7', fl (Tv x)
rx
&ife,z) . “lro)
y1|=1(0,U] M3 €3 yo = (L, 0) vi[= 11U, U] M3 €3 Y2 =(1,0)
case-b case-6

Figure B.2.1: The prototypes of the six cases of I'1 (z1, Npg) for 21 € T for r € [1,4/3).

V3 ((v3 2) 2
where A (T4 (1, Nbg)) = (( lz;:y) ) -
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o @
0.4 SN
()
0.3 Mo
b, Ig
0.2 / Ay §
/R
@r) . _J
i L
) QU,.\\“)\
; R
R Ry A v
| (3
¥r 0.1 Sl oz So 0.3 S30.4 / \D.SMS
S4 S35

=1

Figure B.2.2: The regions corresponding to the prototypes of the six cases for r € [1,4/3) with
r=1.25.

For =1 € R,

s2 plam (T) r
P({X2, X3} CT1 (X1, Npg), X1 € Rp) :/ /0 A(FZE;I(’;;])};E))

53 rqa2(z) T 2 sa  pg2(z) T NT 2
_|_/ / A(Fl ('Z.17NPE)) dyd.fll'-'—/ / A( l(wla PE')) dydm
82 0

2
dydx

A(T))? 3 Jas(a) A(T))?
(27 —3)(4407* — 4091 7° + 134761 — 16506 r + 6696)
B 9720 13 |

V3 (—4V3ry—-12r+127r245r°+29y%+6 V3y—82 V3y+9-182462°)
1272 :

where A (T4 (21, Npg)) =

For =1 € R3,

P({XQ,XB} cy (Xl,NITJE) , Xq € Rg)
sa  rgs(x) N7 )2 /2 pra2(z) A(T NT_))?
ss Jo A(T () sa o A(T ()
(27 — 3)(21056 75 — 7845 r* + 231300 ° — 943650 r2 + 1127520 7 — 428652)
262440 r4

V3 (29242 VB y+3—-62+62°—27%)
1272 .

where A (T (z1,Nhg)) = —
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For z1 € Ry,

sa plam (®) A(Dy (21, N
P({Xa, Xa} € Ty (X2, Np), Xi € Ri) = [ / (Cs (o2, Npg)

s2 Jqa(z) A(T(y))
") A o, ) V2 AT (o1, Npg)*
’ dyd:v+/ / _PE dydx
/.94 /q;;(:c) (y)) S5 g3(x) A(T(y))
_ _12873091 5 81239 n 14714 _, 4238 _2-}-@7‘_3 128 _, 77123

600840 | T e "TTar T T g T 57 T3 " T a6

V3 (9r2+18— 24 r4+4+/3ry— 18 z+6 > +14y +12rz—8zV3y—63y
where A (T'y (21, Nbg)) = 3( 1272 )

For z; € R;5,

1/2
P({XQ,X3} cIy (Xl,N};E), X € Rs) = /

S84

/q3(z) ATy (wlaNPE))

() A(T())?
(8930514 — 36408073 + 598320 7% — 468288 7 + 145152)(—6 + 57)2

- 262440 '

dydz

V3 (9r2+18—24 r+4V3ry—18z+6 z2+143y°+12rz—8z V3 y—6/3y
where A (T'y (21, Npg)) = 3( 152 )

For x1 € Rg,

am () A(Ty (mlaNPE))

1/2
P({Xs, X3} CT1(X1,Npg), X1 € Re) =/ /

dydz
85 qi2T A(T(y))
(1081 7% — 46727% 4 762412 — 55681 + 1536)(—4 + 37)?
n 960 r4 ’
where A (['1 (z1, Npg)) = V(a2 73;232““ 3% 3y )
So,
25687 133 14 1 1 1
P{X,, X Iy (X, NF = 6(—u1r?— 17 — Tt
(X2, Xs} € Tt (X1, Npp) (349920 o T8 T8 Tt 324
25687 r° — 47880 — 1080 + 60480 7" — 388802 + 3888

58320 r4
Furthermore, by symmetry, Py (Npg) = 6 P(X2 € Npp(X1), X3 € I'1 (X1,Npg), X1 €
Ts), and
P(Xs € Npp(Xy), X5 €Ty (X1,Npg), Xq €Ts)

=Y P(X; € Npp(X1), X3 €T1(X1,Npp), X1 € R)).

Jj=1
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For z; € Ry,

tam () A(Npg(21)) A(T1 (21, Npg))
A(T())?

(143> — 744 r 4 558) (27 — 3)™.

P(X; € Npg(X1), X3 €1 (X1,Npg), X1 € R1) =/ / dydzx
o Jo

/ /zam @) A(Npg(z1)) A (1 (21, NPE))dydm

@ A(T(Y))? T 21870
For z1 € R»,
am () 7 z1 1 (z1 ;’E
P(X; € N;»E(Xl), X3 el (Xl,N;aE), X1 € Ry) =/ /l AWNVpx( 14)1)(11:1(31;‘)):5 1V ))dydx
2() AN (z1)) A (T (21, Npg)) 2@ A(Npp(z1)) A(T1 (21, Npg)) "
/ / AT dydz */ /w) AT dyd

2r 23014 r° — 187311 517896 r° — 594216 241056
349920 r(2r —3)(23014 r* r® 4+ r? r+ ).

For z1 € R3,

P(X2€NPE Xl) X3EP1 (X17NPE) X1€R3)

%(@) A(Npg(z1)) A (T1 (z1, Npg)) 12 raa() A(Npg(z1)) A(T1 (z1, Npg)) z
/ f AT dydo */ / AT dyd

= — 27r° —42 2 4280202 r — 15462
1049760( 3)(8747“ 297327 r* + 1858392 r® 98832 1% + 4280202 r 546209).
For x1 € Ry,
fam (=) A(N} A(T (21, N}
P(X2 € Npp(X1), X3 €1 (X1,Npg), X1 € Ra) z/ / (Vg (1)) A( 13(”1’ PE))dydm
az(x) ATO))
/- /lam (z) A(Npg(z1)) A1 (x1, NPE))dyd,z- N /1/2 /q12 (z) A(Npg(z1)) AT (xl’NIgE))dydm
qs(m) A(T(y))3 q3(x) A(T(y))3
= 466560 7 (1762560 r — 497664 — 2661120 r> + 201395 7° — 1017720 r* + 2212560 r )
For z; € R5,

(@) A(N AT N7
P(X2 € Npp(X1), X3 €1 (X1,Npgr), X1 € Rs) —/ / Wep(@) AL (21, PE))dydx
a

2 (2) A(T())?

! (1570 7* — 1380 7> — 11205 7% + 29700 7 — 19116)(—6 + 57)°.

~ 262440
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For =, € Rg,

Y2 flem @ A(Npp(21)) A(T1 (@1, Npg))
P(X»2 € Npp(X1), X3 € T4 (X1,Npgp), X eR):/ / rE ’ dydz
2 PE 1 3 1 1 PE 1 6 - A(T(y))3
1 _ 2
= =150 (1485 7* — 2064 7° + 167> — 1287 + 768)(—4 + 37)°.
Thus
P(X3 € Npp(X1), X3 € 'y (X1, Npg))
(3007 o 8 5.5 4 1, 133, 56 143
699840 405 648 9 648 405"~ 4320
3007 5 _ 16 5 2 3 133 , 112 143

~ 116640 135 +1_08 +§ T108" T35 720

Hence

E[h12(Nbg) his(Nog)] = [3007 710 — 138247 + 77437% 4 777607 — 11795375 + 48888 °

— 242467 + 6048073 — 3888072 + 3888] / [58320 r4] :

Thus

v(NLg) = [3007 10— 13824 1% 4898 78 + 77760 7" — 117953 r® + 48888 15 — 24246 r* + 60480 r*

— 3888072 + 3888] / [58320 r4] :

For r € [4/3,3/2), there are six cases regarding I'; (z1, Nhy) and one case for Njg(z1).
Prototypes of the five of the cases for I'y (21, Nhj) are as in case—j for j € {1,...,5} in Figure
B.2.1 and the new case, case-7, is depicted in Figure B.2.3. Each case j corresponds to the
region R; in Figure B.2.4 where s; = 1—-27/3, so =3/2—7r, s3=1-r/2, s4 =3/2-5r/6, s5 =
3/2 —3r/4. The explicit forms of R; for j € {1,2,3} are same as before, for j € {4,5,7} are
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ya= (1/2,v/3/2)

G
Gs :
TMc
Z1|
1(r, z) &(r,z)
y1|=(0,0) [en M3z Gy €3 y: = (1,0)
case-7

Figure B.2.3: The prototype of the new case for I'y (1, Nhj) for 21 € T for r € [4/3,3/2).

04
S
0.3
Mc
q(z) L
0.21
)
RE Q“‘“\ R-
Ry
1
B(z))
%1 ﬂ Ry : R M,
51% ;\2 o1 0.2 R 7 04 g 0.5

Figure B.2.4: The regions corresponding to the six cases for r € [4/3,3/2)

given by

Ry = {(z,y) € [s2,34] X [q2(2), Lam ()] U [54, 86] X [g3(@), Lam (x)]}
Rs = {(x,y) € [s4, 56] X [g2(2),qs(2)] U [36,1/2] % [g2(z), qa(z)] }

Ry = {(z,y) € [56,1/2] x [qa(x), am ()]}

where £y, (z) = 2/v3, q1(z) = (27 — 3)/V3+V3z, ¢2(x) = V3(1/2 —r/3), g3(z) = V3 (x —
14 7/2), and q4(z) = V3 (1/2 —r/4).

Then Pyn(Nbg) = igi:g . We use the same limits of integration in u(N% ) calculations with

the integrand A(N%5(z1))2/A(T(Y))3.
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Next, by symmetry, Pag(Npg) = 6 P({X2, X3} C Iy (X1,Npg), X1 € Ty), and, let Sy =
{1,2,3,4,5,7}, then

P({X2, X3} CT1(X1,Npg), X1 €T) = > P({X2, X3} CT1(X1,Npg), X1 € R;).
JESI

For z, € R;, j € {1,2,3} we get the same result as before.

For z; € Ry,
Lam (x) A (1—\1 (II’N}«,E))2
P({Xs,X3} CT1(X1,Npg), X1 € Ry) = / / = Tonsdvde
a2 () A(T(Y))
/ /“’" @) ATy (1, Npg))® AW (@3, Nop))” 4o _ 9637r" — 89640 r° + 288360 1 — 362880 r + 155520
ww AT 349920 72 :

V3 (972 +18-247+4V3ry—182+6 22 +14y°+12 7z 8 V3y— 6\/_1/)
1272

where A (T4 (1, Npg)) =

For 1 € R;5,

P({X,,X3} CT'1 (X1,Npg), X1 € Rs)

/ /Q3(a:) A 1-\1 $C1,N1T:-E)) dydm+/1/2 /'114(13) A(Fl (xl,NPE))2ddeE
q:

2(z) )3 s6 q2(z) A(T))?
_ 872517° + 13219200 r— 1121472072 — 5225472 + 3377160 r® — 261288 r*
a 2099520 13 '

where A (T'y (21, Nphg)) is same as before.

For =, € Ry,

P ({X2,X3} CT1(X1,Npg), X1 € Rr) =

/1/2/ am (2) 4 r1 ;cl,NpE)) dyds _ (37t +967% — 7272 — 5767 + 512)(=4 + 37)°
4a(2) (T(V))? 2880 r4 ’

V3 (6y*—2V3y+6—6z+6z2-372)

where A (T (z1,Npp)) = —

12 r2
So,
. — 47880 % — 3888072 + 25687 — 1080 7% -+ 60480 7° + 3888
Pa(Npp) = 6 349920 14
_ —478807° — 3888072 + 25687 r° — 1080 + 60480r° + 3888
- 58320 14
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Furthermore,

Pu(Npp) = 3 P(Xs € Npj(Xy), Xs € Ty (X3, Npy), Xi € Ry).
JESI
For z1 € R;, j € {1,2,3} we get the same result as before.

For 1 € Ry,

P(X, € N;:E(Xl) Xs el (Xl,N;E), X1 € Ry) =

tam () A(Npp(21)) A(T1 (21, Npg)) s6 [lam @) A(Npp(21)) A (T (21, Npp))
/ */qz(m) A(T(y))3 dyde + / Ls () A(T(y))3 dydz
1

2 2 3 4
=— 2 40464 — 483840 r — 14292 1 .
466560T (207360 + 404640 r 83840 r 9207 + 17687 1%)

For =1 € Rx,

P(XZENPE Xl) X3 el (XI,NPE) X1 ER5)
_ / /q3(“”) A(Npg(z1)) ATy (-Z'l;NPE))dydm+ /1/2 /q“(m) A(Npg(z1)) ATy (ml’N;E))dydx
q q

2(2) A(T(D))? 2(1;) A(T()))?
_ 7(399064320 r — 150792192 + 171990000 r* — 391461120 > — 31140648 r* + 1230359 r°
- 67184640 ‘
For =1 € Ry,

P (X, € Np(X1), X5 €T1 (X1, Np), X1 € Ry) = [/7 from (@) Albe(e) A0l Noe)) gy gy,

2727 7% — 3648 13 — 52736 r2 + 166656 r — 121600)(—4 + 37)2.

= 829440 (
Then,

Pre(Npp) =6 <2799360 " 2502" T1206 " “6as " 12060

5467 o 35 5 37T 4 13 o 83)_54676355374132
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0.2 R7,a
qu(x)
il
(£
() ) :
o / |
be /S B
Ry
o o1 5302 56 03 0.4 57 05M3

Figure B.2.5: The regions corresponding to the three cases for r € [3/2,2) with r = 1.65
So,

E[h12(Nbg) his(Nbg)] = [5467 10 — 3780079 + 8929278 + 46588 r® — 191520 7° + 13608 r*

+2419207° — 15552072 + 15552] / [233280 r4] .

Thus, for r € [4/3,3/2)

v(NLg) = [5467 19 — 378007 4+ 61912 7% + 46588 r% — 191520 7° + 13608 r* + 24192013

— 15552072 + 15552] / [233280 r4] .

For r € [3/2,2), there are three cases regarding I'y (1, Npp) and two cases for Nj g (21).
The prototypes of these three cases as in cases 4,5, and 7 of Figures B.2.1 and B.2.3. Each case
Jj, corresponds to the region R; in Figure B.2.5 where g;(x) are same as before for j € {3,4},
and s;, j € {3,4,6} are same as before and s; = 3/(4r). Observe that for 21 € R4 U R5 U Rz,,
Nig(x1) = Tr(z1) € T(Y), and for 21 € Ry, Npg(x1) = T'(Y). So there are four regions to
consider in order to calculate the covariance.

Then, for z; = (z,y) € Rj, I'1 (x1, Npg) are same as before for j € {4,5,7}. The explicit
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forms of R;, j € {4,5,7a,7b} are given below (the explicit form of R; is same as before):

Ry = {(z,y) € [0, 53] X [0, £am ()] U [83, 56] X [a3(2), lam (z)]}
R5 = {(m,y) € [83,86] X [O,Q3(.'E)] U [86,1/2] X [0,(]4((1,')]}
Rro = {(2,9) € [s6,57] X [94(2), am (2)] U [57,1/2] x [qa(2), Ls(r, z)]}

R7,b = {(xay) € [877 1/2] X [ﬁs(r,m),ﬁam (.’IJ)]}

Now,

1/2 plam (z) T 2
P({X2,X3} C Npp(X1),X1 € Ts) :/0 /0 %

s7 Lam (z) A(N;)E(ibl))z 1/2 Ls(z) A(Nr (wl))Z 1/2 Lam (z) 1
Ao g, [ [0 Ay [ [ 1,
/ / s Lo Aoy YT L e Ao

_ 480 -7 - 768T+320r
B 480 r?

dydx =

Hence Pon(NEp) = _ —480+4r° —sl—gfgr 320 2
Next, by symmetry, Pog(Nby) = 6P({X2,X3} C Ty (X1,NLp), X1 €Ty), and, let Sy :=

{4,5,7}, then
P({Xs,X3} CT1 (X1,Npp), X1 € Ts) = Y P({X5, X3} CT1 (X1, Npg), X1 € Ry).
JEST

For z; € Ry,

am () r 2
P({X3,X3} CT'1 (X1,Npg), X1 € Ry) = /0 /0 A (Fjl((;l(j‘)}J;f)zE))

/ / am (2) A(T xl,NPE)) dyda - _ (2377 — 9567 + 17287 — 15847 + 592)(—2 + r)?
(&) (T()))3 480 rt '

dydx+

For z, € Rs,

P ({X3, X3} C Ty (X1,Nbp), X1 € Rs)

B s6 q3(w)A(F1 (ml,NT ))2 1/2 q4(w)A(1"1 (ml,NT ))2
-] ATO) @“+L | ATy W

~ (r—2)(1909 75 — 61427 + 10036 r® — 14808 r? + 15024 r — 6048)
B 2880 r4
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For z; € Ry the result is same as before. So

Poo(NL) = 6 73207 — 98475 + 1378 — 20480 r® + 27840 r? — 18816 1 + 5152
AR 144074
73207* — 98475 4+ 1376 — 2048073 + 2784072 — 188167 + 5152

2404

Furthermore,

1/2 plam (z) T A(T N7&
P (X2 € Npp(X1), X3 € Ty (X1, Npg), X1 €Ts) =/ / AWNpp(@1) A lg“’l’ PE))dydw.
0 A(T())

For z1 € Ry,

fam () A(Np A (T (z1, Np
P(Xs € Nbp(X1), Xs € T4 (X1, Nbg), Xa eR4)=/ / (Npp (@) AL (21, Npp)) g g0

A(T())?
Lam (z) A(Npg(z1)) A(T1 (1, Npg)) 1 , \
/ /qsu) ATO))? dyde = 1505 (997" — 167 — 84) (=2 +7)".

For z; € Rs,

P(X; € Npg(X1), X3 €1 (X1,Npg), X1 € Rs)
_ / /qS(m) A(Npg(z1)) ATy (-'KI,NPE))dydm_'_ /1/2 /q“(m) A(Npg(x1)) A(T1 (x1, Npg))

dydzx
AT AT
= 92160 (=2 +7)(7535r° — 35210 7* + 95007 + 181560 r> — 308880 7 + 147168).
For 1 € Ry,,

tam @) A(Npp(21)) A (T (21, Npg))

P (X, € Npg(X1), X3 €'y (X1, Np ,XeRaz// dydz
(X2 € Npg(X1), X3 €'1 (X1, Npg), X1 € Rz,) o AT Y
V2t ANDp(21) A (D (@1, Np5)) gy gy = 3B o 9L 5 53 4 25, 173,
oa(e) AT (Y))? Y9% = 10240 768 128 72 24
012 13 e 16 g 0 18 5 3 e 34
bl z 2 _ = 4 -2 2
LT A S L S L T
For 1 € Ry,

P (X2 € Npg(X1), X3 € T'1 (X1, Npg), X1 € BRyp) =

/1/2/ (D ANpp(21) A(C1 (21, Npp)) ) o (20 =47 +4r = 3)(2r = 3)
e AT e 1278 |
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Hence

Pyg(NLg) =6 (— [7 72 —72 114240 71°—1440 78 +3456 r'—10296 r°+15360 7°+6720 r*—40960 r*
+ 460802 — 27648 1 + 8640} / [11520 rﬂ) = [7 12 — 72711 4 240710 — 14401® + 345617

— 10296 + 15360 7° + 6720 7 — 40960 r> + 4608012 — 27648 + 8640] / [1920 r6] .

Thus

E[h12(Nbg) his(Nog)] = [7 rt2 — 727 4252710 — 14928 + 739277 — 43416 76 + 106496 r°

— 110400 7 + 3430413 + 2547212 — 27648 + 8640] / [960 7‘6] .

Therefore, for r € [3/2,2)

v(Nhp) = — [7 2 — 72,1 4312710 — 533248 + 150727 4 13704 78 — 139264 5 + 273600 r*

— 24217613 + 10323272 — 276487 + 8640] / [960 7'6] .

For r € [2,00), there is only one case regarding I'y (21, Nhy), namely Rz, and two cases
regarding N% p(z1). Furthermore, s7, is same as before and ss = 1/r. Observe that for 21 € Rz,
Nig(x1) = Tro(z1) € T(Y), and for 21 € Ryp, Npg(z1) = T(Y). So there are two regions to

consider to calculate the covariance.

For 1 = (z,y) € Ry, T'1 (21, Npg) is same as before. The explicit form of Ry, is same as Ts.

For R7, and Ry, see below:

R o = {(a:,y) € [0, 87] % [0, £am (2)] U [s7, s8] x [0, £s(r, x)]}

Rrp = {(x,y) € [s7,58] X [ls(r,2), Lam (2)] U [58,1/2] X [0, Lam (r,z)]}
Now,

87 Lam (x) r 2 sg ls(x) T 2
P({X3,X3} C Npp(X1),X1 €Ts) = / / %dydm +/ /0 %dydm

Lam () R S 1/2 Lam () 1 R S 1 . 1
+ =—cr 24+
/ /w y)) var / / ATNYTT T3 T
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Figure B.2.6: The regions corresponding to the two cases for Nh(z1) for r € [2,00) with r = 2.5

Hence Pon(NEhp) =1—27r72

Next,

P({XQ,X;;} cIy (X1,N17;E), X5 € Ts) = P({XQ,X3} cIy (Xl,NITJE), X; € R7)

. /1/2 [ @ AT o1, Npg))® g 4= 457 + 150
0 0 A(TY))? 904

r \ _ 34—45r24157*
So Pog(Npp) = =154+

Furthermore,

P(X2 c N;E(Xl), XseTy (Xl,ngE) 7X1 c Ts) _ f01/2 fofam (x) A(N;E(EX()TA(S};;:EZhN;E)) dyd.’ll'

= g7 flem @) ANER G AN g gy (o6 2609 ANERGI) A o1V ) g

ss (lam (z) A(T1(z1,Np 1/2 plam (2) A(C1(21,Npp)) — 25— 90 r* 6
+f578 fls(z) (,;((;Ey))ZE))dydm+f58 fo Al(;’%y))P?E dydz = 25 48r+92g0r690r +307°

r __ 25—4874+907r2—-90 7430 r®
So PM(NPE) = 30 r® :

Hence, E [h12(N17;E) h13 (N}’I")E)] — 60 r%—165 r4i|—513é1 r2—48 7‘+25' Thus,

1574 — 1172 — 48 25
v(Npg) = ——— T2 forr € [2,00).

For r = oo, it is trivial to see that v(Npp) = 0.
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B.3 Derivation of u(N}jj,¢)

We demostrate the derivation of pg(Npp, ) for segregation with € € [O, V3/ 8) and among the
intervals of r that do not vanish as ¢ — 0. So the resultant expressions can be used in PAE
analysis.

First, observe that, by symmetry,
ps(Npg,e) = P(Xs € Npg(Xi,¢)) = 6 P(Xs € Npg(Xi1,6), X1 € T; \ T(y1,6))-

Let g(y;,z) be the line parallel to e; and crossing T'()) such that d(y;,q(y;,x)) = € for j €
{1,2,3}. Furthermore, let T, := T(Y) \ U?ZIT(yj,E). Then ¢(y1,z) = 2 — V3, ¢(y2,x) =
V3z — 3+ 2¢, and q(ys, x) = \/3/2 —¢&. Now, let

Q1 =q(y1,z)Ne3 = (25/\/?_),0) , Q2 =q(y2,z)Nes = (1 —26/\/?_),0) ,
Qs =alyzz)Ner = (1-2/V3,e), Qi =aqlys,2)Ner = (1/2+¢/V3,V3/2—¢),
Qs =qlys,x)Nex = (1/2—5/\/5,\/5/2—6) , Qs =gq(y1;,x)Ney = (6/\/5,5) .

See Figure B.3.1. Then T'(y1,&) = T(y1,Q1,Q6), T(y2,6) = T(Q2,y2,Q3), and T(ys,e) =
T(Q4,Qs,y3), and for € € [0,1/3/4), T. is the hexagon with vertices, Q;, je{l,...,6}.
3= (1/27\/5/2)

€1
€2

Ny 2 ,(T1, )
QG T (-Tl, .I,‘) QS
1 Uy
e \ao) alys.z
=00 @ M M @ Ny =10

Figure B.3.1: The support under HS for & € (0,v/3/4) and the two types £,(z1,z) for ri < r.

Now, let g2(x) be the line such that rd(y1, ¢2(z)) = d(y1,£(Q2)) = d(y1,e1) — €, g3(z) be
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the line such that 7 d(y1,qs3(z)) = d(y1,e1). Then ga(z) = —v3z + (V3 — 2¢) /r and g3(z) is
the same as £s(x) before. Let the x coordinate of g(y1,2) N Lam () be s1, g2(x) N Lam (z) be
s3, and £4(x) N Ly, (z) be s5 and Q1 = (s2,0), g2(z) Nes = (s4,0), and £s(z) Nes = (s6,0). So
s1:=V3¢e/2, 85 = 2¢//3, 55 = (3—2e/3) /(4r), s4 = (3—22V3) /(31), s5 = 3/(4r), and
s¢ =1/r.

See Figure B.3.2 for an r € [2,v/3/(2¢)). Furthermore, for z; = (z,y) € Rowm (y1), let

ty() M,
a(z)
Lom() %\
a1, ) | Rs(e)
j RZ(E
£ 3 Ri(e)
y1= (0, 5 Q1= (52,0) ;3 55 o 6 M;=1(1/2,0)

Figure B.3.2: The partition of T} for different types of Np (-, ) under HS with r € [2,v/3/(2¢)).

U = q(ya2,2) Np(21,2) = ((\/gy/ﬁ-l-a:/Z) r+1/2—¢/V3, (y/2+\/§z'/2) r—\/§/2+5) , and
Us := q(y3,z) NLo(x1,2) = ((y/\/g—i—;v) r+6/\/§—1/2,\/§/2—5).

Let #(aq,as,...,a,) denote the polygon with vertices a1, az,...,a,. If z; is below g2(x),
then Npg(21,e) = A(Npg(21))\T (y1,€) = Z(Q1, N1, N2, Qs); if 21 is between ¢2(z) and £,4(x),
then Nbg(z1,€) = Z(Q1,Q2,U1,Us2,Qs,Qs); and if x; is above £,4(x), then NEg(z1,¢e) = T..

For r € [1, 3/2— \/56), since € small enough that g»(z) N Ts = 0, then N(z,e) C T for all
z € To\ T(y1,€). Then

tam (2) A(NTL (2
P(X3 € Npg(Xi,e), X1 € T\ T(y1,¢ / /( ) PE();; ))d da
q\y1,z 5
; /”2 /‘“" ) AWNpp(e1,€)) ;o (5761 — 1152)e! +288¢% — 3772
ATz YT 1296 (2¢ — 1)2(2¢ + 1)2
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where A(NJp(71,¢)) = A(P(Q1, N1, N2, Qo)) = (B 92 + Loy + Y2a?) r2-LB 2 and A(T) =
\/3/4 —V3¢e? and £y, (7) = :1:/\/5 is the equation of the line segment y; M .
Hence for r € [1,3/2),

(57672 — 1152)e* + 2882 — 3712
216 (2c — 1)2(2¢ + 1)2

WMNpg) = —

For r € [3/2, 2— 45/\/?_)), £s(z) crosses through M3M . Since € small enough so that g2(x)

does the same. So z1 below g»(7) is equivalent to x1 € R;(¢) where

Ri(e) = {(w,y) € [s3,55] X [02(2), Lam (@)] U [52, 53] % [g2(), lam (2)] U [s3,1/2] X [0, ga2(2)]}-

Then

1/2 am () A(N
P(X> € Nbp(X1,e), X1 € Ri(€)) :/ / ANVep(@1:2)) 4 g,
0 0

A(T.)?
ter (%) A(2(Q1, N1, N2, Q5)) fom (7 A(P(Q1, N1, N3, Qo))
) ) ’ dyda:-l—/ / ’ d ! d dx+
=) fr i imp
12 0@ A((Qr, Ny, N, A :
/ / (QX(Tliz 2.Q6)) 44y = [(384r2 +576 — 19274)e* + 512%V/3r + (28812

— 1728)¢% + (=576 V31 +864V3)  — 9r* — 324+ 2887] /[432 (22 — 12(2¢ + 1)*?)]

where A(Z(Q1, N1, N2, Qg)) is same as before.

Next, z1 between g»(z) and £,(z) is equivalent to z; € Ra(¢) where

Ry(e) = {(2,9) € [s9,52] X [q1 (@), lam ()] U [s5,1/2] x [g2(2), £5()]}-
Then

Lam () A(ZP(Q1,Q2,U1,U2,Q5,Q6))

P(X3 € Npg(X1,€),X1 € Ra(e)) = /S3 /qwc) ATL)? dydz
12 2@ A(P(Q1,Q2,Ur,Us, Qs,Qs))
) AT)? e =

2v3e (1033 + (32r —24)e + (273 +12+/37) e — 187 +27)
B 27 (4€2 — 1)2r2
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where

A(P(Q1,Q2,U1,U,Q5,Q6)) = —V3e” + (2 —2ry/V3 - 2rm) e+ry+V3rz—3/2

—V3r2y? /12—l xy/2 — V3r22? /4.

Furthermore, z; above {,(z) is equivalent to z; € R3(¢) where Rz(e) = {(z,y) € [s5,1/2] x

[Cam (2),£5()]}-

T _ (1/2 plam (2 _ r_3)2
Then P(X> € Np,(X1,€), X1 € Rs(e)) = [/ [ sbedyde = — 5 25m s

Hence for r € [3/2,2),

ps(Nog,e) = 6 (— [(—384 r? 4+ 384 + 192r%)et + (=768 /3 + 5123 7)ed + (1728 — 23047
+8647%)e — 2887 — 324 + 91" + 576 r)] / [432 (2e —1)*(2e +1)? TQ)])
= - [(—384 % + 384 4+ 1927%)e" + (=768 V3 + 512V37)e® + (1728 — 23047

+86472)c2 — 28872 — 324 + 97 + 576 r] / [72 (2e+1)%(2¢e — 1)27«2)].

For r € [2,00), £5(x) crosses through y; M5, so the same types of Njg(21,€) occur as above.

The explicit forms of R;(e) for j € {1,2,3} change and are given by

RI(E) = {($7y) € [51752] X [Q(YIax)aeam (x)] U [32753] X [Oaéam ('Z')] U [53’54] X [07Q2($)($)]}
Ra(e) = {(z,y) € [s3,85] % [g2(2), lam ()] U [85, 54] X [a2(),, €5 ()] U [s4, 56] x [0, ()] }

Rs(e) = {(w,y) € [s5, 56] X [€s(2), am ()] U [86,1/2] X [0, bam (x)]}-

Then
52 plom (@) A(P(Q1, Ny, No,
P (X € Nop(X1,), X1 € Ri()) :/ / (P(Qu, Ny, N2, Q6)) g
s1 Jq(yi,z) A(T:)
53 rlam () A((Q1, N1, Na, Qe)) 2@ A(P(Q1, N1, N2, Qs))
+/S2 /0 A(T)? dydazH—/s3 /0 A(TL)? dydzx

=94 (3272 + 1671 +16)c" — 4862 + 24213
36 (4e2 — 1)2r2 '

where A(Z(Q1, N1, N2, Qg)) is same as before.
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Furthermore,

am (‘E)
P (X3 € Npg(X1,€), X1 € Ra(e)) _/ /e A(‘@(Ql’@’UI’U2’Q5’Q6))dydx

q2(z) A(Ts)z
) A(P(Q1,Q2, U, Uz, @5, Qs)) 40 AP (Q1,Q2,Un, Uz, @5, Qo))
) ] ) ) ) d d$+/ / b) b) ) ) ) d d:L‘
/ /m) A(T.)? Y o A(T.)? Y
2v3¢e(—27¢/3 — 24¢* +1053f+27)
- 81(4e2 —1)2r

where A(Z(Q1,Q2,U1,Us, Q5,Qs)) is same as before.

Next,

P (Xs € Npp(X1,¢), X1 € R3(e)) =

am (w) 1/2 am (-’”) 1 3 _ ,r.2
dydx + / / dydm . Sk A—
/ /E(:c) 6(4e2—-1)r2

Hence for 7 € [2,v/3/(2¢) — 1),

(Vppo) = 6 (- (4874 — 32 — 96 r2)e* + 6433 + (7272 — 144)e? 4 27 — 1872
hs\pp, &) = 108 (422 — 1)2r2
(48r — 32 —9672)et +6463\/_+(72r — 144)e? +27—18r

18 (42 — 1)2r

For r = oo, it is trivial to see that u(Npp) = 1. In fact, for fixed € > 0, p(Npg) = 1 for

r>/3/(2¢).

B.3.1 Derivation of us(Npy,¢) and vs(Npy,e) for Segregation with ¢ = /3/8

For the segregation alternative with ¢ = v/3/8, us (N};E,e = \/5/8) =1 for r > 4, so we find
ps (Npg,e = v/3/8) for r € [1,4). In particular, for the mean we partition [1,4) into five inter-
vals, [1,9/8), [9/8,3/2), [3/2,2), [2,3), and [3,4), and for the covariance into twelve intervals,
[1,12/11), [12/11,9/8), [9/8,/6/11), [v/6/11,21/16), [21/16,4/3), [4/3,3/2), and [3/2,V/3),
[V3,7/4),[7/4,2), [2,3), [3,7/2), [7/2,4). We pick the sample intervals [3/2,2) and [7/4,2) to
demonstrate the calculations of the mean and the (asymptotic) variance, respectively. Observe

that, by symmetry,

,U/S(NIEE:E) = P(X2 € ngE(XlaE)) = GP(XQ € NIT;E(XDE)JXl € R. (yl))'
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Then q(y1,z) = V3 (1/4 — ), qly2,z) = V3 (4z — 3)/4, and q(y3,z) = 3v/3/8. See Section
B.3 for the definition of ¢(y;,z). Hence, Q1 = g(yi,z) Nes = (1/4,0), Q2 = q(y2,z) Nes =
(3/4,0), Q3 = qly2,z) Ner = (7/8,3/8), Qa = qlys,x) Ner = (5/8,3V3/8), Qs =
qlys, ) Nex = (3/8,3V3/8), Q¢ = q(y1,z) Ney = (1/8,3/8). Then T'(y1,¢) = T(y1,Q1,Qe),
T(y2,¢) = T(Q2,92,Q3), and T(y3,e) = T(Q4,Qs,y3), and for ¢ = /3/8, T. is the hexagon
with vertices, Q;, j € {1,...,6}.

Furthermore, ¢a(z) = —/3(z — 3/(4r)) and g3(z) = V3 (1/r — z) (i.e. the same as £,(x)
before). See Section B.3 for the definition of g;(x). Let the z coordinate of g(y1, ) N Zem (x) be
s1, of g2(x) N Lo () be s4, and of £s(x) N Ly (z) be s10; Q1 = (83,0), g2(x) Nes = (s6,0), and
£s(z) Nes = (s12,0). So 81 = 3/16, s3 = 1/4, s4 :==9/(167), s¢ = 3/(4r) = 510, and s12 = 1/r.
See Figure B.3.3.

For 1 = (x,y) € Rowm (y1), let

Up == q(ys, z) N L.(z1, )_<\/§(4ry+4\/§r:c+3\/?_>)/24,ry/2+\/§rw/2—3\/§/8),and
Us := qlys,z) N L.(21,2) = <\/§ <8ry+8\/§rm—3\/§) /24,3\/5/8).

If 2, is below ga(x), then N%, (21,6) = Nby(x1) \ T(y1,v3/8) = Z(Q1, N1, Na, Q¢); if z;
is between g¢2(z) and ¢s(z), then Nhg (21,6) = Z(Q1,Q2,U1,U2,Q5,Qs); and if z; is above
Ls(z), then Nbp (21,e) =T.

For r € [3/2,2), g3(x) crosses through M3M - and g2(z) crosses y; M. So 21 below go(z) is

equivalent to z; € R (\/5/ 8) where
Ry (V3/8) = {(@,9) € [s1, 58] X [a(y1,2), bam (@)] U [, 54] X [0, amn (@)] U [, 56] x [0, @2()]}
Then

P (X2 € Nbg (X1,6), X1 € Ry (\/5/8)) :/ wd do =

T \T(y1,v/3/8) A(T2)?
/ /am (z) AP QI;NDN%QG))d da;+/ /‘”" (@) AP (Ql;Nl;N2;Q6))d da:
q

(y1,2) A(T)? A(T.)?
2 A(2(Q1, N1, N2, Qs)) rt —2r? — 63
+ / / AT, )? dyde = — 57672

where A(2(Q1,N1,No, Qg)) = % (12rz+4v3ry+3) (12rz +4v/3ry — 3) is same as be-

263



fore.

Next, 1 between g2(z) and £,(z) is equivalent to 21 € Ry (v/3/8) where

Ry (V3/8) = {(2,1) € [s4, 6] X [g2(2), Cam ()] U [56,1/2] x [0, 65 ()]}

Then

P (X2 € NLy (X1,e), X1 € R (\/5/8)) - /86 /e‘”" @) AP (@102, 11, U205, Q) 10

sa Jg2(z) A(TE)2
+/1/2 /es(m) A(P(Q1,Q2.U1,U2,Q5,Q5)) , ., _ 64r% — 7687% 1 182472 — 1281 — 1467
W Jo A(T.)? y 202872 '

where A(2(Q1,Q2,U1, U, @5,Q0)) = (— 392 — doy - a?) 2+ (Jy+ 2f22) r— 5 V3.
Furthermore, z; above g3(z) is 21 € R3 (v/3/8) where R3 (v/3/8) = {(z,y) € [s10,1/2] x
[ZS(x)agam (m)]}
Then

/1/2/%@) 1 dydx_8(4r2—12r+9)

P (X, € Npy (X1,6), X € Ry (V3/8)) e AT 3972
s10 3(z €

Hence for r € [3/2,2),

us (NIT;EJ\/g/S) =
; (61r4 — 76873 + 349472 — 51207 + 2466) 617 — 76877 + 349472 — 51207 + 2466

2028 r2 33812

For r > 4, it is trivial to see that u(Npg) = 1.

To find the covariance, we need to find the possible types of 'y (21, Np g, €) and Nj g (21,¢€)
for r € [1,4). The intersection points of &;(r,z) with 0(T'(Y)) and d(R(y;)) for j € {1,2,3},
i.e. G1 — Gg and L; — Lg are same as before. Recall also M¢, My, Ms, M3 and yi1,y2,y3. Then
Ty (21, N§g,€) is a polygon whose vertices are a subset of the above points.

There are six cases regarding I'y (1, Npp,€) and one case for Npg (z1,€). Each case j,
corresponds to the region R; (v/3/8) in Figure B.3.3 where q(y1,), ¢2(%), g3(z), s; for j €
{1,3,4,6,10} are same as before and gq4(z) = —v3 4z —7)/4, g5(x) = V3(2 —r)/4 and
sy =(r—1)/4, s5 = (r> —2r+3)/(4r), sy =3r/16, ss = (r —1)/2. (see Figure B.3.3).
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Figure B.3.3: The regions corresponding to the seven cases for r € [1,4) with r = 1.9

Then, for
z1 = (,y) € R (V3/8),T1 (21, Npp) = P(Q1,G2,G3,Ga, G5, Q)
z1 € Ry (V3/8) T (1, Npg) = P(Q1,G2,G3, My, Ly, Ls, M3, Q)
21 € Ry (v3/8) Ty (21, Nbg) = P (G, Gy, G, Gy, Gs, G)
z1 € Ry (v/3/8),T1 (z1,Np) = P(G1,G2,G3,G4.G5,Gs)

The explicit forms of R; (v/3/8), j =1,...,4 are as follows:

=
>

/8
/8
V3/8
/8

{(x7y) € [317 82] X [q(y1, w)veam (.’E)] U [527 37] X [q5(x)aeam (]J)] U [577 58] X [Q5($),Q4($)]}

{(z,y) € [s2,53] x [q(y1,T),q5(x)] U [s3, s8] X [0, g5(2)] U [ss, s9] x [0, qa ()]}

=+

{(z,y) € [s7,58] x [g3(x), lam (€)] U [s8,1/2] X [g5(2), Lam (z)]}

3

&

~— — ~—
I

=

sl
N

N TN N N
&

{(z,y) € [ss, 50] X [qa(x), q5(x)] U [s9,1/2] x [0, g5()]}.

Let Pon(Npg,€) := P ({X2, X3} C Npp(X1,€)), Pac(Npg,€) := P ({ X2, X3} CT1(X1, Npg,e)),
and PM(N;;E,E) = P(X2 S N};E(Xl,s), X3 € Fl(Xl,NIT_:,E,E)), where Fl(Xl,
NEpe) == (X1, Nby, Mc) N Te.

Now, by symmetry, Pan (N5, v3/8) = 6 P ({X2, X3} C Nbg (X1,¢), X1 € T(y1,V3/8)) .
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For r € [7/4,2),

2 ptan @) A(ND (22,2)?
P ({2 X0} € Nps (%1,0), X1 €700, V3/9) = [ AR 1) dydo

_ 261 r8 — 4608 r° + 29105 r* — 72960 73 + 325752 + 78848 r — 67620
659102

where NLg (z1,6) = P(Q1,N1,N2,Q¢) for z1 € Ry, (\/5/8) U R, (\/5/8), Nig (z1,6) =
P(Q1,Q2,U1, Uz, Qs,Qg) for z1 € Ry (V/3/8)URas (V3/8)URs, (V3/8)URy, and Niy, (z1,€) =
T. for z; € Ry (v/3/8), all of whose areas are given above. Hence for r € [7/4,2),

261 5 — 4608 r° + 29105 7* — 72960 r* + 32575 r* 4 78848 1 — 67620

P({X3, X3} C Npg (X1,¢)) = 10985 72

Next, by symmetry, Py (Npg, V3/8) =6 P ({X2, X3} C T} (X1,Npg.e), X1 € T, \ T(y1,v3/8)),
and
4

P ({Xs, Xa} C T} (X1, Npp,€), X1 € T\ T(y1,V3/8)) = 3 P ({X, Xo} C T} (X1, N, ), X1 € By (V3/8)).

=1

For z1 € R (\/5/8),

am () A (T4 (21, N}
P({XQ,Xg}cP; (X1,Npp,e), X1 € Ry f/s / / 1(@1, Npp,e))” dydz
q

(y1.2) A(T)?
am () q4(z) 2
/ / A Fl l'l;NpE; dyd1'+/ / A Fl wlaNI;Ea )) dydl’
g5 (z) A(T:)? g5(z) (T:)
_ 18894 r8 — 12248 r5 — 131375 r* + 45360 r3 + 584030 r2 — 8418161 + 337155
o 659104

V3 (45r2+32y V3 a+96 2—48 2780 y*+32 V3 y— 96)
19212

where A (Fl(xl,ngEaE)) =
For z1 € Ry (\/5/8)7

53 ras(@) A (T NT, 2
P({X2,X3} CI'{ (X1,Npp,e), X1 € Ry (\/3/8)) =/ / (1@, Npp,€)) dydz

s2 Jq(y1,2) A(T:)?
() A(Ty(21, Npp,€))® o [94@) A(Ty (21, Npg,e))®
/S3 / A(T)? dydw—}—/ / A(TL)? dydz
_ 4 (486575 — 24063 r° + 49460 r* — 73210 r® + 98045 r2 — 84107 r + 29010)
N 32955 r4
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V3 (96+32y V3 2+128 V37 y—224 /3 y—192r+96 +93 r2—48 2>+176 )
where A (T (21, Nbg,e)) = L4 iy .

For 1 € R3 (\/3/8),

P ({XQ,Xg} C T (X1, Nbg,e), X1 € Ry (\/5/8))

- / /m A N 0) dydw+/1/2 /zm AGL Moy
q4

(Z) (T5)3 88 qs (z) A(TE)3
_ 462937 — 100944 r° — 254880 r* + 50688073 + 829440 72 — 2064384 1 + 1048576
o 98865 rt

2
where A (Ty(z1,Nbp,€)) = V3(3r°+6 612T26y 2423y 6)

For z1 € Ry (V3/8),

P ({X2,X3} C T (X1, Nbg,e), X1 € R (x/ﬁ/s))

am (Z) r S5 Lam (z) A 1-\ Nr 2
_ / / A Fl SL'l,NPE,E)) dyd.fl? +/ / ( 1(-7717 PE;E)) dydIE
q:

2(z) (TE)g Sa4 g3(z) A(Ta)3
_ 8(35777r% — 20548 7° 4 45620 r* — 61760 7 + 79040 r? — 77824 r + 32256)
B 3295574
where A(Fl(arl,N};E,s)) _ V3(-6r+3a— 322 +5y6tgr 243+4V3ry— 7\/_y)
So,
. 6 (19032 r° — 243648 r° + 1118355 r* — 2085120 r® + 1534050 r> — 113664 r — 233639)
P (N Pe: V3/ 8) - 197730 %
_ 190327° — 243648 r° + 1118355 7 — 2085120 r* + 1534050 r* — 113664 r — 233639
32955 74

Furthermore, by symmetry,
v (Npi: V3/8) = 6P (X2 € Npp (X1,2), Xs €T (X1, Npp,2), Xu € T\ T(y1,V3/8)) ,
and

P (X» € Np (X1,2), X3 €T} (X1, Npp,2), X1 € T, \ Tly1,V3/8))

= 3P (Xa € Npp(Xa), X €Ty (X0, Npg), X1 € By (V3/5))
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where j € {1a, 1b, 2a, 2b, 3a, 3b,4}. The explicit forms of these regions are given by

= {(=.y) € [s1,52] x [a(y1, @), lam (2)] U [52, 54] X [g5(2), bam (2)] U [s4, 85] x [g5(2), ¢2 ()]},

= {(2,y) € [s4,57] X [q2(), lam (x)] U [s7, 55] X [g2(2), qa(x)] U [s5, s8] X [g5(x),qa(z)]},

= {(z,y) € [s5,56] x [q2(x), g5 ()] U [s6, 58] X [0, g5(x)] U [s8, s9] x [0, ga ()]},

(varz)
(varz)
Raa (V3/8) = {(2,4) € 52, 58] x [a(y1,2),a5(2)] Ulss, s5] x [0,a5(2)] Uss, s6] x [0, ()]},
(varz)
(V3/8) = {(@,9) € ls7, 310] X [ga @), fam ()] U510, 58] x [aa(), aa(@)] U [35,1/2] x [as (@), as(2)]},
(varz)

= {(z,9) € [510,1/2] x [g3(2), bam ()]}

R4 (V/3/8) is the same as before.
For z; € Ry, (\/5/8),

P (X> € Npp (X1,6), Xs € T} (X1, Npp,2), X1 € Riq (V3/8)) =
/ /Z‘”" @ AN g ($17€))A(F1($17NPE=5))d dz +/ /l“’" @) A(Npp (21,€)) A(T1(x1, Npp, e ))dydz'
81 q

a(y1,2) A(T:)? 5(2) AT
/ /-qz(w) A(Np g (21, ))A(F1(m1,NPE:5))d A
a5 () ATe)? ’

- [2960 r? — 3045 r® — 215047 — 28554 7% + 101040 r° + 205785 " — 550080 r° + 391392 r°

— 1140487 + 12150] / [395460 r6] .
For ;1 € Ry (\/3/8),

P(XQEN;E(Xl,s) X3 € I (X1, Nbg,€), X1 € Rup (\/5 ))

/ /am @) A(Np xl,&'))A(Pl(wl’NPE’E))d d:c+/ /Mm) ARbeltne ))A(Pl(th;E’E))dydx
g2(e) A(T:)? st Jaa(z) A(T)?
/ /44(’2) A(Npg (21, ))A(Fl(.’lil,NJTDE:S))d dr
a5(z) A(T)? ’

- [(r —3)(31117'° + 96 r° — 67659 r® + 26528 7 + 341223 r® — 352896 r° — 177291 r* + 229632 r*

+ 2392217 — 224641 + 3078)] / [395460 rﬁ] .
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For 21 € Ry, (\/3/8),

P (X2 € Npp (X1,6), Xs €T (X1, Npp,e), Xi € Raa (V3/8)) =
/ /"5‘”) A(Npg (#1,€) A(Ta (@1, N, ) | d$+/ /%(z) A(Np (21,€) A(Cu(e1, N €)) g o

a(y1,@) A(T:)? A(T:)?
22(2) A(Npg (z1,€)) A(T1 (21, Npg, €))
[ A(T.)? dudz
2(r —2)(r — )(5307" +12257° + 1697 r* — 3399+ — 3027 r2 + 5274 r — 1188)
98865 5

For 1 € Rap (\/5/8),

P (X2 € Nps (X1,€), Xs € T (X1, Npp,c), X1 € Ray (V3/8)) =
/ /q5(”) A(Npg (z1,€)) A(T1(z1, Npg, €) dydx+/ /%(m) A(Npg ml,&‘))A(Pl(ﬂUl,NPE,E))
q

2 () A(T:)® A(T.)3
4@ A(Npg (z1,€) A(Ti(z1, Np g, €))
/ / ATy dydz
_ 2(r = 2)(r> = 3)(467+" — 50+7 — 77891 + 1200 1 + 16083 % — 4110 +° — 7311 +% — 8107 + 702)
- 98865 r5

For ;1 € R3, (\/3/8),

P (X2 € Npp (X1,6), Xs € T (X1, Npg,€), X € Raa (V3/8)) =
/ /am @) A(Npp (x1,€ ))A(Fl(xl,N}DE,a))dydm_'_/38 /qx(m) A(Nb g (7)1,6))A(Fl(wl,N}TDE;E))dydx
q4 q

(2) A(Te)? (@) A(T:)?
/1/2 /%(z) A(Npg (z1,¢)) A (Fl(xlaNI’EaE))dydm
a5 (=) A(T:)?

= [3934 r'? — 11040 ' — 2352 7% — 283680 r° + 1239855 r® — 751008 77 — 3225344 r°

+ 6125568 1° — 3847680 % + 81920 > + 1843200 r2 — 2045952 1 + 905472] / [395460 7"6] .
For z; € Rg3 (\/3/8),
P (X2 € Nop (X1,e), X3 € T7 (X1, Nbg,e), X1 € Rap (\/5/8)) -

/1/2/ (D A(Npp (1,€) A (Ca(21, Nppoe)) , o 64(2r! —4r° +4r = 3)(2r - 3)°
a3(z) A(T5)3 Y B 507 r6 )
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For 1 € Ry (\/3/8),

P (Xz € Npp (X1,6), X3 € T (X1, Np,e), X1 € Ra (V3/8))
_ / /q5(w) A NPE z1, ))A(Pl(ml,NPEyg))d dm+/1/2 /qs(m) A NPE (ml,E))A(Pl(.’IJI,NpE,E))d d
q4(z) A(TE)3 sg A(T€)3

8(487°% — 2275 — 737 — 3114 1% + 4391 12 +1574r—2850)(r—2)2
32955 12

Then

Py (Nhp,e) =6 (— [49 r'?—1536 r''+17952 r'°—129280 r°+609420 78— 1728768 7' +2757670 r°
— 301363275 + 3418140 r* — 3820760 3 + 30268802 — 1571616  + 445284} / [395460 r6] )
- [49 r12 — 1536 + 1795210 — 129280 r° + 609420 r® — 1728768 r™ + 275767015

— 301363215 + 3418140 r* — 3829760 > + 30268802 — 1571616  + 445284] / [65910 r"‘] .
So

E 53/5ll2(Npg) his(Npp)] = — [49 r'2 —1536 7! + 18735 r'° — 143104 r° + 677703 r® — 1704000 7" +

1737040 7° — 691968 r° + 1681230 7* — 3716096 ° + 3260519 7> — 1571616  + 445284] / [3295 1"6] .

Hence

S (7‘, \/5/8) =
- [637 r12 — 19968 r'! + 299370710 — 3265792 Y + 24051519 7% — 1120233607 + 328179640 %

— 602490624 r5+673558110 71— 427086848 13 +133604087 r2— 20431008 r+5788692] / [428415 r6] .

Derivation of ps(N5p,€) and vg(Nh g, €) for segregation with ¢ = v/3/4 and with e = 2+/3/7

are similar.

B.4 The Mean y(N}j,e) Under Segregation and Association Alternatives

Derivation of u(Npg,€) involves detailed geometric calculations and partitioning of the space

of (r,e,x1) for r € [1,00), € € [0,v/3/3), and z1 € Ts = T(y1, M3, Mc).

270



B.4.1 ps(Npg,e) Under Segregation Alternatives

Under segregation, we compute pug(Npg, €) explicitly.
For ¢ € [0,v/3/8),

s(Npg,€) Zwl,] r,e)I(r € I;),
where

576 72t — 1152* — 3772 + 288 2
216 (2 + 1)2(2e — 1)2 ’

wi,1(r,e) = —

w1,2(r,e) = — [576 rtet —11527%* + 91 7% 4+ 5123 7% + 2592 r%e? + 1536 V37 e + 1152
—7687° — 2304 V377 — 69127 — 2304 V3 + 17281 + 3456 V31 + 5184 &
— 17287 — 1728 V3¢ + 648] / [216 r2(2e+1)%(2e — 1)2],

w1 3(r,e) = — [192 rte® — 384 r’e? + 97" +864 r’c” +512V3re® + 384 &' — 2304 re® — 768 /3 &°
—2887> + 17286 + 5767 — 324]/[72 r2(2e +1)%(2e — 1)2],

wi,a(r€) = [1927"4 e* —384 r’c* — 97" —96V371% + 28877 — 128" + 1447° + 576 V3 r’e + 256
V3e® — 72072 — 115237 e — 576 % + 1152r+768\/55—612]/[72r2(2s+ 1)%(2¢ — 1)2],

487r%e* — 9617t + 721r%% — 326" + 64 /3e® — 1877 — 144”4 27

w15(r,e) = - 1872(2¢ + 1)2(2¢ — 1)2 :

48 rie* 4 256 r3e* — 128 V/3r3e® + 288 r2e® — 192 /3r%e® + 72122 + 1872 + 48 /3 — 45
18(2e + 1)2(2¢e — 1)2r2 ’

w1,6(r,€) =

W1,7(’I", E) =1,

with the corresponding intervals T, = [1,3/2 = V3z), T, = [3/2— v3¢,3/2), T = [3/2,2 -
4 g/\/§), Iy = [2 - 45/\/3,2), Iy = [2,\/5/(25) - 1), Is = [\/ﬁ/@g) - 1,\/3/(25)), and
I, = [ﬁ/(ze),oo).

For ¢ € [\/5/8, \/3/6>,

Hs NPE) ZWZJT‘C: TEIJ'))
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where ws j(r,€) = wy,;(r,€) for j € {1,2,4,5,6}, and for j € {3,7},

wa 3(r,e) = — [576 riet — 115212t + 3774 + 224 /313 ¢ + 864 r2e? — 384 £* — 3361 — 576
V3rZe + 768 /3% + 43212 — 17282 + 576 /3¢ — 216] / [216r2(25 +1)2(2¢ — 1)2] ,

waz(r,e) =1,

with the corresponding intervals 7, = [1,3/2 ~V3 s), Ip = [3/2 — V36,2 -4 g/\/ﬁ), Iy =
[2 —4¢/V3, 3/2) = [3/2,2), T [2 V3/(2¢) — 1) [\/_/(25) ~1 f/(2e)), and
T; = [V3/(2¢),00).

For ¢ € [\/5/6, \/3/4),

NPE7 Z’W3]T6 TGI]'),

where ws 1(r,€) = w1,2(r,€) and

w3,2(r,€) = — [576 rtet — 1152 7% + 377" + 224 V3rPe 4 864 r’c” — 384 &' — 3361° — 576 V31’
+ 768365 + 43212 — 1728% + 5763 — 216]/[216 r2(2e +1)%(2e — 1)2},

ws3(r,e) = [576 r?e? +3072re® — 1536 V3re® + 3456 * — 2304 V3e® — 371 — 224 \/3Bre
+864 > + 3367 + 576 V3 e — 432]/[216 (2e+1)%(2¢ — 1)2},

w3 a(r,€) = [192 rtet 41024 rPe* — 512v37r% + 1152 7%* — 768 V3 r%e® + 9r* + 96 V3 rie+
28812¢® — 1441° — 576 V317 + 72072 + 115237 ¢ — 11521 — 576 V3¢ + 540] / [72 r?

(2e+1)°2e -1,

48t et + 256 r3e* — 128 V3 1r3e® + 288 r2e? — 192 /3 1r2e® 4+ 721r%% + 1872 + 48 /3 — 45
1872(2e+1)2(2e — 1)2 ’

ws,5(r€) =

w3,6(r,€) =1,

with the corresponding intervals Z; = [1,2 —4 5/\/3), I, = [2 —4 e/\/g, \/3/(25) - 1),
[\/—/(25) ~1 3/2) =[3/2,2), Ts = [2,x/§/(25)), and Ty = [\/5/(25),00).
For ¢ € [\/3/4, \/5/3),

s(Npg,€) Zers (r €I;),
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where

_9r%% +2V8r’e4+48re” +r° —16V3re —90e” — 1274+ 36 V3¢
18 (36 —3)°

waa(re) = — [9 riet —4V3rte® 44813 — 48313 — 901%e* + 36 7% + 96 V3 12

wa1(re) = )

— 1267262 —32V37re® — 486" +36V3rie + 1447 +963% — 1872 — 723 re

—21662+36r+72\/§s—27]/[2 (3e—x/§)4r"'],

W4,3(T‘, 6) = 1,

with the corresponding intervals 7; = [1,3 — 26/\/?_)), Iy = [3 —2¢/v/3,V/3/e — 2), and
Ig = I:\/g/(;‘ - 2,00).

B.4.2 gy (NI’;E,E) Under Association Alternatives

Under association, we compute 4 (N};E,s) explicitly.

For ¢ € [0, (73 —3V/15) /12 ~ .042),

6
NA(NITJEJE) = Zwl,j(rae) I(r € Zj),
j=1

where

wia(re) = — [3456 e'rt 49216 £'r® — 3072 V3" — 17280 'r® — 3072 V3e®r® + 2304 £%r*
+ 4608 v/3e3r? — 2304 £2r® + 6336 £* + 6144 V3¢ r + 6912 %% 4+ 5123 e r®
—1017" — 6144 /3¢ — 11520 &° r — 1536 V3er” + 256 r° + 5760 > + 1536 V3 e
— 384 1> — 5123 + 2567 — 64]/[24 (6e+ \/5)2 (65 - \/5)279],
w1 2(re) = — [1728 e'r? — 1536 v3e3r! — 31104 &'r® + 1152”0 + 15552 " + 10368 £”r” — 371"

_2073652r+1036852]/[24 (66+\/§)2 (65— \/5)27«2],
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w1,3(r,e) = [—2592 e'r? — 2304 V3e3r* — 46656 &*r% + 1728 21" + 10656 ¢ — 9216 V3> r + 9072712
—432V3er® — 157" + 12288 V3e® — 13824 &% r + 1728 V3er? — 2167° + 4032 &>

— 2304 V3er +4321° + 1024 V3 — 384 r +128] / [36 (65+\/§)2 (65_\/5)2,9],

_1728¢&"r" — 1536 v/3e®r* — 31104 £*r® 4+ 1152%r* — 5184 £* +2592£°r% — 377" — 3456 £°

w1a(r,€) = ,
v 24 (6c+/3)" (6c—v3) 12
9 115272 +192¢* —192&%r? —r* +128€? + 327 — 64 r + 36
wlas(Ti 6) =3 2 2 )
8 (65+\/§) (65—\/5) r2
9 (r+6)(r —2)°
w1, (T: 5) = "9 3
e 8 (6c+3)" (6e—v3) r2
with the corresponding intervals Z7; = [1, 71;12\/\/;:),12 = [1;:2\/‘/5:, 4 (13\/§E)>,I3 = [74 (173‘/55),
4 (1423¢) |4 (1+2v3e) 3 . 3 .
f)’lll— |: 3 ,2(1_\/55) ,I5— m,Q ,a,ndIe—[Q,OO).

For & € [(7\/3— 3/15) /12,\/?‘,/12),

6
pa(Npg,e) =Y w2 ;(r,e)I(r € ),
j=1

where w3 j(r,e) = w1 ;(r,e) for j € {1,3,4,5,6} and
waa(r,€) = [—3456 e2rt + 111 7% — 5184 e*r* 4+ 4608 V31t — 336 vV3er® — 1681° — 13824 43

+ 4608 V3 3r® + 34562213 + 14472 — 69123312 — 388822 + 576 V32 + 25920 &4

r? 4 3168 + 2880 — 256 v/3 £ — 32 —3072\/553]/[36 (\/§+6s)2 (—65+\/§)2r2}

with the corresponding intervals 7, = [1; M):% = [4 (1_3\/35)’ 114——2\}/55:)’13 - [lf\/\?:’
RS ), 2 = [P S ) B = [y ) and T = .c0).

72 (1—V3e
For ¢ € [\/3/12,\/3/3),

3
/J'A(NIEEJE) = Zw3,j(7‘,6) I(T € Ij)a
7j=1

where

2712 —1

w3, (r,e) = 612
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wsa(r,e) = [432 elrt 11526 — 576 V3 rt + 1296 42 — 960 V3e31® + 864 e2r* — 864 /3312
+5762r% —192v3ert — 360e* + 648e%r? + 64 V3er® + 487* +192/3e® — 1443 e 12
4
— 6475 — 504 €2 + 7272 + 88v/3¢ — 25]/[16 (35 - \/5) r2],

—54 272 +36v3er? + 1562 — 1872 + 23+ 20
6 (—35+\/§)2r2

’W3’3(T, E) = - )

. . . _ 14+23¢ _ | 1423 3 _
with the corresponding intervals 7; = [1, CY CIVAAY (1_\/55)), I3 = [2(1_\/55), 2(1—\/55))’ and 75 =

ey ):
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APPENDIX C

Derivations of Means and Variances in Section 5.5

Note that p(NZg) is provided in Lemma 5.5.2 for general M € T(Y)°. In this chapter we

assume M = M¢.

C.1 Derivation of I/(Ngs)

Let P2N(NE'S) = P({Xz,X3} C N&S(XlaMC’)), PZG(NEVS) = P({XQ,X3} C Fl(XlaNES,MC))
and PM(NE’S) = P(X2 € NES(Xl,Mc),X3 € Fl(Xl,NE«S,Mc). Then

V(NE'S) = Cov [h12(Nig, M), hi3(NG g, Mc)] = (P2N (N(TJS)+2 Py (N65)+P2G (NES))—[Q N(Nés)]z-

To find the covariance, we need to find the possible types of I'y (z1, NJg) and N[ g (1) for
7 € (0,1]. There are four cases regarding I'y (1, NJg) and one case for N[ g (z1). See Figure
3.4.6 for the prototypes of these four cases of I'y (z1, N g) for (z1,y1) € T(Y), the explicit forms

of {;(r, ) are given by

(V3y1 + 331 — 312) (—V3y1 +3z1 — 32)

Cl(T,IE): \/§(1+2T) ) CQ(Tam)Z_ \/§(1+2T) )
3 37—3 -3z —+V3 — _
o) = BIAITEITEZIZVIN) gy BT VBt
_ \/grx+2y1 _ (—3x—3rm+3x1+\/§y1)
Cs(Tax)—?; Ce(Taiv)— \/3(1_7_) >
C7(T,IL')= ly_l,r'

Each case j, corresponds to the region R; in Figure C.1.1, where £y, (7) = 2/V3, qi(z) =

75 @2(2) = g(e) = S and s = (1-1)/2.
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Figure C.1.1: The regions corresponding to the prototypes of the four cases with = =1/2.
The explicit forms of R;, j € {1,...,4} are given by

Ry = {(z,y) €[0,1/2] x [0,g3(2)]}, Rz = {(x,9) € [s1,1/2] x [ga2(2), q1 ()]},
Ry = {(z,y) € [0,51] % [g3(2), lam ()] U [51,1/2] x [g3(z), ¢2(2)]},

R4 = {(:c,y) € [8171/2] X [ql(x)7€am($)]}
By symmetry, P2N(N55) =6P ({X2, X3} C NLg(X1,Mc), X1 €T5), and

12 plam@) A(NZ (1))
P({Xs, X3} C NLo(X1, M), X1 €T,) = 2205 YV gudz = 74/90,
({ 2 3}C CS( 1 C)) 1€ ) /0 /0 A(T(y))3 yax T/

where A(NZg (z1)) = 3v371%y?. Hence, Pon (NGg) = 7*/15.
Next, by symmetry, Pyg (N(GS) =6P ({X2, X3} CT1(X1,NLg, M¢), X1 €T,), and
4

P({XZ,X3} C FI(XI;NES;MC)a X € Ts) = ZP({XQ,X3} C FI(XI;NE'S;MC)a X € RJ) .

j=1
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For z; € Ry,

1/2  rq3(=) ATy (x1, NG ))2 4 (1—1)
P({Xs, Xa} C Tu(Xs, Nos, M), X € Ba) / / Wdydw T +27)2(1+1)5

Where A(F]_ (.’L‘]_,NE:S)) %

For =1 € R,
tam (@) A (D1 (21, NGs))®
P ({X2, X3} C T1(X1,N&s, Mc), X1 €R2)=/ /() %d;}dw
q3(z
SIS PRGN A AR AR T )
a3 (2) ()3 a 45274+ 1)2 (7 +2)2(t+ 1)°

33 (m2'r+2 V3zyr—y?r—z242V3zy-3 yz)‘r

where A (T (21, N g)) = TN+

For z, € R3,
Y2l ATy (1, Ngg)”
P ({Xs, Xs} C T1(X1, Nig, Mo), X1 € Ry) = / /() ;(Tl(y))cs dydz
s1 q2(z
6(1-7)(67% —357* + 13072 + 160 7 + 60)
90027+ 1)2(r+2)2(r +1)5
where

3\/§T(2m272+2y272—4m27—2m7’2+4y T+2v3y 24222 +dz 46 y2+72—22—2/3y— 2T+1)
- 427+ (r—1)2 (7+2)

ATy (21, Ngs)) =

For 1 € Ry,
172 plam(@) A (D4 (21, N,
P ({X2, X3} C T1(X1, NGs, Mc), X1 € Ry) :/ /( : Wdydm
q1(x
/ /ZGM(m) A(Pl $17NCS)) d d +f1/2/q12 v A xl’NCS)) dyd G(T _5T+10)
s(z) (T))? a3(@) T())? T BRT+ DI (r+ 22

2 2 _ o
where A (T (z1, NJg)) = V37 (32°+3y°—32—v3y—7+1)

2 (2 T+1)(T+2)
T — T —T7-2)T (r2—77-2)*
So P (Ngs) =6 ( 90 (T(+1)(2 T+1)(T+2)) THBEIDE ) F2)

Furthermore, by symmetry, PM(NCS) = 6P(X2 S NgS(Xl,Mc), X3 € FI(XI;NE':;;MC); X €
T;), and

P(X2 S Nés(XlaMC’); X3 € Fl(Xl;Ng'SaMC); X € Ts) =
4
D P (Xy € Nig(X1, Mc), X3 € T1(X1,Nig, Mc), X1 € R;).

j=1
where P(X, € NLg(Xq, M¢), X3 € T1(X1,NEg, Mc), X1 € R;) can be calculated with the
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Figure C.2.1: The prototypes of the four cases of N5 ¢(z) for four distinct € Roar(es) (shaded
regions).

ANGs (21)) A(T1(21,NGs))
A(T(Y))3 :

T _ 274373472410 7+4)7*\ _ (27%=373—472410 7'-1—4)7'4
Then Py (Ncs) =6 (( 180 (2 7+1)(7+2) : ) = 30 (2 7+1)(7+2)

same region of integration with integrand being replaced by

Hence

(275 — 74— 573+ 1272 + 287+ 8)
157 +1)27+1)(7+2)

E[h12(NésaMC) h13(N55,Mc)] =

Therefore,
™ (67° =371 —257° + 72 + 497 + 14)

v(NEs) = 5(r+ )27+ 1)(r+2)

For 7 = 0, it is trivial to see that v(NZg) = 0.

C.2 Derivation of y(NZg,¢)

We pick the interval € € [0, V3/ 5) for a demonstrative example in derivation of pus(NZg,€). For
€ [1 -3¢, 1), there are four cases to consider for the form of N7 g(z1,¢) := Nig(z1, Mc) N

T.). See Figure C.2.1 for the prototypes of these four cases of Njg(z1,€).
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g3(z) M¢
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qu(z) ‘
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&
0.151 1(2) /
y y
0.11 b e
Ry /(x)
0.05- / |
/ R;
Vs :
0 02 55 03 04 0.
Y1 S3 R},

Figure C.2.2: The regions corresponding to the prototypes of the four cases shown in Figure
C.2.1.

Each case 7, corresponds to the region R; in Figure C.2.2, where £, (2) = 2/v/3, qi(z) =

—VBz + 26, glo) = PEIEE gy(a) = BEEVE g(x) = RS, and 5 =
V3e/2, so=2+/3¢/3, 33:%.

The explicit forms of R; for j € {1,...,4} are given by

Ry = {(2,y) € [s1,52] X [q1(2), am (2)] U [52, 53] % [g2(2), Lam (€)] U [53,1/2] X [g2(2), g5 ()]}
Ry = {(z,y) € [52,1/2] x [0,q2()]}, Rs = {(w,9) € [53,1/2] X [g3(2), qa () ()]},

Ry ={(2,y) € [3,1/2] x [q4(2), lam (@)]}-

By symmetry, P(X2 (S NéS(Xl,E)) = 6P(X2 (S NE:S(Xl,E), X5 € Ts) .
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For z1 € Ry,

sa  flam () A(NT ($1 &‘))2
P(X; € Nis(X1,¢), X1 €R =/ / OSA dyda+
( 2 CS( 1 ) 1 1) o Ja A(T(y))2

/ /lm(m) = NCS AlNes(ne) dydx+/1/2 /qsm = NCS ANos L)) 4y g,
q2(z) y))2 ga(z) y))2

-5 [ 36 — 1701 7% + 318273 + 14492 7% — 1692 7° + 414 7* + 5832”1 — 13932772

— 4064 "% — 128 e*77 4 2560 7 + 968 70 — 10368 7°¢” 4 31104 7%e” + 14256 €2 7% 4 432 V3 &>
— 1467 7% + 2268 "7 — 324" + 2385 7% — 20736 V3 7"e® + 4428 V3 1% — 5760 V3 T3 — 1440 V37 ¢
+ 51843 7% — 54723 7% — 3456 7 V3¢ + 5616 V372 ® — 51843 7° ¢ — 648 ¢®

+396 7 + 144 \/Es]/[(za+ 1)’(2e —1)°(4r — 1)(1 +2T)3],

where A (NZg(z1,6)) = —V3(-2e+y+27y+V3z) (—2e +V3z +y —107y) /12.
For 1 € R»,

/2 ra2(x) 4 (NT 2
P(Xg € NE«S(Xl,é‘), X; € Rz) / / Mdydl‘
81 0

A(T(D))?
72 (=9 — 256 £* + 48 /3 — 2882 + 256 v/3 &%)
12(2e +1)2(2e — 1)2(47 — 1)3

where A (N7 g(z1,¢)) = 337242
For =, € R3,

2 @) 4 (NGs(X1,e))® 2 4 2 4_4
P (X3 € Nos(X1,¢), X1 € Rs) = / /qs(z) Wdydm =3 [—4— 522" +1728¢° T

—3967° — 5771 + 72077 — 2259 £272 + 242 7% — 4032 7°% + 576 757 + 3600 72 + 2196 £273
+48v3e® — 20772 +288¢etr — 36 + 3747 — 25923 71% 4+ 658 V312 — 922313 — 176 V37 ¢
+1376 V3759 — 4723 7% — 43273 + 1080 V3722 — 552372 % — 727 — 480 V3 7%

+1152V37%% + 487 + 16 \/35]/[(2e+ 1)%(2e—1)%(4r — 1)*(1 + 27‘)4].

where

A (Ngs(a1,€)) =

\/5(86y—3267y—2y2+167y2—2\/§y+8\/5Ty—3+6$—862+4\/56—6.172—}—4723/2)/12.
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For x1 € Ry,

2

1/2 eam(Z)A NT 2
P (X2 € NGs(X1,¢), X1 € Ra) =/ / A(NEs(x1,6))° 2

s3 q4(z) A(T(y))2

71t 23602 — 675272 + 270 + 144 7% + 324%7% — 216 V3P + 72 + 144t + 162 + 70 78

dyde = — [18 — 90 — 287"

+106 V3 7% — 186 V372 + 152V37e +32V3 7% — 3231l + 2473 % + 384 V312 ¢°

+24V3 735 4324 —567’—72\/55]/[(25—1)2(25+1)2(1+2T)4].
where
A(NGg(w1,e)) = \/5(—672112+4\/?_,5—662—3+\/§y+3m—2457y—3y2+8\/57'3/—3:1:2)/6.
So

1
P (X5 € NZg(X1,¢)) = 15 [T (47% + 80 — 6072 + 64372 + 16e*72 + 457 + 288¢&>r

—108&%T — 128 V37 +1923% + 6413 — 144" — 16 — 28852)]/[(1 +27)2(2e — 1)2(2¢e + 1)2].

C.3 The Mean ,u(N(T;S,e) Under Segregation and Association Alternatives

Derivation of /,L(Ngs,s) involves detailed geometric calculations and partitioning of the space
of (1,e,21) for 7 € [0,1], ¢ € [0,4/3/3), and z1 € T, = T(y1, M3, Mc). A demonstrative
calculation is given in Appendix Section C.2 for € € [0, \/3/5) and 7 € [l —/3¢,1].

C.3.1 pug (Ng,s,s) Under Segregation Alternatives

Under segregation, we compute ps(NGg,¢) explicitly.

For & € [0, \/3/5),

2
ps(NEg,€) =Y w1 i(r,e)I(r € ),
j=1
where

(20e*r —36¢&* — 37+ 3)7°
18(1—-7)(2e+1)2(2e —1)%’

W1,1(T, 6) =
w1a(T,€) = — [(80 €73 4166472 — 108 % — 1446 + 192 V3% + 28827 + 64 V3er? +4 7°

—288¢% — 128v3e7 — 607> + 64 V3e + 457 — 16)7]/[18(2T+1)2(25— 1)’(2e +1)?],
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with the corresponding intervals 7; = [1, 1-— \/36) and 7, = [1 — /3¢, 1).
For e € [\/5/5,\/3/4),

s(NEgs€) ZWQJT, I(r € Z;)
where w» ;(7,€) = w1 ;(7,¢) for j € {1,2}, and for j = 3,

wa3(1,€) = — [(—96 g7t — 1584 %73 — 36882472 + 5123637 — 3636 &7 + 2304 /3372
—1152¢&* + 3840 V3e%r — 576 %72 + 128 V3 7° + 8 7% + 1536 V/3e® — 432027

320372 — 124 73 — 2304 £2 + 64037+ 15072 + 5123 — TT 7+ — 128)7]/

[18(2T+ 1)2(2e — 1)2(2¢ + 1)2(27 — 1)],

with the corresponding intervals Z; = [1, 1- \/36), Io = [1 - \/35,\/3/(2 €) — 3/2), and
Ty = [ﬁ/(ze) —3/2, 1).
Fore € [\/3/4,2\/?‘,/7),

NCS, Zw?,,J 1,e)I(1 € Z;),

where

w3,1(T,€) = [(984 e'r® —3452¢e'r? — 1024 V3P 4 4992 ' + 3584 V3e3 1% + 11526772 — 2268 ¢*
— 5120 V337 — 4032 %7 — 192 V3e 7> + 2304 V3e® 4+ 5760 + 672 V3 e +427°
— 2592 —960V3er — 141 7> +432 3¢ + 1927 — 84)7‘2]/[32 (1 —1)2 (35 - \/:7,) (21— 1)],
w3 (1,€) = [(3936 e'r® — 98726 % — 4096 V/3<37°% + 7144 £ 7" + 10240 V33 7° + 4608 776 + 7444 7P
— 7168 V3¢ 7% — 11520 %1% — 768 V378 — 4368 £'r% — 8064 /3 r® + 7488 %1 4+ 17923 7°
+136 7% — 1836 £ + 5056 V3> + 10656 1% — 768 V3Tt — 220 7° — 144" + 1536 V/3e®
— 720077 — 2464 V3e7® — 154 7! +192V3e® — 11527 + 1664 V/3e 7 + 771 7° — 288 ¢”

+48 V3eT —464 7+ 64 V3e + 287 — 10)7] /[32 (35—\/5)4(27— DET+1(r 1)),
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wss(r,e) = — [(—2096 e'r® + 3376 ' 4 2048 V3375 — 2204 &' 7% — 3840 V331! — 2304 £77° — 3864 &'
+ 2304 V3e*r® + 4608 e + 384 V3e 7" + 1332 + 4864 V3e®r? — 2016 7% — 704 Ve 7t
—687° +1152* — 1536 V3e®r — 6912e”7% 4+ 32V3e7° 4+ 76 7! — 1536 V/3e® + 1728 °1
+1440 V3e 7> + 1157° + 2304 & — 208 vV3e 7 — 32872 — 5123 —4 7 + 128)7-]/[32 (r —1)2
(—35+ \/5)4 @7+ 1)2],
w3 a(r,€) = — [(—2064 e'r% +1696 ' r° + 2048 V337 + 3292 £ 7% — 1920 V3e®r® — 2304 £27° — 788473
— 2816 V3e®7" + 2304 £°7° + 384 V3e7° + 3948 &' 1% + 2528 V33 7% 4 316877 — 3203 e 70
—687° 45940 e — 3872 V3e®r? — 4896 %7 — 6723 e +87° + 1800 ¢* — 7392 /3e3r
+ 3600”7 + 1088 V3e 72 4+ 191 7! — 2400 v/3¢® + 10080 6’7 — 304 V3e 1> — 213 7% + 3600 &”
1968 V3eT — 4477 — 800\/§5+412T+200)7']/[32 @7 +1)2 (—3e+ \/5)4 (r+1)(r — 1)2},
ws,5(7,€) = [(1032 e'r® + 3280 ! — 1024 V3e® 0 + 2186 ' — 3136 V33! + 1152 7° — 1806 72
— 1920 V3% + 3456 27" —192V3e1° — 2376 &' + 2384 V/3e®7” + 2448 £>7° — 576 V/3e 1"
+367° — 648 4+ 3024 V3e3r — 2736272 — 624 V3e > + 108 7* + 864 V/3e® — 4104 &7
+264 V3er” +2077° — 1206 + 768 Ve m + 54 7 + 288 V3e — 1447 — 72)r] /16 2 +1)?

(35—\/5)4(7'+1)(T+2)],

with the corresponding intervals Z; = [1, 1- \/35), I, = [1 —V3¢,v3/(2¢) — 3/2), Iz =
[ﬁ/(%) —3/2,/3/c — 3), Iy = [\/5/5 ~3,4 (1— \/35)), and Zs = [4 (1-+3¢) ,1).
For ¢ € [2¢:§/7, \/5/3),

us NCSa Zwlw 1,e)I(1 € Z;)

where wy ;(7,€) = w3 ;(1,€) for j € {1,...,5}, and for j € {6,7,8}

wa6(T,€) = [—254 e'r? —1998¢* 3 + 256 V/3ePr* — 4752 77 4 2160 V3P0 — 288 21 — 4320 ¢
+ 5328 /3372 — 2592 %7% + 48 V3 7% — 1296 &* + 5184 V331 — 6552 272 + 456 V3 e T°
— 97" + 1728 V3% — 6912%r + 115237 — 9072 — 25922 + 1344 V3e T — 216 72

+576\/§6—2887-—144]/[16(7-+2) (—3e+\/?_>)4(7'+1)],
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war(r,e) = [—256 e'rt — 1536 %% + 256 V33 — 2160 &7
+ 1664 V3e®r® — 288 %71 — 2160 £ + 2304 V3 1% — 2016 %1% + 48 V3 e Tt — 1296 ¢*
+ 2592 V/3e3r — 2664 €77 +360V3e7r® — 97" + 1728 V3¢ — 3456 £’ + 43237’ — 7272
— 2592+ 672V3er — 7277 + 576 V3e — 1447 — 144] /[16 (-3e + \/5)4 (7 +1)7],

wa,8(T,€) = 1,

with the corresponding intervals 7; = [1, 1-— \/55), I, = [1 —V3e,v3/(2¢) — 3/2), Iz =

[V3/(26) = 3/2,V3/= ~3), T = [VB/e = 3,4 (1-v3¢)), T = [+ (1-v3e), L),
V3 (1 \/_5 —3¢ —3¢

Is = [4(73 (V3/e — )),17 = [2 (\/3/6—3),2‘(?’5%1\/—??”)), and Zg = [2‘1_?’5%1\/—??”),1).

C.3.2 gy (Ng,s,s) Under Association Alternatives

Under association, we compute p4(Nzg,¢) explicitly.

For ¢ € [0,\/3/21 ~ .0825),

Ncs, Zw1] TE TGIJ),

where

w11(r,€) = [(—63936 %" 4+ 20736 v/3r%% — 145728 r°¢* — 6912 %> + 46848 v/37°¢® + 181872 r'¢*
+192V37%¢ — 14976 796 — 60480 V/37*e® + 346896 T2 + 36 7° 4 256 V/37° £ + 22464 T'”
— 107712 V373 — 296640 7" + 128 7° — 1200 v/37" ¢ + 28512 7% 4 93696 v/37°¢>
— 228528 7 + 637! + 1056 /37° & — 27360 72¢” + 74304 V37 <% 4 81648 — 726 7°
— 208377 ¢ — 25056 7 &> — 25920 v/3e® + 445 7° + 768 /3T + 7776 ° + 1087 — 108)7-2] /
[18 @r+1)@2r—1) (—6s+ \/5)2 (65 + \/5)2 (r+2)%(r — 1)2],

w1 2(1,€) = [(—62784 77e" 419200377 e® — 199872 78" — 4608 77’ + 56832 v/3r%® + 34992 ¢!
— 320377 £ — 9216 7% — 28224 /375> + 476640 7' + 164 77 — 1600 V/37° £ 4 22464 7°¢°
— 151104 V37%e® + 82368 7" + 484 7° — 1872 V37 ¢ 4 31392 ¢’ + 6528 V/37°® — 405216 "
—157° 4+ 3872 V37" e — 31392 7% + 153792 V/377¢® — 252720 7 — 1214 7* 4 3280 V3% ¢
— 47520 7°” + 67392 V37> — 46656 ¢* — 137> — 768 V377 e — 7776 7" + 324 77 + 108 r)r] /

18- 0@r 417427 (-6e +v8) (s2+v3)').
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w1 3(1,€) = [(—62784 %% 419200 v/37%® — 74304 7°¢* — 4608 r°¢” + 18432 v/37°¢* + 183600 r*¢*
—320V37% ¢ — 65088 V/3r%e® + 179424 73 + 164 ° — 960 V377 ¢ + 22464 7' — 67584 V/37%°
+ 3456 72 + 156 7° + 48 V37 € + 21456 7¢” + 1728 V/37%e® + 7776 7' — 32771 — 11237 ¢
43207262 + 10368 V37 £ + 11664 € — 74 7° — 384 /312 ¢ — 3888 722 + 13572 + 54 r)r]/
[18(r—12@r+ 1% +2) (~6c+v3) (62 +v3) ],

w1 4(T,€) = [(—63072 e 419584 V/3r%e® — 267552 3 — 5184 r*¢? 4 81408 V/3r°e® — 389304 r2&*
— 19237 e — 20160 3 + 118176 v/377e® — 233712 7" + 132 7* — 896 /3% ¢ — 29520 7%¢>
+ 71712 V37 e® — 48600 + 488 7% — 1072 V312 e — 18576 7€ + 15552 v/3¢® + 601 7° — 384 \/3r¢
— 38882 + 2977 + 54)72]/[18 @71 +1)%(r +2)(r +1) (—66+ x/§)2 (66 + \/5)2]

w1 5(1,€) = [—49968 %" + 15936 v/37°® — 219384 7' — 4896 7°c” + 64992 V/37'e® — 349920 73¢*
+32/37° & — 18000 7'? + 90720 V373 — 270216 72" + 58 7° + 16 V37" ¢ — 22032 7°¢”
+ 51840 V3726 — 112752 7&* + 191 7% — 9072 7% + 10368 V37 — 23328 ¢* 4 189 7°
+547°] [[18(r+2) (6 + \/5)2 (—65+\/§)2 (@7 +1)(r+1)],

w1 6(r,€) = [—50040 7%* + 16032 v37%% — 221220 °* — 5040 %% + 66864 V37r°c® — 368100 T'c?
+64 V37%e — 19944 7°” + 103728 V/37"e® — 356616 7°* 4 50 7° + 256 V/37° £ — 29880 7'’
+ 88992 V373 — 307152 7" + 179 7° 4 304 V31" e — 17712 7% + 46656 v/37°<®
— 194400 7 + 185 7 + 96 /372 £ — 2592 7%* + 10368 /37 £ — 46656 £*
+54 73]/[18 (r+1) (65+ \/5)2 (—65+ \/5)2 @r+ 1)(r+2)r],

w17(r,€) = [3 (—1512 7" + 480 v/37%e® — 3780 72e* — 144 7 + 1200 V37%% + 216 7°c* — 360 3>
4 480V/37%® + 4752 &t 4 271 — 288722 4+ 1728 4 515 + 272)]/[2 (65+ \/5)2

( 66+\/_> 2T+1(T+2)]

with the corresponding intervals 7; = [0 &5)),1’2 = [ (3‘/55 2v3¢ ),I3 = [ 2v/3¢

’2(1—VBe 2 1—\/§a)’1—2\/§s 1-2+3¢’
3v3 _ | 3v3 3v3 _ | _3v3 6v3 _ | 6v3 63 _
1—\/565)’ 14 - [1—\/§ss’ 1—4 \/%s)’ I5 - [1—4 \/555’ 1—\/555)’ IG - [1—\/565’ 1-4 \/%5)’ and I7 -
[ 6V3¢ 1)

1-4 3¢’ )°
For ¢ € [v/3/21,v/3/12),
Ncs, ZWQ] TE TGI]),
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where ws ;(7,€) = w1 ;(7,¢€) for j € {1,2, 3,4} with the corresponding intervals 7; = [O &),

72 (1-v3e)
— 3\/§E 2\/§s _ 2\/§E 3\/§5 _ 3\/55
I = [2(1—¢§E)’ 1—w§s)’ I = [1_w§s’ 1_¢§5)’ and 7, = [—1_¢§?1)'

For ¢ € [\/3/12,2 \/3/15),

2
pa(Nes,e) =Y ws j(r,e) Ut € I;)
j=1

where

(7'2 +57+ 9)7’2
18(r+2)2 '’

ws,1(T,€) =
ws,o(7,€) = —[(—216 7%* + 288 /375 — 1836 77c* — 432 7% + 2160 v/3r°® — 6786 7" + 96 V/3r° ¢
— 2808 7°¢% + 6600 V37> — 13401 3" — 24 7° 4 528 V/37° £ — 6876 7*¢* + 9588 V/3r°®
— 16074 77" — 108 7° 4 1000 V37" £ — 6498 7°c” + 7500 V37°¢® — 10611 7" — 154 7*
+484 V/37% e — 2178 72 + 2484 V37 — 2916 " — 257 — 9237 e + 162767 4+ 2377

—36V3re+97)7)/[2(27 = 1)(27 4+ 1)*( 4+ 2)2 (—3€+ \/??)4],

with the corresponding intervals 7; = [0, %), and 7, = [%, 1).

For ¢ € [2 ﬁ/15,¢§/3), pa (NG €) = ws4(r,) I(r € [0,1)).
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