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History of the Class Cover Problem

Approximate Distance Clustering
Cowen and Priebe
Advances in Applied Mathematics, 19 (1997)

Class Cover Problem
Cannon and Cowen
Annals of Math and A.I. to appear

Closely Related Topics

Sphere Covers, Hochbaum and Maass (J. of the A.C.M. 1985)

Sphere Digraphs, Maehara (J.G.T. 1984)

Sphere of Attraction Graphs,
McMorris and Wang (Con. Num. 2000)
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The Class Cover Problem (CCP)

Input: (Ω, d) (dissimilarity space) with X, Y ⊂ Ω and X = target class.
Goal : Find the smallest set of “balls” (a cover), centered at points in
X, such that every point in X is in at least one of the balls and no point
in Y is in any ball.
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Catch Digraphs

Given a collection of sets {S1, S2, . . . , Sn} with associated “base”points
{t1, t2, . . . , tn}.

We form the catch digraph D with V = {v1, v2, . . . , vn} and a directed
edge from vi to vj iff tj ∈ Si.

A sphere digraph is a catch digraph where the sets are spheres and the
base point for each sphere is its center.
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Class Cover Catch Digraphs (CCCD)

For any sets X, Y ⊂ Ω we can define the class cover catch digraph to be
the catch digraph formed from the sets Bi = {z ∈ Ω : d(z, xi) < ri} and
associated base points xi ∈ X.
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Dominating Sets

Define a dominating set, S, of a digraph D = (V, A) as follows: S ⊂ V

such that ∀v ∈ V, v ∈ S or ∃w ∈ S such that (w, v) ∈ A.

Solution to CCP ⇔ Minimum Size Dominating Set in CCCD
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Euclidean CCCD’s

If X, Y ⊂ <q and d is the standard Euclidean metric, then we call the
resulting digraph a Euclidean CCCD.
What digraphs are Euclidean CCCD’s?

NO OK!

Definition: A simple cycle is a directed cycle with no bidirected edges.
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Euclidean CCCD’s

Theorem 1 A digraph is a Euclidean CCCD if and only if it has no
simple cycles.

In other words. . .

Given X, Y ∈ <q, they induce a digraph with no simple cycles.
Given a digraph D with no simple cycles, we can find X, Y ∈ <q which
induce a digraph isomorphic to D (in fact we will need only one Y

point, but we may need many dimensions).
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Proof of characterization theorem

(⇐) Given D with a smallest simple cycle v1, v2, . . . , vl.

(vi, vi+1) ∈ A and (vi, vi−1) 6∈ A implies d(xi, xi−1) > d(xi, xi+1)

∀i modulo l

This leads to a set of cyclic inequalities
d(x1, x2) > d(x2, x3) > . . . > d(x1, x2)

(⇒) Given D with no simple cycles.

Create a poset on interpoint distances

Extend poset to linear order

Assign interpoint distances

Show Euclidean interpoint distances exist which preserve the
linear order using MDS.
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< > - +

Proof of characterization theorem

(⇐) Given D with a smallest simple cycle v1, v2, . . . , vl.

(vi, vi+1) ∈ A and (vi, vi−1) 6∈ A implies d(xi, xi−1) > d(xi, xi+1)

∀i modulo l

This leads to a set of cyclic inequalities
d(x1, x2) > d(x2, x3) > . . . > d(x1, x2)

(⇒) Given D with no simple cycles.

Create a poset on interpoint distances

Extend poset to linear order

Assign interpoint distances

Show Euclidean interpoint distances exist which preserve the
linear order using MDS.

The Class Cover Problem and its Applications to Pattern Recognition – p. 10/35



< > - +

Proof of characterization theorem

(⇐) Given D with a smallest simple cycle v1, v2, . . . , vl.

(vi, vi+1) ∈ A and (vi, vi−1) 6∈ A implies d(xi, xi−1) > d(xi, xi+1)

∀i modulo l

This leads to a set of cyclic inequalities
d(x1, x2) > d(x2, x3) > . . . > d(x1, x2)

(⇒) Given D with no simple cycles.

Create a poset on interpoint distances

Extend poset to linear order

Assign interpoint distances

Show Euclidean interpoint distances exist which preserve the
linear order using MDS.

The Class Cover Problem and its Applications to Pattern Recognition – p. 10/35



< > - +

Proof of characterization theorem

(⇐) Given D with a smallest simple cycle v1, v2, . . . , vl.

(vi, vi+1) ∈ A and (vi, vi−1) 6∈ A implies d(xi, xi−1) > d(xi, xi+1)

∀i modulo l

This leads to a set of cyclic inequalities
d(x1, x2) > d(x2, x3) > . . . > d(x1, x2)

(⇒) Given D with no simple cycles.

Create a poset on interpoint distances

Extend poset to linear order

Assign interpoint distances

Show Euclidean interpoint distances exist which preserve the
linear order using MDS.

The Class Cover Problem and its Applications to Pattern Recognition – p. 10/35



< > - +

Proof of characterization theorem

(⇐) Given D with a smallest simple cycle v1, v2, . . . , vl.

(vi, vi+1) ∈ A and (vi, vi−1) 6∈ A implies d(xi, xi−1) > d(xi, xi+1)

∀i modulo l

This leads to a set of cyclic inequalities
d(x1, x2) > d(x2, x3) > . . . > d(x1, x2)

(⇒) Given D with no simple cycles.

Create a poset on interpoint distances

Extend poset to linear order

Assign interpoint distances

Show Euclidean interpoint distances exist which preserve the
linear order using MDS.

The Class Cover Problem and its Applications to Pattern Recognition – p. 10/35



< > - +

Proof of characterization theorem

(⇐) Given D with a smallest simple cycle v1, v2, . . . , vl.

(vi, vi+1) ∈ A and (vi, vi−1) 6∈ A implies d(xi, xi−1) > d(xi, xi+1)

∀i modulo l

This leads to a set of cyclic inequalities
d(x1, x2) > d(x2, x3) > . . . > d(x1, x2)

(⇒) Given D with no simple cycles.

Create a poset on interpoint distances

Extend poset to linear order

Assign interpoint distances

Show Euclidean interpoint distances exist which preserve the
linear order using MDS.

The Class Cover Problem and its Applications to Pattern Recognition – p. 10/35



< > - +

Proof of characterization theorem

(⇐) Given D with a smallest simple cycle v1, v2, . . . , vl.

(vi, vi+1) ∈ A and (vi, vi−1) 6∈ A implies d(xi, xi−1) > d(xi, xi+1)

∀i modulo l

This leads to a set of cyclic inequalities
d(x1, x2) > d(x2, x3) > . . . > d(x1, x2)

(⇒) Given D with no simple cycles.

Create a poset on interpoint distances

Extend poset to linear order

Assign interpoint distances

Show Euclidean interpoint distances exist which preserve the
linear order using MDS.

The Class Cover Problem and its Applications to Pattern Recognition – p. 10/35



< > - +

Random Model of CCP

n target class points are chosen from a distribution FX

m non-target class points are chosen from a distribution FY

Γn,m := the domination number of the CCCD induced by the sample.

Question: What is the distribution of the random variable Γn,m?
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Random Model in <

Let FX and FY be the uniform distribution on [0, 1]. In this case we use
Γn,m to represent the case with n target class points and m non-target
class points.

We need only consider the simplified case where y1 = 0, y2 = 1 and
FX is the uniform distribution on [0, 1]. We call such an induced CCCD
C∗

n.
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Random Model in <

Γ(C∗
n) =















0 if n = 0

1 if I ∩ X 6= ∅

2 otherwise

I

where I =
[

xn

2 , 1+x1

2

]

κ(n) = P [Γ(C∗
n) = 1] = 5

9 + 4
9 · 4−(n−1)

This result allows the calculation of. . .
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Random Model in <

. . . probability mass function for Γn,m

P [Γn,m = d] =

n!m!

(n + m)!

∑

~n∈∆
Zn+1

n,m+1

∑

~d∈∆
Z3
d,m+1

α(d1, n1) · α(dm+1, nm+1)
m
∏

j=2

β(dj , nj)

and. . .

expected value of Γn,m,

E[Γn,m] =
2n

n + m
+

n!m(m − 1)

(n + m)!

n
∑

i=1

(n + m − i − 1)!

(n − i)!
· (2 − κ(i))

and. . . almost sure limit of Γn,m,

lim
n→∞

Γbanc,n

n
=

a(13a + 12)

3(a + 1)(3a + 4)
a.s. a ∈ (0,∞).
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Application to Classification

Our framework for using the CCP in classification is a reduced nearest
neighbor with a dissimilarity dependent on the balls in the classifier.

Find a cover CX for X. Find a cover CY for Y .

Create a dissimilarity function ρ(z, C) to measure the dissimilarity
between a point z ∈ Ω and a cover C.
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Naive or Pre-classifier

Given training data X, Y ⊂ Ω and covers CX , CY . Define

ρ(z, C) := 1 − I{z ∈ C}

Using the reduced nearest neighbor framework,

g(z) :=















1 : ρ(z, C1) < ρ(z, C2)

2 : ρ(z, C1) > ρ(z, C2)

0 : otherwise

or more simply,

g(z) :=















1 : z ∈ C1 ∩ Cc
2

2 : z ∈ C2 ∩ Cc
1

0 : otherwise
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Simulation: Disk

100 Red Points ∼ U([0, 1] × [0, 1]).
100 Blue Points ∼ U(B((0.5, 0.5), 0.2))

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Drawbacks of Naive Classifier - overfitting and “no decision” regions.
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Scaled Dissimilarity Function

ρ(z, C) := minBi∈C
d(ci,z)

ri
where a ball Bi has center ci and radius ri.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
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α,β CCP

CCP (α, β) := the CCP where each ball may cover β of non-target
class points and the cover may “miss” at most α of the target class
points.

β = 1 α = 2
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α,β CCP

Benefits of α,β CCP.

α parameter allows us to “ignore” outlying target class points.
Moving toward modeling the discriminant region.

β parameter allows us to “ignore” outlying non-target class points.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
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α,β CCP

Disadvantages of α,β CCP.

User must choose parameters α, β for each class.

β parameters are global. We would only like balls to cover
non-target class points in the discriminant region of the target
class.
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Random Walk CCP

Idea: Let each point choose the radius of its covering ball.

We choose the radius according to:

r∗ = argmaxr≥0{RW (r) − f(r)}
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Random Walk CCP
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We will need the concept of a score for a covering ball.
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Random Walk CCP

We want to chose the cover that is made up of the “best” or highest
scoring covering balls instead of the fewest number of balls.
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Random Walk CCP
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Random Walk CCP

Benefits of Random Walk.

Same motivation as α, β version, but adaptively chooses the α, β

parameters for each ball.

Each covering ball for a class lies approximately in the
discriminant region of that class.

Covers are less complex than pre-classifier and α, β classifiers.
For Disk data,

Pre-classifier - ΓX = 10, ΓY = 12

α, β classifier - ΓX = 1, ΓY = 8

Random Walk Classifier - ΓX = 1, ΓY = 6
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Simulation: Data

Red Points ∼ U([0, 1] × [0, 1]).
Blue Points ∼ 1

2U([0.1, 0.55] × [0.1, 0.55]) + 1
2U([0.6, 0.8] × [0.6, 0.8])
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Simulation: Covers
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Simulation: Covers
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Simulation: Classifier Results
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Simulation: Classifier Results
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Simulation: Classifier Results
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Simulation: Classifier Results

Here are the estimates for the misclassification rate L̂ as observed
after 1000 trials.

Tr. Size NN k-NN SVM Nv. CCP α, β CCP RW-CCP

50 0.242 .0.240 0.201 0.228 0.212 0.212

100 0.224 0.212 0.184 0.213 0.190 0.183

200 0.210 0.188 0.168 0.201 0.171 0.165

500 0.199 0.166 0.152 0.194 0.154 0.153
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Experiment: Minefield Data

39 observations of multispectral images in a minefield.

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1

1

2

3

The Class Cover Problem and its Applications to Pattern Recognition – p. 32/35



< > - +

Experiment: Covers
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Experiment: Classifiers
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The End

CCCD home page : http://www.mts.jhu.edu/∼devinney/cccd
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