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Abstract

We present a new variation of the class cover problem introduced by Adam Cannon and Lenore
Cowen. The class cover problem (CCP) is a special case of the classic set cover problem, but
motivated by statistical learning theory. We study both the theory and applications of the CCP.
We introduce class cover catch digraphs which are a type of proximity graph. We demonstrate
that there is a one to one relation between solutions of the CCP and dominating sets in a class
cover catch digraph (CCCD). Both deterministic and randomized models of CCCDs are studied.
We also present applications of the CCP to statistical learning theory, specifically supervised
classification and clustering. We use solutions to the CCP in the creation of learning algorithms.
Finally we present a chapter of performance results for our CCP-based classifiers on simulated

and experimental data.
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Chapter 1

Preliminaries

1.1 Preliminaries

As the title implies, the main focus of this dissertation is on the class cover problem and it
applications. Study of the class cover problem was initiated and strongly influenced by the study
of classification [10, 15, 24]. For clarity of presentation we will concentrate mainly on binary
classification, a special case of supervised classification. The binary classification problem is
to create a zero/one or “yes/no” decision rule based on examples. An example might be a
set of measurements like height, weight, blood pressure, etc. Along with each example (each
set of measurements, for instance) is a yes or no tag denoting whether or not the subject
belongs to a certain class, for example the class of people with diabetes. This set of examples
is called a training set. The goal of binary classification is, given a training set, to develop
a rule or classifier which maps the space of examples to {0,1} or “yes or no” and minimizes
the probability of error. For example, if we observe a set of measurements from a patient with
diabetes, we would like our classifier to classify this patient as having diabetes. Applications of
the binary classification problem to fields such as computer vision, data mining, and intrusion
detection have been extremely successful.

Binary classification involves partitioning the space of the training set into regions corre-
sponding to class zero and class one. The region for class one (or zero) should consist of points
which are likely to belong to class one (or zero) given the observed training data. One approach

to this task is to examine the distances between a point in question and the training set points.



This simple notion of examining interpoint distances is surprisingly powerful [25] and is the ba-
sis for our class cover problem based classifiers. We present the class cover problem below as a
deterministic problem. The applications to classification, as well as a more detailed description
of the classification problem, appear in Chapter 4.

A dissimilarity space (Q,d) is made up of a set  and a dissimilarity measure d on that set.
A dissimilarity measure on a set Q is a function d : Q@ x Q — Ry such that Vz,y € Q, d(z,y) =
d(y,z) > d(z,z) = 0. We define a open ball in Q under a dissimilarity d with center ¢ € £ and
radius r € Ry as By(e,r) := {x € Q : d(z,c) <r}. A closed ball with center ¢ € Q and radius
r € Ry is defined as Byle,r] := {x € Q : d(z,c) < r}.

In a dissimilarity space (2, d), consider two finite non-empty sets X', ) C  with a distinction
of target class given to one of the sets. For a, 8 € Z we define an «, 8 cover to be a collection
of open balls that contain at least |X| — o of the target class and at most 8 of the non-target
class. In its most general form, the class cover problem (CCP) is to find a set of open balls (a
set C of centers and an associated set R of radii) that minimizes some real valued function f
(for example cardinality) and is an «, 8 cover for some given a and 3. For a target class X, the

general CCP is formulated as follows:

inf f(C,R) (L.1)
such that ‘Xﬂ U B(ci,ri)| > |X]|—a
c;eC
‘yﬂ U Blei,r)| <8
c; €C
a,pf €N

The CCP is therefore a special case of the classic set cover problem [1] with constraints on
the type of covering sets that are considered. We write the list (Q,d, X,),a, ) to denote an
instance of the CCP. Note that there is always a solution for any instance of CCP with XnY = 0.
A collection of balls centered at each target class point with sufficiently small radius so as to
not cover any non-target class points will satisfy the constraints for any a and S.

We call a cover proper if it contains all of the target class. We say a cover is pure if it
contains no elements from the non-target class. A pure cover is obtained by setting the [

parameter to zero and a proper cover is obtained by setting the a parameter to zero. There



are several interesting special cases of the class cover problem. A CCP is called constrained if
the covering balls are restricted to be centered at target class points. This requires the addition
of the constraint C C X to formulation 1.1. We will call the CCP homogeneous if we force all
covering balls to have the same radius. This merely adds the constraint r; = r; Vi,j : r;,r; € R.
If the function f(C, R) in formulation 1.1 is replaced by the cardinality function |C|, we will say
the problem is a standard CCP. This thesis will concentrate mainly on the standard constrained

CCP.

1.2 Motivation and Previous Work

The class cover problem is an interesting problem involving discrete mathematics, computa-
tional geometry and optimization. We also demonstrate applications in statistical learning
theory which involve probability and statistics. The CCP has its origins in the work on approx-
imate distance clustering (ADC) of Cowen, Priebe and Cannon [32, 5, 8]. In [8], Cowen and
Priebe demonstrate a technique for clustering high-dimensional data. Their method, which relies
only on the interpoint distances between observations, provides a dimension reduction in which
clustering [8, 32] or classification [5] can be performed. Implicit, although never mentioned in
their work, is the notion of attempting to cover a set with a collection of balls. They present
a randomized algorithm for choosing the data points to be centers, or witness elements. The
class cover problem was introduced by Cannon and Cowen [4]. They investigate the standard
constrained homogeneous CCP and present a polynomial time approximation algorithm for its
solution. Marchette and Priebe [27] use ideas from ADC and incorporate the class cover problem
into supervised semi-parametric classification and lay down the framework for the ideas in this
dissertation. Their goal is to use balls centered at data points to approximate the support of a
distribution.

This thesis introduces a family of digraphs called class cover catch digraphs (CCCD). CCCDs
are a new family of neighborhood or proximity graphs [21]. Other variations of neighborhood
graphs are relative neighborhood graphs [42], Gabriel graphs [16], S-Skeletons, sphere of influ-
ence graphs, and sphere of attraction graphs [29]. All of the preceding families of graphs have
potential applications in data exploration and classification. The list of applications includes

pattern recognition, computer vision, and spatial analysis.



CCCDs are also related to the well studied family of intersection graphs. McKee and Mc-
Morris [28] give a thorough review of this field. Here is a short list of graphs similar in nature

to CCCD’s: intersection graphs, interval graphs, catch digraphs, and sphere digraphs [26].

1.3 Summary of Results

This dissertation is divided into two main parts, theory, and applications. In the theoretical part
we focus on the standard constrained CCP with pure and proper covers. In Chapter 2 we show
that we can represent an instance of this CCP with a directed graph called a class cover catch
digraph. A solution to the CCP uniquely corresponds to a dominating set in the representing
class cover catch digraph. In Sections 2.1 and 2.2 we demonstrate some basic properties of class
cover catch digraphs and characterize a special class. We also investigate some properties of
dominating sets on class cover catch digraphs in Section 2.3. Results in this section are also
found in [12]. In Section 2.4 we present some facts about the CCP in one dimension.

In Chapter 3 we introduce the idea of a random CCP. The randomness comes from drawing
the target and non-target class points from two distributions. We study the random variable
corresponding to the number of balls in a minimum cardinality cover. The derivation of a
probability mass function and a strong law for this random variable are shown for a simple
one-dimensional case. Studying randomized CCPs moves us closer to studying the applications
of the CCP to statistical learning theory. Results in this chapter are motivated by results in
[14] and [33].

In the applied part of this dissertation we consider the constrained CCP. In Chapter 4 we
discuss the applications of the class cover problem to statistical learning theory. Our main
application is in two-class classification. We demonstrate several methods for building classifiers
using the CCP, namely the Naive, «, § and random walk CCP classifiers. We present preliminary
results on the random walk CCP classifier in [13]. In Chapter 5 we present a methodology for
using the CCP in unsupervised classification or clustering.

In Chapter 6 we present the results of our classifiers and other competing classifiers on
simulated as well as experimental data. We simulate data from two models in two, three, and
five dimensions. We also present one examples of experimental data to be classified and finally

we present results on synthetic data based on the experimental data set.
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Chapter 2

Standard Constrained CCP

This chapter will investigate properties of the standard constrained CCP with pure and proper
covers. We will refer to this problem as the CCP1. Because only pure and proper covers
are considered under the CCP1, we denote an instance of the CCP1 with target class X as

(Q,d,X,Y). The CCP1 problem (2,d, X,)) is formulated as

min |C| (2.1)

such that X' N U B(cei,ri) =X
c;eC

yn U B(Cz',n') =0

c;€C

CCX.

2.1 Class Cover Catch Digraphs

Consider the collection of balls {B;} where B; = {z € Q : d(z,z;) < minyeyd(x;,y)}. Note
that B; is the largest open ball centered at x; that does not contain a non-target class point.
A solution to CCP1 is a set of balls (a set of centers and associated radii) centered at target
class points whose union contains all of the target class and none of the non-target class. Now
consider some solution P = (Cp, Rp) to the CCP1. This solution contains at least one ball
V centered at some target class point z;. If we replace V with B; in P, the resulting set of

balls is still a solution since V' C B; and B; does not contain any non-target class points. This



implies that we only need to consider {B;} when choosing balls for our solution. That is we can

reformulate CCP1 as

min |J| (2.2)
such that AN U B; = X.
icd
The CCP1 therefore has a decision space of size 2/ as opposed to the potentially infinite sized
decision space of the general CCP.

The fact that we only need to consider one ball per target class point simplifies the problem
greatly and allows us to make a link between the CCP1 and graph theory. We begin by intro-
ducing some standard graph theoretic terms. A graph is a collection (V) E) of a set of vertices
V and a set of edges E. Vertices are simply elements from some set and edges are subsets of V'
of size two. A directed graph or digraph is also a collection of two sets, a set of vertices and a
set of arcs. Arcs are ordered pairs of elements of V' and are thought of as directed edges. For
a graph with vertex set V and edge set E, any subset of vertices W C V induces a graph with
vertex set W and edge set Ew = {{u,v} € E : u,v € W}. The definition is the same for an
induced digraph replacing edges with arcs. A graph G1 = (V4, Ey) is said to be isomorphic to
another graph Gy = (14, E») if there exists a one to one and onto function f : V2 — V; such
that V1 = {f(v) : v € Va} and Ey = {{f(v), f(u)} : {v,u} € E2}. Again, the same definition
holds true for digraphs, replacing edges with arcs.

In a graph (V, E), we say two vertices v,w are adjacent (denoted v ~ w) if {v,w} € E.
In a digraph (V, A), we say two vertices v,w are adjacent if either (v,w) € A or (w,v) €
A. Two vertices v and w are called independent if they are not adjacent. An independent
set in a graph is a set of vertices that are pairwise independent. A cycle in a graph is a
sequence of vertices vi,vs,...,Vn such that v; ~ vs,v9 ~ v3,...,Un_1 ~ Up, and v, ~ v1.
A directed cycle in a directed graph (V, A) is a sequence of vertices vq,v2,...,v, such that
{(v1,v2), (v2,v3), ..., (Vn—1,Vn), (Un,v1)} C A. A simple cycle in a digraph D = (V, A) is a
directed cycle vi,va,...,vn such that (V(i41) 1oq > Vi mean) € A

A catch digraph of a collection of sets S = {S1,S3,...,5,} and corresponding base points
T ={T1,T>,...,T,} is the digraph with vertex set V = {v;,va,...,v,} with an arc from v; to

vj if and only if T; € S; (see [28]). We will call the resulting digraph the catch digraph induced



by S and T.

Given two sets of points X', ) C ) with X as the target class, we will call the catch digraph
D induced by the collection of B; and their centers x; the class cover catch digraph (CCCD)
induced by (,d,X,Y). We will define C(€2,d,n,m) to be the family of all possible unlabeled
CCCDs induced by n target class points and m non-target class points in the space (2, d). Note
that the family of CCCDs is hereditary. That is, let D = (V, A) € C(Q,d,n,m) and suppose
W C V with |W| = k. Then the digraph induced by W, D' = (W, Aw), is a member of
C(Q,d, k,m).

A dominating set of a directed graph D = (V, A) is a set of vertices S C V such that for
any v € V, either v € S or Jw € S : (w,v) € A. We might also describe a dominating set in
an alternate way. For a vertex v in a digraph D = (V, A), we let N (v), the neighborhood of the
vertex v, be the set of vertices {u € V' : (v,u) € A}. We let N[v] := N(v) U {v}. For a set of
vertices S C V we let N[S] := UyesN[v]. A dominating set is therefore a set S C V such that
N[S] = V. We denote the minimum cardinality of a dominating set of a digraph D by (D).

By the construction of CCCDs we get the following proposition.

Proposition 1. Consider an instance of CCP1 (Q,d,X,Y). There is a one-to-one correspon-
dence between solutions of the CCP and minimum cardinality dominating sets in the CCCD

induced by (Q,d, X,Y).

The dominating set problem is known to be NP-Hard for general undirected graphs [17].
Dominating set for a general digraph is also NP-Hard since any undirected graph can be repre-
sented as a digraph by replacing each edge {u,v} in the graph with two arcs (u,v) and (v,u).
Finally, dominating set for a general CCCD, a digraph with no simple cycles (see Theorem 2),
is also NP-Hard since the digraph representation of an undirected graph will have no simple
cycles.

Whenever we want to solve the CCP for a particular problem, instead of finding the min-
imum cardinality cover, we will find approximate minimum cardinality covers using a greedy
algorithm [6]. The greedy algorithm is intended for finding approximately minimum size dom-
inating sets, but we may apply it easily to the CCP. Given a CCCD D = (V, A) on n vertices

the greedy algorithm for finding a dominating set is implemented as follows.

Greedy Algorithm for Dominating Set



Input: A directed graph D = (V, A).
Output: An approximately minimum cardinality dominating set.
C=0,U=V
while U # ()
0; = {veU : (v;,v) € A}
i* = arg max |O;]
U=U -0 — v
C =C Uuw;

return C

This algorithm runs in O(n?) steps and is an O(logn) approximation for the minimum domi-
nating set for a given a CCCD on n vertices [20]. We will denote the size of a solution returned
by the greedy algorithm as 4.

In our study of the class cover problem, we can gain insight by studying CCCDs. One of
the first things we may wish to achieve is a characterization of CCCDs, that is, conditions on
Q and d such that a given digraph is a CCCD. We begin to examine this issue in Theorem 1.
We first define the notion of a ball digraph. The ball digraph under a dissimilarity d of a set
of points z; € Q and associated radii r; € Ry is the catch digraph induced by the collection of

By(z;,r;) and their centers z;. Note that any CCCD is also a ball digraph.
Theorem 1. If D is a ball digraph then D contains no simple cycles.

Proof: Let D be a ball digraph induced from points in a dissimilarity space (£2,d). Suppose
for contradiction that D has a simple cycle C' consisting of vertices v1,...,v. For each i =
1,2,...,1, there is an arc from v; to v;41 (all addition in this proof is assumed to be modulo 1)
but not an arc from v; to v;_1 since C' is a simple cycle. Since D is a ball digraph there are a
set of points z; € Q and associated radii r; € Ry such that d(z;, z;41) < d(2;, 2;—1) Vi. This is
so since By(z;,7;) must contain z;11 but must not contain z;_;. Such a set of inequalities are
impossible since they are themselves cyclic (that is, they imply that d(z1,2,) < d(zn—1,2,) <
... < d(z2,23) < d(z1,22) < d(21,2,)). Therefore D cannot contain a simple cycle. O

For a general dissimilarity space, the converse is not true; the lack of simple cycles is not a
sufficient condition for a digraph to be a ball digraph on that dissimilarity space. For example

consider the discrete metric dp : 2 x Q@ — {0,1} where dp(z1,22) = 1 if and only if z; # 2.
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Using this metric as a dissimilarity measure, the ball digraph D = (V, A) induced by any set of
distinct points z; € € and associated radii r; € Ry will have the property that all vertices have

degree zero or |V| — 1.

2.2 Euclidean CCCDs

Consider the special case where Q = R? and for z,y,€ R, d(z,y) = ||z — y|| = (X1, (2[i] —
y[i])Q)% is the Lo metric. We will call a CCCD induced by (R?, Lo, X, Y) a Euclidean CCCD for
X,Y C R?. Euclidean CCCDs are a special case of sphere digraphs (ball graphs in Euclidean
space) as introduced by Maehera in [26]. A digraph D on n vertices is a Euclidean CCCD if
there exists a set of n target class points and m > 0 non-target class points in R? for some ¢
which induce (via the Euclidean L, metric) a class cover catch digraph which is isomorphic to

D. We characterize Euclidean CCCDs in theorem 2.
Theorem 2. A digraph D = (V, A) is a Euclidean CCCD if and only if D has no simple cycles.

Before a proof is given, we will introduce some of the ideas used in the proof. A relation on
a set S is a set of ordered pairs of element from S. A partially ordered set or poset is a set S
with a relation (the partial order) P defined on it such that P is reflexive ((z,z) € P Vz € 5),
antisymmetric ((z,y) € P and z # y = (y,z) ¢ P), and transitive ((z,y) € P and (y,2) €
P = (z,z) € P). A directed cycle in a relation P is a set of ordered pairs of the following form
{(u,v), (v,w), (w,x),...,(s,t),(t,u)}. The transitive closure of a relation P is the intersection

of all transitive relations containing P. The following theorem is Theorem 6.4 in [3]

Lemma 1. If a reflexive relation has no directed cycles, then its transitive closure is a partial

order.

A linear order or a total order P on a set S is a partial order such that either (z,y) € P or
(y,xz) € PVz,y € S. An extension P' of a partial order P is a relation such that P C P'. For
example, the transitive closure of any relation is also an extension of that relation. It is clear
that any partial order can be extended to a linear order by inserting necessary ordered pairs
while preserving transitivity and antisymmetry [3, 40].

Finally, the proof of theorem 2 relies on a result from multidimensional scaling. An m x m

matrix M is a dissimilarity matrix if for all ¢,j € {1,2,...,m}, M;; = M;; (symmetry),

11



M;; > 0, and M;; = 0. An m x m dissimilarity matrix M is said to be Euclidean embeddable
if there are points in R™ ! with interpoint (Euclidean) distance matrix equal to M. It is well
known that for any dissimilarity matrix B’, there is a constant ¢ > 0 such that B'+c-eel —c-I is
Euclidean embeddable, where e is the m-dimensional vector of ones and I is the m-dimensional
identity matrix. This result is a corollary of a general condition for embeddability in a Euclidean

space (see for instance [9, 11]).

Proof of Theorem 2

(=) Since any Euclidean CCCD is a ball digraph, this direction is implied by Theorem 1.

(<) Let D = (V, A) be a ball digraph on n vertices with no simple cycles. Using D and the logic
in the proof of Theorem 1 we can obtain the necessary inequalities among the ("gl) distances
among the target class points {z1,...,z,} and a single non-target class point {y}. That is,
we wish to find the ranking of the interpoint distances among n target class points and one
non-target class point such that any set of n + 1 points (n points designated as target class and

one point designated as non-target class) in R” whose interpoint distances satisfy this ranking

will induce a CCCD isomorphic to D. The inequalities are obtained as follows,
e (vi,v;) € A& d(zi,y) > d(zi,75)
L4 (Uiavj) ¢ A& d(x,,y) S d(ZU“IL'J)

For convenience we will denote y by x¢ and d(z;,z;) by di;. Let W = {d;; : i # j, i,j €

{0,1,...,n}} and form a relation P on W as follows.
o dy; >d;; <= (do,dij)e€P
o dij > do; <= (dij,do;) €P
e (dij,d;;) € Pfori#j, i,j€{0,1,...,n}

Notice that P a reflexive relation. To see that P has no directed cycles, we suppose on
the contrary it has a smallest directed cycle C. We know C must be of the following form
(di,j»doi)s (doyi, dik), (disk,dok)s - -, (do,j,di;) because the only inequalities we have are of the
form do; > d; ; or d;j > do,;. Notice that the directed path (d; ;,do,:), (do,i, ds,r) implies that
(s, 2r) € A and (z;,2;) ¢ A. Using this argument along C implies G' contains a simple cycle,
which cannot be by our hypothesis. Therefore by Lemma 1 the transitive closure of P represents

a partial order on the interpoint distances.
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We now extend the partial order on the interpoint distances of the n + 1 points to a total
order. This linear order is an extension of the original relation P. We then create a dissimilarity
matrix M with M;; = d; ; and assigning a value of k to the k" smallest interpoint distance
in our total order. We create a matrix M’ (Euclidean embeddable) by adding an appropriate
constant to all off-diagonal entries of M. The addition of a constant to each off-diagonal entry
in M preserves the ranking on the interpoint distances, thus we have embedded points such that
d(zi, z0) > d(zi,z;) & (vi,v;) € A and d(z;, z0) < d(zi, z;) & (vi,v;) € A. We have therefore

shown the existence of a set of points in R” that induce a CCCD isomorphic to D. O
Corollary 1. If a digraph is a CCCD then it is a Fuclidean CCCD.

Proof. Let D be a CCCD. D is clearly a ball digraph and by Theorem 1, D contains no simple
cycles. Therefore by Theorem 2, D is a Euclidean CCCD. O

Theorem 2 gives the condition for a digraph to be in C'(R™, L2,n,1). Another interesting
question for a CCCD D on n vertices is what is the smallest ¢ such that D € C(R?, Ly, n,m)
for some m € N? One way of answering this question is to characterize the digraphs which can
be induced by points in every dimension. The adjacency matriz of a digraph D = (V, A) with
|[V| = n is an n x n matrix M whose ,j entry (M; ;) is one if (v;,v;) € A and zero otherwise.
The augmented adjacency matrix of a digraph is the adjacency matrix of the digraph with ones
along the diagonal. We say an augmented adjacency matrix has the consecutive ones property
for rows and columns if within any row or column in the matrix all ones appear consecutively.

The next conjecture concerns CCCDs in one dimension. Such CCCDs are explored in depth
in section 2.4. We will show that a one dimensional CCCD is made up of multiple components,
representing the CCCDs for the target class points in between two consecutive non-target class
points (see theorem 2). It follows that we need only characterize these smaller CCCDs which
are formed from two non-target class points a,b and n target class points falling in the interval

(a,b). We call such a graph a C*(n) CCCD.

Conjecture 1. A digraph D with n vertices is a C*(n) digraph if and only if there is some

labeling of its vertices such that its augmented adjacency matriz M has the following properties:
1. The consecutive ones property for rows and columns,
2. Mz',l + Mi,n >1 Vie {1,2,. ..,n},

13



3. The middle ones square property. Let us define the middle ones square property here. Call
a vertex v; a right or left vertex if M;1 =1 or M; , =1 respectively. Call a left or right
vertez v; a reach vertex if there exists a right or left (respectively) vertex v; such that
M;; =1 and M;; = 0. The middle ones square property says that if v; and v; are reach

vertices, then it must be the case that M; ; = M;; = 1.

In our efforts to better understand Euclidean CCCDs we would like to understand something
about their structure in each dimension. This conjecture represents our attempt to characterize
CCCDs in one dimension, a task which seems deceptively simple. While these properties seem

to be necessary, we have been unable to prove their sufficiency.

2.3 Independent and Dominating Sets in CCCDs

For a digraph D = (V, A), let a(D) C V be the size of the largest independent set and v(D) C V'

be the size of the smallest dominating set.
Theorem 3. For any CCCD, o(D) > (D)

Proof. Let D = (V, A) be a CCCD with |V| = n. Then by Corollary 1, D is a Euclidean CCCD
(D € C(R™, Ly, n,1)), thus there are sets X', € R® (with |X| = n and Y = {0}) which induce
a digraph isomorphic to D. We will find an independent dominating set of size (D) in D. This
will show for any such digraph a(D) > (D) > (D). The following greedy radius algorithm
run on X and Y and corresponding CCCD finds an independent dominating set. The greedy

radius algorithm is similar to the standard greedy algorithm for the set covering problem [20].

Greedy Radius Algorithm
Input: X,Y C R? with target class X = {z1,%2,...,2,},
Y = {0} and induced CCCD D = (V, A).
Output: An independent dominating set for D.
K=0,C=V
while C # 0
i* = argmax{||z;|| : v; € C}
Oi ={v € C: (v,v) € A}
C = (C—0) = {vi}

14



Figure 2.1: Directed graph D with a(D) < v(D)

K:KU{’Uz*}

return K

To see that the set K is independent, consider two points v; and v; in K. Without loss of
generality, suppose the algorithm chose v; before v;, implying r; > ;. It is obvious that (v;,v;) €
A since the algorithm only chooses points which have not been covered. Also, (v;,v;) ¢ A since
||zi—z;|| > r; > r;. The set E is a dominating set since C' = () at the conclusion of the algorithm

and points are removed from C only after they are covered by some point in K. O

Note that for an undirected graph G, it is always true that a(G) > ¥(G) since a maximal
independent set is always a dominating set. However, this result is not true for a general digraph.
For example, consider the digraph in Figure 2.3. The largest independent set has size one, while
the smallest dominating set has size two. Note also that the digraph in Figure 2.3 is a simple
cycle.

In RY, using the Euclidean metric, define a kissing set as a set of centers of non-intersecting
hyper-spheres with radius one, whose boundaries intersect the boundary of a hyper-sphere of
radius one centered at the origin. The kissing number, T(q), is the size of the largest possible
kissing set in R? [7]. For the following lemma, let Z(a,b,c) represent the angle formed by the

line segments ab and bc.

Lemma 2. A set K of points in {x € R? : ||z|| = 2} is a kissing set in R? if and only if for any

two points a,b € K, 8 = Z(a,{0},0) > %

Proof. (=) We know that ||a|| = ||b|]| = 2 and [|a — b]| > 2 (since the hyper-spheres centered at
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a and b are non-intersecting). Thus using the Law of Cosines,

llall” + 11bl1* — lla — bI>
2] allf|ol

cos(f) =

IA

1
2’

which implies 6 > .

(<) The above can be reversed to show the converse. O
Lemma 3. For a C(R?, Ly, n,1) digraph, D = (V, A), if v;,v; are independent vertices and
z;,x; the corresponding points in X C R?, then the angle ¢ = Z(x;,{0}, ;) > %.

Proof. Let ¢ = Z(x;,{0},z;) and without loss of generality let ||a;|| > ||x;||. Using the Law of

Cosines we have

lloi = @;l1* = llsll* + llz;11* = 2llailllejllcos(¢),

which implies

2zilllljllcos(¢) < Il

since ||z; — x;|| > ||#;]| (by our assumption of independence). Finally we get,

cos(g) < Al

IA

which implies that ¢ > 7. O
Theorem 4. For a C(R?, Ly, n,1) digraph D, a(D) < 7(q)

Proof. Given a C(R?, Ly, n, 1) digraph D = (V, A), we will construct a kissing set in R? of size
a(D). Let X,) be sets of points in R? (with |X| = n and Y = {0}) which induce a digraph
isomorphic to D. The existence of these points is guaranteed by Theorem 2. Let S C V be an
independent set in D and let S C X be corresponding points in X. For each z; € S define a
new point z; = ”%CL’” (this is the radial projection of each point onto the hyper-sphere of radius

two centered at the origin). By Lemmas 2 and 3, the z;’s form a kissing set. O

We show that this bound is tight. Given a kissing set of size 7(¢) in R?, we will construct

an edgeless C(R?, Ly, 7(q), 1) digraph. Let Y = {0} and let X’ be the 7(g) points in the kissing
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set. For any pair (z;, ;) it must be the case that ||z; — z;|| > 2 since the open spheres of radius
one centered at these points do not intersect. Let D = (V, A) be the class cover catch digraph
induced by these sets. Since the radius of each B; is 2 it follows that z; ¢ B; Vi # j which
implies that A = (). Therefore a(D) = |V| = 7(q).

The previous results involving CCCDs generated from multiple target class points and a
single non-target class point are used to achieve an upper bound for the size of a solution of
the class cover problem in higher dimensions. For a set of points S = {s1,s2,...,5,} in any

dissimilarity space (2, d), the Voronoi region or Voronoi polygon for a point s; is given by
V(si) = {z € Q:d(s;,x) <mind(s;,z)}.
J

The collection of Voronoi regions for each element in S is called the Voronoi diagram generated

by S [30].

Corollary 2. For D € C(R?, La,n,m), v(D) < m - 7(q).

Proof. Let X,Y C R? (|X| =n,|Y| = m) be sets which induce a digraph isomorphic to D. We
partition R? into the Voronoi regions V(y;) for each point y; € Y. We may now bound the
cardinality of the solution to each instance of CCP (R?, Ly, X NV (y:), {w:}) (i =1,2,...,m) by
7(q) by Theorems 3 and 4. The result follows. O

2.4 One-Dimensional CCCDs

We consider the special case where 2 = R and d is the Euclidean metric. This section will
provide the groundwork so that we may fully analyze a randomized one-dimensional CCP in
Chapter 3. Suppose X,) are finite subsets of R with cardinality n and m respectively. Let

Y(izm) be the i*" largest element of Y. Consider the collection of m + 1 intervals based on Y

—00 =1 Yo:m) < Y(1:m) S Y@im) < S Ymem) < Y(mt1:m) = 003

I := (YG—1:m), Yim)) for g =1,--- ,m+1. Let &; = ;N X and V; = {y(j—1:m),Y(j:m) }- Note

the following fact which allows much of our analysis in one-dimension.
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Proposition 2. Let X, CR. Ifz; € X; and x; € Xj (i # j) then v; is not adjacent to vj in
the CCCD induced by X,).

Proof. Clearly there must be at least one non-target class point y* between x; and z; since
x; € X; and z; € X;. Therefore any ball (which is an interval in one-dimension) centered at z;
could not contain z; without containing y*. Similarly, any ball centered at z; could not contain

z; without containing y*. O

Proposition 2 implies that a one-dimensional CCCD, D, is made up of m + 1 disconnected
subgraphs D;, each of which may be null or may itself be disconnected. Define n; := |X};|, and
let v(D;) denote the cardinality of a minimum dominating set for the CCCD induced by X},

Y;. We then have the following important formula

Thus the study of (D) is carried out via the investigation of the simpler (D;).

Lemma 4. For any one-dimensional CCCD D and for j = 1, m+1 we have y(D;) = 1{n; > 0},

where 1{-} is the indicator function.

Proof. Clearly if n; = 0 then y(D;) = 0. Consider j = 1 and the case ny > 1. Define B; :=
B(min(X1), y(1:m) — min(X1)), the largest pure open ball centered at the leftmost observation
in I;. Then X; C B; and Y1 N By = @, and hence y(D;) = 1. The case j = m + 1 follows

similarly. O

For j =2,--- ,m we now show that v(D;) takes values in {0,1,2}. Let

o (M2 X) + Y1) 7 min(dy) + ygim) | .
J 2 2
0 'Lf n; = 0
Lemma 5. For j =2,---,m, v(D;) =41 fINX 0
2 otherwise.

Proof. Again, if n; = 0 then 7(D;) = 0. Suppose now that n; > 1. Let X := max,ex;{z <

Y=tm FVGm) Y apq X = mingex; {z > Y-tm)FVG:m)} - Note that X; < X if both exist.
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At least one of XJ._,X;r must exist since n; > 1. Let B; = B(X;,X; — y(—1.m)) and
Bf = B(X],y(im) — Xj). (Bj (vespectively B )= 0 if X; (X;") does not exist.) Since
X; C (Bf UBJ) and Y; N (B; UBJ) = 0, it follows that 4(D;) < 2. Finally, observe
that v(D;) = 1 <= there exists € A such that (i) z — min(X;) < yg.m) — 2 and (i)

max(X;) — 2 <& — Y(j_1:m), and (i) and (i¢) hold if and only if z € I7. O
We get the following corollary as an immediate consequence of Lemmas 4 and 5.
Corollary 3. Let D be in C(R,Ly,n,m) withn > 0. Then 1 < (D) < min(n,2m).
Finally we note the optimality of the greedy algorithm for the one-dimensional CCP.

Theorem 5. The greedy algorithm is optimal for any one-dimensional CCCD D. That is
(D) = (D).

Proof. It is sufficient to consider the sub-digraph D; = (V}, A;) since D consists of connected
components D;. If y(D;) =1 then V} := {v: (v,w) € A; Vw € V; — {v}} is not empty. The
greedy algorithm will choose some element from V" and then terminate. If v(Dj;) = 2 then the
first vertex chosen by the greedy algorithm will cover all vertices representing points to the left
or right of the midpoint of the interval I;. The second vertex chosen will cover all the remaining
vertices since we know there is a point whose covering ball covers the remaining points to the

right or left respectively of the midpoint of I;. O
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Chapter 3

Randomized Version

In the previous chapters we presented a deterministic model of the CCP. Since we will apply
the CCP to real world data it is useful to consider a randomized CCP in which target and
non-target class points are observations drawn from two distributions Fx and Fy. Once again
we focus on the CCP1 and assume the data are elements of some Euclidean space. We will
also assume that the distributions are continuous implying that the probability of drawing the
same data point more than once is zero. This assumption is necessary since in the definition of
the CCP, we require X, ) to be finite and disjoint sets. The CCCD induced by such a random
drawing of points is called a random CCCD. The sample space of all possible CCCDs induced
by n points drawn from F'x and m points drawn from Fy will be denoted R(Fx,n,Fy,m). A
random variable of interest for any random CCCD D drawn uniformly from R(Fx,n, Fy,m) is

I'(D), which is the size of a minimum dominating set in D.

3.1 Distribution Results in One Dimension

We begin our study of randomized CCCDs by investigating the one-dimensional case. Please
refer to section 2.4 for related notation and results. In the randomized case we define n and
m one-dimensional random variables (X = {X1, Xs,..., X,} and Y = {11,Y5,...,Y,}) drawn
independently from distributions F'x and Fy respectively. The ith order statistic of a set of

one-dimensional random variables Uy, Us,...,U; is the it® largest observation and is denoted
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Ui1y- We note the m + 1 intervals
- = }/(O:m) < Yv(l:m) < Yv(2:m) <---< Yv(mm) < Yv(m—i—l:m) 1= +00.

Ij = (Yj—1:m), Y(jmy) for j = 1,--- ;m + 1. Let X; = [; N X and V; = {Y—1:m), Y(jm) }-
Define the random variable N; := |X;|. We begin by deriving the probability mass function for
I'(-) for a special family of CCCDs.

Let D be a random CCCD drawn uniformly from R(Fx,n,Fy,m) for some distributions

Fx,Fy on R. Using Equation 2.3 we see

m—+1

P[[(D) =k] = P[Z (3.1)

It is evident that if we would like to study the distribution of I'(D) it will be sufficient to study
the distribution of I'(D;) for i = 1,2,...,m + 1.

From Lemma 4, for any distributions Fx and Fy, we immediately get
P[T'(D;) =1]=P[N; >0]=1—P[N; =0]=1- P[I'(D;) = 0] (3.2)

for i = 1,m + 1. Now we consider the D; for i = 2,3,...,m. Notice that each of these graphs
is formed from a set of two non-target class points {a, b} and N; target class points distributed
on the interval (a,b). Suppose the distributions Fx and Fy have density functions fx and
fv. Then the distribution of the N; target class points is given by the conditional density

fx(z|z € (a,b)) which we denote as f,(z). From Lemma 5 we get the following lemma.

Lemma 6. Fori=2,3,...,m, and given that Y(;_1.m) = a, Yiim) = b,

P[(D;) = 0|N; = k] = 1{k = 0}, (3.3)
P[0(D;) = 1|N; = K = 1{k > 0}(1 - P[[(D;) = 2|N; = k), (3.4)
P[T(D;) = 2N; = k] =

a+b ml+b

2 b
— 1) fap(21) fap () fap(2)dz — fap(z dzdzy (3.5)
I oo |

a a:k+a
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where T = max{ 2t 2z, — a}.

Proof. Let min{&;} = X(1) and max{&;} = X(,). Obviously I'(D;) = 0 if and only if N; =0
(D; is the empty graph). From Lemma 5 we know that if N; > 0 then I'(D;) € {1,2}. Therefore
P[I'(D;) =2|N; = k] = 1{k > 0}(1 — P[I['(D;) = 2|N; = k]). We obtain for k > 0,

atb

atb
= / / PX;NI; =0|N; = k, Xy = 1, X(x) = 2k|g(@1, Tk )drrdTy
a T

where g(x1,z;) is the the joint probability density function for X,y and Xy,

9(z1, k) = K(k — 1) [ / fa,b(z)dZ] T @) fan@)

and

PX;NI} =0|N; =k, Xy = 21, Xy = 2] = [Ply € I — I} | X1y = @1, Xy = 23]]" 2
21 +b k—2

+
fm)c-z(“ﬂ fa,b(z)d’z

B f;l’“ Jap(2)dz

=1

O

We now consider the special case where Fx = Fy = Uniform(c,d) (or U(e,d)) for —oo <
¢ < d < 00. The uniform distribution simplifies equation (3.5) considerably. If we condition on
Yiism) = @ and Y41,y = b for any i € {2,3,...,m}, then fop(z) = 7% forany c<a<b<d
and z € (a,b). To simplify notation we let 'y, ,,, represent I'(D) for D drawn uniformly from

R(U(c,d),n,U(c,d),m). Alsolet I';, , represent I'(D;) for such a D. Equation 3.5 becomes (for
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k> 0)

PT% = 2Ny = k] = / / ( iz:i‘)ﬂ 4 2(;;—_2)))’“_2 dzydm;
= % |: 7b j <3($k2_ ml) + (a ; b)>k2 dil)'kdll'l
a  (b+z1)/2

T J (i

(3.6)

We have just proven part (ii7) of the following lemma (parts (i) and (i¢) follow directly from

Lemma 6).

Lemma 7. Let X and Y be distributed uniformly on [0,1] with X as the target class. For
i€{2,3,...,m}

(i) P[F" =0] = P[N; =0

(i) £(k) = P[T}, ,, = 1|N; = k] = 1{k > 0}(5 + §z5=1)

(i) P[F;’m =2|N; = k] = 1{k > 0}(1 — k(k))

Notice that the probability distribution of 1"‘" is independent of the location and size of

m
the interval ;. This is another consequence of the uniform distribution and is what will allow
the derivation of the distribution of I'y, .

Let Z,, denote the set of non-negative integers less than m; Z,, := {0,--- ,m — 1}. Define

b
Af,b = {(z1, - ;zb):zzi =z; z; € S Vi}.

=1

Theorem 6. The probability mass function for the random variable T'y, (D) is given by

P[Tpm = d] :% x
> > ad1],n[1]) - a(dlm + 1),n[m + 1]) ] B(d[j], n[5])
Aea,mtl deAls, |, J=2
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where

a(d,n) =max(l{n =d =0},1{n > d=1})

and

B(d,n) = max(1{n = d = 0}, 1{n > d > 1}) - s(n) =1} - (1 = () 14=2},

Proof. For Ty, 1 = E;”:ng Y . = d we must have T, == d[i] for all i € {1,2,...,m + 1} for
some vector d = (d[1],--- ,d[m + 1]) such that S-" 4 d[j] = d. Also if N = {N1,Na,..., N1}

Jj=1
there must be a vector 7 such that N; = n[j] and Z;n:ﬁl n[j] = n. Ai";;j_l is precisely the

collection of 7 which can occur and, since the individual d[j] can take values only in {0, 1,2},

Adem 41 is precisely the collection of d which can occur. Therefore we have
m+1 ,
Z3 j=1

= Zn41 J,
neAn;an+1 deAd,m+1

= Y Y P[P =N =

— Zn+1l JeAZ3
neAn;an-f—l deAys 11

PIT,,, = d[1]|fl]- PIC = dm + 1]V = 7]

where we have used the conditional independence of the I'}, .. given N. The form of the final
expression is due to the fact that we need to treat the end intervals I; and I,, 1 separately.
Certain pairs (n[j], d[j]) are incompatible, such as n[j] = 0 and d[j] > 0; the indicator functions
in the statement of Theorem 6 eliminate incompatible pairs from the summation. For the end
intervals I; and I;,11, the a terms yield a value of unity if the (n[j], d[4]) pair is compatible. The
B terms are derived from compatibility considerations and the result of Lemma 7. The desired

result is obtained by noting that each 7 € ATZL’"n“;jrl has probability ﬁ of occuring. O

While the expected value of I'y, ,,, can be obtained from Theorem 6 we present a simpler

derivation.

Theorem 7.

2n n!m(m—l)i(n—}—m—i—l)!

Efln,m] n+m + (n +m)! (n —1i)! +(2 = k(D))

where k(i) is given by Lemma 7.
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Proof. The expected value of Iy, ., is given by

m+1
E[lum] =) E[} ]
j=1

m n
= P[X(1:n) < Yom)] + D Y P[N; = B[}, | Nj = i] + P[X(nn) > Yimem)]
j=2 i=1
Using Lemma 7, for j = 2,3,...,m we have,

E[r{%mwj =i] = k(i) + 2(1 — (i) = 2 — k(4).

Also since the N; are identically distributed,

("
"

n

P[N; =i] =

For j =1,m+ 1 we have I, = 1{N; > 0} and P[N; > 0] = —*—. Thus,

n+m’

Bl = 1+ 30 -2 K1)

n+m—i—1

- +(m—1)z%-(2—m(i))

o n!m(m—l)i(n"'(::;)!_l)!-(2—/@(1'))

i=1

3.2 Limiting Results in One Dimension

In this section we explore some limiting behaviors of I, ,,,. We are interested in determining
if there is an almost sure limit of FL"% for any a € Ry where |r] is the largest integer no

. . r
larger than r. Before proceeding, we perform a calculation to make sure E[—2L2] converges as
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n — oo. Using Theorem 7 we obtain

i [FL%] ~ n(LiE:jni " (L(LIZJTL)J : ;)1 '3 - (Lan(J ] Z)'_ Lo
= Jim =1 Léj (LC(TJ; J(L—a 7)J (Ta?q—i ;)1) (2= (@)
= Jm L:an (L(le_—:n :_1;[: (Lan] 5(—“:3—_(; + 1)) 2- ’“(i))>
and letting (i) := (274 - [[imo Tenlragyy We have

lan] Lan]
.13 . 4 L 1
= nh—{%o 9 z=21 fn(i) = 9 ; fn(l)ép—,y

We now pause to show an upper bound for f,(7).

i—1

N~ n—1 lan| —j
f"(z)_LanJ+n JH[anJ—}—n— (G+1)
n—1 — an—6—j
- . f 1
an—30+n J_l;[oan—6+n—(j+1) or some 4 € [0, 1)
i1

n—1 an —j
< :
“an—46+4+n jl;[oan—}—n—(j—i-l)

for n > 2 by Claim A

— k(1))

and since the term corresponding to j = 0 is larger than any other term in the product,

n—1 an :
< .
an—0+n an+n—1
. n—1 ( a )i
na+1-2) \a+1-1

1( a >i+1
S_ 1 .
a\a+ 3
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i+l
If we let g(i) := 1 ( 4 ) we see that lim, oo Zzt TILJ g(4) is finite for any a > 0. We may

a a—|—§I

now apply the dominated convergence theorem [41] to equation (3.7).

nlggo—z:fn an
13 X )
-T2t 05D Jim )
=

13 i a "_ "1
“9a+1) & \a+l a+1 a+1 4i
13 1) 1
9a+1) \1- % 9a+1) \1- 125

_a(13a+12)
~ 3(a+1)(3a+4)

Lol 4 Lan]
lim E [@]

n—oo n

We now show our main result

Theorem 8. For a € (0,00),

. FLanJ,n a(13a + 12)
lim = a.s.
nsoo N 3(a+1)(3a+4)

where a.s. means almost surely.

Before proving this result, we pause to consider its meaning. For i € {1,m + 1} we call
I}, the external components of I'nm and for i € {2,3,...,m} we call I}, the internal
components of T ,. Notice from Equation (3.2) and Lemma (7) that I, , depend only on
N; for all ¢ € {1,2,...,m}. Since both X and Y points are uniformly distributed on [0, 1], the
N; random variables are identically distributed. This fact along with equations (3.2) and (3.6)
imply that the external components are identically distributed and the internal components are
also identically distributed.

Since there are only two external components and their value is bounded above by one,
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Figure 3.1: A plot of %

Theorem 8 is a Strong Law of Large numbers for the internal components.
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Note that the limiting expression in Theorem 8 is an increasing function of a, the ratio of numbers

a(13a+12)

m. Figure 3.1 diSplayS a plOt

of target class and non-target class points. Let g(a) :=
of the function g(a). As a — 0, the g(a) converges to zero, reflecting the fact that most intervals
between sucessive ) points will contain no X' point. More interestingly, as a — oo, the g(a)
converges to %. This corresponds to each interval between sucessive ) points containing a large

number of X points. By Lemma 7, the probability that one ball covers all points in this interval

4

is near g and the probability that two balls are needed is near g, resulting in an expected

value near %3. Alternatively, one may consider normalizing by the number of X points. In

. . r o .
this case we see lim,_ oo LL‘;’;LJJ’" = 3(af1“;(r31a2+ 7y a-s. The limiting expression now converges to

o Tlanfm :
zero as a — oo and to one as a — 0. The quantity LLa an gives a measure of the reduction

in complexity resulting from using the dominating set as a representation for the entire target

class.
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3.2.1 Proof Sketch

While Theorem 8 is a strong law of large numbers for the internal components, unfortunately
the Fi,m are not independent random variables. Due to this dependence we cannot apply the
standard strong law of large numbers. Attempts to compute higher moments have resulted in
complicated expressions which have not been useful in establishing convergence. We circumvent
this problem with an approach that establishes the strong law of large numbers for the cardinality
of a solution of a CCP in a Poisson process setting. We then transfer the result back to the
original setting.

For a Poisson process @ we let Q; denote the time of the ith arrival and Q(t) (for t €
R, ) denote the number of arrivals in () before time ¢. Consider two one-dimensional Poisson
processes, S and T, with common rate A with 0 < A < co. Points of S play the role of target
class points and points in 7" play the role of non-target class. We let C; be the number of S
points in (T;_1,T;) (where Tp = 0) and ¥; be the minimum number of covering balls needed to
cover the C; points of S in (T;_1,T;).

We consider I',, defined as the solution to the CCP on the points of S and T in (0,Ty+1).
This CCP has exactly n non-target class points and a random number, N,, = S(T,,41), of target
class points. It has an advantage over our original CCP; the ¥; (analogous to the internal
and external components) are independent random variables, allowing the application of the
standard Strong Law of Large Numbers. A simple calculation in this Poisson process setting
evaluates the limit as %.

Using the conditional uniformity property of Poisson processes (see section 3.2.2), and a
standard density transformation result, we see that the NV,, points of S and the n points of T
have the same distribution as the order statistics of N,, +n observations of a uniform distribution
on (0,T,+1). Rescaling the interval (0,7,+1) to (0,1) does not change the value of I',,. For each
n, we correct the number of target class points as follows: If N, < |an|, we add |an| — N,
points S7,S5,..., S'Lan |—n,, Which are uniformly distributed on (0,1), mutally independent and
independent of the Poisson processes. If N,, > |an|, we choose a random subset of N,, — |an]
points from {S1,52,...,SnN, } with all subsets of size N,, — |an| equally likely, to remove from
consideration. We then calculate a revised CCP solution with cardinality I',, on this corrected
set of points. The random variable I',, in the Poisson process setting has an identical distribution

with T'| 4n), in the original setting.

29



Adding or removing a target class point affects the solution of the one-dimensional CCP
by at most one. The number of points to be added or removed, N, — |an|, form a random
walk that arises naturally from the Poisson processes S and N. The fluctuations in the random
walk are sufficiently small that the effect of adding or removing points is negligible in the limit.
Combining these ideas, we show that the almost sure limits of % and %" are identical.

To transfer the result from I';, in the modified Poisson process setting to I' 45, in the original
setting, there is one additional complication to overcome. While the marginal distributions
of Ty, and T4y, are identical for each n, the joint distributions of {T'y; n = 1,2,...} and
{Tlan),n; m =1,2,...} are not, due to the adding or removing of different sets of points for each
n. However, if care is taken to demonstrate complete covergence for I',,, we obtain complete

covergence (and therefore almost sure covergence) for ' 4y, -

3.2.2 Poisson Representation

For proving a limiting result, it is useful to convert the model from one in which uniformly
distributed points are added to a fixed interval, into a model where the limit corresponds to
increasing the length of the interval. As mentioned above, we use a correspondence between
uniformly distributed points and a Poisson process.

We rely upon two standard distributional results. First, from an undergraduate-level density
transformation exercise, if @1, Qa2, - - ., Q,+1 are independent and identically distributed random

variables with an Exponential distribution with parameter A, then

Q1 Q1+ Q2 Q1 +Q2+Q3 Yo Qi
<Z?:+11 Qi YMHlQ) Y Ty Qi)

has the same joint distribution as the order statistics of n independent Uniform[0,1] random
variables. Secondly, recall the “conditional uniformity” property of Poisson processes: If @Q is
a Poisson process and Q(t) = n, then the n points of @ in [0,%] conditionally have the same
distribution as the order statistics of n independent Uniform(0,¢) random variables.

We consider the T' process on (0,7,+1). By the first property above, the first n points
in the T process may be considered to be uniformly distributed on (0,T,41). At time T),44,
there is a random number of S points, N,. If we further condition on N,, = m, then both S

and T points are uniformly distributed on (0,7,+1). By rescaling the interval, the class cover
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problem on S1,S5s,...,S, and T1,T5,...,T;, is equivalent to the CCP on

and TZL’ TnT2+1 e Tf: - Therefore, in the case where we stop the T process at 7,1 and
condition on N = m, the size of the solution to the CCP on the S and T points has the same

distribution as I'y, .

3.2.3 Expected Value of Internal Components

For now, we return to observing the Poisson processes in (0,7,+1). Recall that we let I',
represent the size of a solution to the CCP on Si,...,Sn, and T1,...,T,. Also C; is the number
of S points in (T;_1,7T;) and ¥; is the minimum number of covering balls needed to cover the C;
points of S in (T;_1,T;). We proceed by showing E[¥;] = E[¥,] = % Vie{2,...n}.
By conditional uniformity and Lemma 7 we see that the distribution of ¥; depends only on
the value of C;. By the lack of memory property of the exponential distribution, C; = Z; — 1
where Z; is a geometric random variable with parameter p = alﬁ Therefore since the C; are

identically distributed, ¥; for ¢ € {2,...,m} are also identically distributed. We now calculate
E[W,].

P[¥; =0] = P[C> = 0] = ——

and
o0

P[¥; =1] =) P[¥, =1|C; = k]P[C, = K]

k=1
=§: Sy (Hae] o
=19 9 (a+ 1)k+1

- da N 16a
~9a+1)  9(a+1)(3a+4)
5a2 + 12a

- 3(a+1)3a+4)’
and by subtraction,

1242

Pl¥z =2 =1=P{¥: =01 = PI¥%2 =1 = g m gy
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from which we obtain
a(13a + 12)

E[¥s] = 3(a+1)(3a+4)

=g(a). (3.8)

3.2.4 Complete Convergence of I,

A sequence of random variables L; is said to have complete convergence to a random variable

L if for every € > 0

oo

Y PLi—L|>€ <

i=1

We now show complete covergence (and thus almost sure convergence [23]) of » to E[¥,] =

a(13a+12)
3(a+1)(3a+4) "

> ne

Zc‘] :iP —ilI!i—E[lIlg]n

n=1 L|72=0

> ne

> ne]

=S P[0+ s B+ 3 (- B

o
< EP Uy + ¥,y — E[W,]| +

Z (¥; — E[¥,))

which, using the fact that 0 < ¥; <1fori e {1,n+ 1} and 0 < E[¥5] < %

and then using the fourth moment version of Markov’s inequality,

< ZE[ID 2 (¥ — B[%])["]

(ne — 2)* (3:9)
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We bound the numerator in the preceding equation by expanding the fourth power of the sum.

We use the fact that E[¥; — E[¥s]] =0fori=2,...,n.

4

E |3 (%= Bl¥:])| | =B |3 (¥ — B[¥.])*
+E Z i 2(¥; — E[¥5))%(¥; — E[T,])?

= (n — 1)E[(¥; — E[T2])]

+(n—1)(n - 2)B (> - E[¥,])*)"

since the ¥; are independent and identically distributed and since E[(¥y — E[¥;])?] < 4, we

have

< Cn? for some C € R.

Now we may finish showing complete convergence since

Sop[| % ppwal| > ] < 3 ELEL Iy o

n=1 n=1 (’I’LG - 2)4
n
Cn?
<
- Z (ne — 2)*
=2
< 0.

a(13a+12)

3(at1) (Batd) - This is similar

Thus we have shown the complete covergence of % to E[¥,] =
to our desired result, but we need to correct the number of S points in such a way that the

corrected set has the correct distribution.

3.2.5 Adding and Deleting Points

We would like to prove convergence results about I'| 4, ,, working with our current result about
I'.. To make this connection, we add or remove the necessary number of S points (exactly
|N, — |an]]) in a uniformly random way and then show that |N,, — |an]| is not asymptotically
large enough to change the limit. Note that once we condition on N, to determine the number

of points to be added or deleted, the S points will be uniformly distributed on (7o, T, +1). We
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then add or delete (as appropriate) |N,, — |an|| S points in a uniform way. The remaining |an |
points of S are therefore uniformly distributed. Let the random variable I';, represent the size
of a solution to the class cover problem on this new corrected set of points. Note that T'|4p)
has the same distribution as I',,.

We now study the fluctuations of |N,, — |an]|. As before, let C; denote the number of S
points in [T;_1,T;]. Note that, as mentioned in the calculation of E[¥;], by the lack of memory
property of the exponential distribution, C; = Z; — 1 where Z; has geometric distribution with
parameter ﬁ We define a random variable E,, := |N,, — |an||. We will show a bound on the
probability of large deviations of E,. If N, — |an] < 0, we must add E,, points to S, while
if N, — |an| > 0, we must delete F,, points from S. We use Chernoff’s bounds [36] to obtain

exponential probability bounds on the number of points added or removed. For 0 < e <1,

P[E,, > en] = P[|N, — lan]| > en]

= P[N,, — |an| > ne] + P[|lan| — N,, > ne]
and

P[N, — lan] > en] = P[N, —an+d >en] for0<d<1

=P[N, —an+ 6 —en >0].

Let My, (t) denote the moment generating function of a random variable L.

P[N,—an+d—en > 0] < My, () M_ants—en(t)

34



by Chernoff’s bound for 0 < ¢ < In &L

— (MC,- (t))n—i-let(—an—i-é—en)

(MZi (t)M,1 (t))n+let(fan+676n)

t n+1
e et et(—an+6—en)
1+ a— aet

17

_ tytlate)) e
_((1+a—a€)e(a )) m

and letting oy (t) := (1 + a — aet)et(ato)

et5

=) T e

Since a1(0) = 1 and o (0) = € > 0 we see that we can always choose a value t; such that
al(tl) > 1. Thus
P[Nn — lan] > en] < cian(t) " (3.10)

where ¢; is a positive real constant. Similarly we can show that
P[lan| — N,, > en] = Plan — § — N,, > en]

< P[N, 4+ en —an < 0]

< MNn (t)Men—an(t) Vi <0

1 t\ t(a—¢) - 1
_(( +a—aee ) 1+ a— aet
and, letting as(t) := (1 4+ a — ae')et®) | we obtain
1
= t _ni_
a2(t) 1+a—aet
Since a2(0) = 1 and a4(0) = —e < 0 we see that we can always choose a value ¢, such that
as(t2) > 1. Thus
P[lan| — N, > en] < caaa(t2) ™" (3.11)

for some positive real constant ¢;. Combining equations (3.10) and (3.11) gives the desired
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result,

PE,, > en] < cscg ™ (3.12)

for ¢3 > 0 and ¢4 > 1.

3.2.6 The Effect of Adding or Deleting Points

We also observe that the addition or deletion of one target class point changes the cardinality
of the solution to the one dimensional CCP by at most one. We use the notation of section 2.4

in the proof of the following Lemma.

Lemma 8. Let X, be finite subsets of R and consider X to be the target class. Let D be the
CCCD induced by X,Y and D~ be the CCCD formed from X — {z},Y where z is some element
of X. Then |y(D) —vy(D7)| < 1.

Proof. Let X,Y be finite subsets of # with |X| = n and |Y| = m. Case 1. Suppose z < y)
(respectively & > y(m)). Then only D; (respectively D.,;1) are affected by the removal of .
Also since y(Dy) and y(Dp41) must be either zero or 1, then it must be that |y(D)—~v(D7)| < 1.
Case 2. Suppose = € (y(),Y@i+1)) for i € {1,2,...,m — 1}. Again, only D; is affected by the
removal of z. If n; > 1 then v(D;) may be either zero, one or two. We must rule out the case that
~v(D;) changes from two to zero because of the removal of z. (We need not consider the case that
v(D;) switches from zero to two since = € (y(;),Y(i+1)) = ni > 0= v(D;) > 0.) If v(D;) = 2
before z is removed then it must be the case that n; > 1 and therefore n; > 1 after x is removed.

Therefore v(D;) must be at least one after z is removed. Therefore |y(D) —y(D7)| < 1. O
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3.2.7 Complete Covergence of

If we let D, =T, — T, then Lemma 8 implies that |D,| < E,,. We obtain our result as follows.

> r = [T
ZPHﬂ—E[%] Ze] =Y P||=" - E[¥,] Ze]
n=1 n n=1 n
o« -F,
=P —"—E[w2]+& ze]
n n
n=1 -
= [ E,
n=1 -
> [T € > E €
<Y P||=2—E[W,)] > = P2 >=
_z n [2]_2]+z [n_Z]
n=1 - n=1
< 0.

|

We have thus shown complete convergence, and therefore almost sure convergence, of —

to E[¥a].
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Chapter 4

Classification

This chapter concentrates mainly on the applications of the constrained heterogeneous CCP
to computational statistics. The main focus is on applying the CCP to statistical pattern

classification.

4.1 Classification Fundamentals

Classification is a subfield of learning theory that has grown rapidly in the past century. The
goal of learning theory is to enable a machine to gain knowledge from some set of examples.
Computers have been used for decades to aid in the solution of difficult problems. Until recently,
computers were most useful in tasks that had a known solution. That is, the computer needed
to be instructed step by step on how to solve the problem at hand. For some problems, however,
it is not known how to algorithmically instruct a machine to generate the correct output.

An example of such a problem is face detection; the ability to view an image and determine
if there is one or more human faces within the image. Humans are very good at this task, but
there is no easy “solution” to the face detection problem that we could impart to a machine.
This is where learning theory comes in. We would like to “teach” a machine to learn. We
have a notion of what makes something “facelike” because we have been exposed to many faces
throughout our lives. This is what allows us to know we are looking at a human face even if it
is one that we have never seen before. To teach a machine to detect faces in an image we will

use the same method humans use. We will show the computer a collection of images and mark
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the images that have faces. Of course, we still need some way of instructing the computer to
use these examples to gain knowledge.

Another example is credit card fraud detection. A credit card company may want to know
if there is some pattern evident in its records that is indicative of a stolen credit card. In this
case, the company may not be able to detect fraud efficiently by hand. They are hoping the
machine will be able to find some pattern or structure that leads to better fraud detection.

Both of the preceding examples are problems in learning theory. The face detection problem
is a classic supervised two class classification problem and the fraud problem is an unsupervised
learning problem. In supervised learning, the learner is given a set of known examples in order
to gain knowledge about the processes that generate the examples. This knowledge can be used
for the tasks of regression, density estimation, pattern classification and others. We will focus on
applying the CCP to supervised two-class classification or binary classification in this chapter.
In unsupervised learning or clustering the goal is to find unknown patterns or structure in a
given a set a of data. We will review a method for applying the CCP to clustering in Chapter
5. Kulkarni, Lugosi and Venkatesh’s survey of classification [24] gives a more detailed look at
the fundamentals of the field of learning theory. Other references include [10, 15]. We will begin
our discussion by considering binary or two class classification.

Once again, we consider data in a dissimilarity space (Q,d). In the two class case our Q
valued observations will have associated with them a Bernoulli random variable Y corresponding
to the class of the observation. The probability that a general point is in class j € {0,1} is given
by the a priori probability p; = P[Y = j]. The distribution of an observation of known class
J is given by the class conditional distribution Fj(-). In other words, data are drawn from the
following distribution:

F(-) =poFo(-) + p1 Fi(+)

where pg + p1 = 1. A random observation is generated as follows; first select a random class by
observing the outcome of Y, then select a random observation X from  according to Fy (-).
We are given as training datae two finite, non-empty sets of class conditional Q-valued ob-
servations, Ay and &;. The goal of classification is to design a classifier g, x,) : @ = {0,1},
such that given an unlabeled observation X with true but unknown class label Yx in {0,1}, the
probability of misclassification L(g) = P[g(x,,x,)(X) # Yx] is minimized. We denote L(g) as

the experimental misclassification rate of a classifier g on a test set different than the training
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set. The optimal classifier is known as the Bayes classifer g* [2, 24, 35] and is given by

g*(z) = 1{P[Yx =1|X = 2] > P[Yx = 0|X = z]}. (4.1)

Thus the optimal misclassification rate or Bayes error rate L* is defined as

L* := P[g"(X) # Yx].

We call the set where P[Yx = j|X =z] > P[Yx = 1—j|X = z] the discriminant region for class
j € {0,1}. If the densities fy and f; exist for the distributions, then an alternative definition of
the discriminant region for class j € {0,1} is {z € Q: f;(2) > fi—;(2)}.

The construction of the Bayes classifier relies on the knowledge of the a posteriori probabili-
ties P[Yx = j|X = z] Vz € Q for j € {0,1} or, in other words, knowledge of the class conditional
distributions Fj(z). In practice, these distributions are not known and we must attempt to cre-
ate a classifier whose probability of misclassification is as low as possible. A classifier whose
misclassification rate converges in probability (as the training sample size goes to infinity) to
the Bayes error rate is called consistent or a consistent rule. If the convergence is almost sure,
we say the classifier is strongly consistent. Of course consistent classifiers are attractive, but
consistency alone should not rule the decision when choosing a classifier. Notions such as speed
of convergence and complexity must be considered as well.

If there is reason to believe that the distributions are of a known family, for instance Nor-
mal, Exponential, etc., then a parametric classifier is used to estimate the parameters of the
distributions. Parametric methods are very effective if the assumptions on the distributions are
valid. However, it is often the case that there is little knowledge of the distributions. In such a
case, it is necessary to develop classifiers which do not rely on parametric assumptions. There
are two kinds of such classifiers, namely semi-parametric and nonparametric. In this section we

introduce several methods for using the CCP to construct semi-parametric classifiers.

4.2 Classification with the CCP

When applying the CCP to classification, we use a generalization of the reduced nearest neighbor

classifier [18, 19, 38] as a framework. The idea is to find a cover (independently) for both classes
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by choosing one class to be the target class, solving a CCP, and then switching the roles of
target and non target class and solving a new CCP. We must also choose a cover-dissimilarity
function p : Q@ x C — R™ between new observations and a cover, where C is the space of all

covers. The classifier is then

0 if p(Z,Co) < p(z7C1)>
9(z) = 1 if p(z,C4) < p(z,Co), (4.2)

—1 otherwise

where Cy, C are the covers of class zero and one respectively and an output of -1 represents no
decision.

If we use the CCP1 to find our covers, notice that all covering balls extend to the nearest
non-target class point. We could shrink each ball to the farthest target class point covered by
the ball. This change would affect only the classifier formed, but not the choice of cover. We
formalize this by introducing the parameter 7. If we are considering a target class Ay and a

non-target class X the final radius of a covering ball for a point x is given by
Ty == (1 - T)d(.Z’, q:c) + Td(ma uw)a
where u, is defined as the closest non-target point to z,

Uy 1= arg 525?1 d(z, 2),

and ¢, is defined as

gz = arg max{d(z, z) : d(z, z) < d(z,u;)}.
z€Xy

In other words ¢, is the furthest target class point from z that is closer than the closest non-
target class point u,. Figure 4.1 provides an illustration of the effect of changing the value of 7
on a covering ball. Notice that the changing 7 does not change the makeup of the cover, only
the size of the individual covering balls.

When choosing our covers for classification we would like to choose the pair of covers which

induce the best classifier, that is the classifier with the lowest misclassification rate. The objec-
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Figure 4.1: Nllustration of 7. The solid line represents the case 7 = 1; the middle circle represents
7 = 0.5 and the smallest circle represents 7 = 0.0001.

tive function in this situation is

A

min L(gc,,c, (%)) (4.3)

such that Co, C1 satisfy some CCP.

This is in contrast to the CCP we studied in Chapter 2 where our objective was to find the
cover with the smallest cardinality. Unfortunately this optimization presents a combinatorial
explosion of possible covers and is intractable. We will instead try to model the discriminant
regions of the two classes with the covers as found by the class cover problem.

To estimate the discriminant regions with our CCP method, points in the discriminant region
for class j must be closer (under the cover dissimilarity) to the cover for class j than the cover
for class 1 — j. We make the assumption that any point in the cover for class j but not in
the cover for class 1 — j should be classified as class j. It is therefore important that the cover
dissimilarity function p we use to measure distance to a cover has the following property for two
covers Cy, Cy

z € C;NCT_; = p(2,Cj) < p(z,C1—j) for j € {0,1}. (4.4)

This assumption gives us the intuition that the covers should attempt to model the discriminant
regions as accurately and efficiently as possible with the given training data.

We also need to consider two more cases. For the case z € C; N Ci_;, it is important to
carefully consider the decision we make since we are likely to see such points often. For the

case z € C5 N Cy_;, it is not as important since it is likely any regions not in either cover are
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Figure 4.2: Comparing covering balls

relatively far from the majority of the data and have a low probability of occurring. Thus the
correct classification or misclassification of these points will not greatly affect the performance
of our classifier.

In our first two classifiers we attempt to minimize the cardinality of the cover in the con-
struction of the classifier. Of course the minimum cardinality cover has the smallest complexity
(among covers). Any objective function should keep cover complexity as low as possible to
avoid overfitting. Unfortunately, finding the minimum cardinality cover is a difficult task with
no known efficient (polynomial) solution. As demonstrated in Chapter 2, finding a solution to
a CCP is equivalent to the dominating set problem on the representative CCCD. In practice,
instead of finding an exact solution to the CCP we will find an approximate solution using the
greedy algorithm presented in chapter 2.

When attempting to approximate complex discriminant regions using balls, smallest cardi-
nality is not, in general, the best objective function. This is because the minimum cardinality
cover is often made up of large radius balls that are not representative of the points they cover.
To demonstrate our meaning of “representative”, we would say the smallest ball containing a
set of points S is a good representative of S (among balls). A poor representative is a ball
centered at the point of S furthest from the mean of points in S. Figure 4.2 illustrates this
point. The solid balls in the figure are excellent representatives of the points they cover, while

the dashed ball is not. It is our goal that each ball in a cover be a good representative of the
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points it covers since each ball is attempting to model some part of the discriminant region. A
minimum cardinality cover performs well, but performance could be improved by considering
other objectives. We have considered statistical depth and we use a combination of point density
and classifier performance in section 4.6.

Priebe et al. [34] investigate applications of the constrained heterogeneous CCP using a, 3
covers. We will review this method in sections 4.4 and 4.5. The focus of section 4.6 extends
that work with data adaptive allowances for impureness and improperness. This is done by
observing the local neighborhood while choosing the radius for the potential covering ball. We

investigate classifiers which are similar to CCP classifiers in the next section.

4.3 Similar classifiers

While the CCP based classifiers are new, there are several classifiers which are similar in nature.
Of course the reduced nearest neighbor classifier is similar since it provides the framework for
our CCP based classifiers. Support vector machines are also similar to CCP based classifiers.
Their relation is described in section 6.1.3. The most closely related classifier is the Reduced
Coloumb Energy (RCE) Networks [15]. Classification using an RCE is done according to the

following rule
0 if 2 € {Uyen, Ba N (User, B2)°)
9rep(2) = 1 it € (Usew, B (User, B2))
—1 otherwise.
where B, is the largest ball centered at z that does not contain a member of the opposite class.
The CCP based classifiers presented here utilize the same basic ideas as the RCE networks. The

naive classifier presented in Section 4.4 is a natural extension of RCE networks incorporating

the class cover problem.

4.4 Preclassifier

A naive or preclassifier is built using a minimum cardinality (or approximately minimum cardi-
nality) pure and proper cover from each class. By switching the role of target class between Xg

and X7, two different instances of the CCP can be solved, resulting in two covers Cy and Cf.
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For a cover C we define a simple cover-dissimilarity function as

0 ifzeUpee B
pn(2,C) = pee (4.5)

1 otherwise

Given two covers Cp, C1, the above cover-dissimilarity function in the nearest neighbor frame-

work of (4.2) creates the following simple classifier g : Q@ — {—1,0,1} where,

0 ze(Cyn Clc
gpre(z) = 1 ze(CiN CS (4'6)

—1 otherwise

This cover-dissimilarity function makes no decision for (possibly) large regions in Q. This
may or may not be a drawback depending on the application. We can remedy this with a scaled
cover-dissimilarity function. For a cover C' made up of balls B; with centers z; and radius r;,

we define a new cover-dissimilarity function as

Both dissimilarity functions in (4.5) and (4.7) have the property in (4.4).

Another drawback of the pre-classifier is its tendency to overfit. When trying to approximate
the discriminant region for one class (finding a cover), it might be better to allow our covering
balls to contain a few “contaminating” points from the other class. We might also allow our
cover to miss a few “outlying” target class points. Ideally, these points would be points that fall
in the opposing class’ discriminant region. Figure 4.3 illustrates this point. Figure 4.3(a) shows
data drawn from two distributions; the solid black disks (class zero) are 50 observations from a
normal distribution with mean at (0, 0) and the small circles (class one) are 50 observations from
a normal distribution with mean (2,0). Both normal distributions have the identity covariance
matrix. We will see this data set again in Chapter 6 and it will be called Model 2. In Figure
4.3(b) we see pure proper covers for both classes obtained using the greedy algorithm. The

dashed and solid balls are covering balls for class zero and one respectively. The Bayes optimal
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Figure 4.3: Two class Normal data and pure proper cover
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rule for data drawn from these two distributions is

0 ifz[1] <1,
gB(2) =
1 otherwise.

We would therefore like any cover for class zero to be made up of balls centered at points with
first coordinate less than one. Notice that since we are requiring proper covers, as the number of
training points increases there will be an increasing number of covering balls centered at points
with first coordinate greater than one. We also notice that the cover for class one is made
unnecessarily complex because it must avoid the class zero points. We begin to address these

observations with the «, 5 CCP.

4.5 a,B CCP

In this section we present the CCP which involves impure and improper covers; see also [34].
Let a and 8 be nonnegative integers. Without loss of generality, in this section we will assume
that X is the target class. Ideally we would like to require our cover for Xy to miss at most «
points from Xy and to contain at most § points from X;. This problem is certainly NP-Hard
for g > 0 since now we must consider 8 + 1 balls centered at each target class point and find a
smallest subset of balls (a cover) so that their union contains at least | Xo — a| target class points
and at most # non-target class points. It is not even clear how to efficiently find an approximate
solution to this problem. We simplify the situation by redefining § to be the number of non-
target class points in each covering ball. We define the covering ball Bf at each target class
point ; € Xy as {x € Q : d(z;, z) < dg(x;, X1)} where dg(z;, A1) is the B+ 1th smallest distance
from z; to elements in X;. Now a minimum cardinality cover for the target class is the smallest
collection of balls Bf such that at least |Xp| — « target class points are covered. Again, because
of the difficulty of finding a minimum cardinality cover, we will find approximate solutions using
the greedy algorithm of Section 4.2. Clearly we can achieve a pure and proper cover by setting
a = 3 = 0. Below (Figure 4.4) are illustrations of a pure and proper cover and an «a, 3 cover.
We also demonstrate «, 8 covers on the normal data of Figure 4.3(a) in Figure 4.4(c). In both
cases the a, 8 covers are more simple and also more representative than the pure proper covers.

This technique greatly improves on the pre-classifier. Careful choice of the parameters a and
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(compare with Figure 4.3(b)).
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B for each class can lead to significant improvement in classifier performance as demonstrated in
Chapter 6. Another improvement is reduced classifier complexity. For example, the pure proper
covers shown in Figure 4.3(b) contain 10 balls for class zero and 13 balls for class one. The «, 8
covers in Figure 4.4(c) are each made of only two balls.

While the a, 8 CCP technique is an improvement, its assumption that every covering ball
should contain # non-target class points is suboptimal. Ideally, a covering ball for the target
class should cover only non-target class points that fall in the discriminant region of the target
class. For example, observe that the small dashed ball in Figure 4.4(c) extends well into the
discriminant region for the other class. This happens because the ball was forced to capture five
non-target class points.

A second drawback of the a, f cover method is that the parameters a and S are chosen by
the user. While the parameters a and § have a physical interpretation, it is often difficult to
justify the choice of a particular set of parameters when the class conditional distributions are
unknown. What we would like is some way to let each covering ball determine its own radius
based on its local neighborhood. For example, if we increase the radius of a covering ball and
the result is to capture one new non-target class point and ten new target class points, then
we might say that change in radius is worthwhile. In this way we are accomplishing two tasks.
We are adaptively choosing the a and 8 parameters in the sense mentioned in the beginning of
section 4.5; that is, a is the number of target class points a cover is allowed to miss and 3 is
the number of non-target class points a cover may contain. We are also choosing the radius for

each ball in a more intelligent manner. We attempt to formalize this idea in the next section.

4.6 Random Walk CCP

We propose a new adaptive strategy for choosing the radii for covering balls. Our intent is
to have the same effect as the a and 8 parameters (sensitivity to contamination and outliers),
while behaving in a more local manner. Instead of choosing global parameters a and 3, we
allow each ball to choose its own radius based on the local density of target and non target class
points. This will be done by observing a special random walk for each target class point. For
this reason we call this classifier the random walk classifier or RW CCP classifier. We will also

choose our covers in a slightly different way. Instead of choosing a minimum cardinality cover,
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we will attempt to find a cover that is a good representative of the points it covers. We will do
this in a greedy fashion, choosing the best ball to add to the cover at each iteration. Finally,
we will use a generalization of the cover dissimilarity function in (4.7) as the cover dissimilarity

function.

4.6.1 Choosing Radii

For each point z; in the target class Ay, we will examine a random walk R,, which is defined

as follows. For any r € R let
Ry, (r) = {z € Xo : d(ws,7) < v} — {2 € A4 = d(zi, ) <}

A way of visualizing this as a random walk is to think of a ball of radius r centered at z;. Asr
increases from zero, the ball will encounter points from Xy and X;. Each time the ball encounters
a target class point or non-target class point, the random walk goes up by one or down by one
respectively. See Figure 4.5 for an illustration of this. A large positive value of R,,(r) indicates
a relatively high local density of target to non-target class points in a ball of radius r around
x;. If there are an unequal number of target class and non-target class points (consider unequal
priors on the data) then we change the definition of the random walk. Suppose |Xp| = no and

|X1] = n1. A more general definition for the random walk is

Ry, (r) = Z—(1)|{x € Xyt d(zs,x) <71} — |{zr € X1 d(zi,z) <7}

Once we have the random walk for some target class point x;, we will use it to choose a radius
for the ball B;. But how shall we do this? We will argue for one possible way. Before we can do
so, we must understand the goal or purpose of each individual covering ball. What follows here
is a rather casual discussion designed to understand the intuition behind our methodology. Let
us suppose that the training data are independent observations drawn from the class conditional
distributions Fy and Fj. We also assume that the densities (fo and f1) for these distributions
exist and are continuous. Let D; be the discriminant region for class j € {0,1}. To approximate
D;, each covering ball B; centered at a point z; in class j € {0,1} should be the largest ball

such that B; N Di_; = (). Because our training samples are finite, it is impossible to determine
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(a) Ro,0)(r) (50 points) (b) R(o,0)(r) (500 points) (¢) R{o,0)(7)

Figure 4.6: Comparison of random walks with ideal curve (Normal data)

the exact largest radius for B; so that B; N Dy_; = . We will instead attempt to find a radius
ry, for a point z; such that B; covers as many target class points as possible while keeping
the intersection B; N D1_; small. In this way, our cover will become an approximation of the
discriminant region D; for each class.

Consider a point z € Xp. Let us first consider a simple case in which fo(2) = a and f1(z) = b

for a,b € [0,00) with a > b for all z in a disc D with radius rp centered at . If we observe n

observations from each class, then as n approaches infinity, the curve R’n(r) approaches

Ry(r) 3
AL /B RO /B R (4.8)

for all r < rp. For example, in two dimensions this function evaluates to (a —b)mr?. A possible

conclusion is that if we observe the function R, (r) behaving like Equation (4.8) on some interval
(0,7,,) we may assume that the ball B(x,r,,) is contained in the discriminant region for Xj.
Of course we must prepare for distributions which are not constant, but the previous example
will act as a guide in considering more complicated situations. For example, Figure 4.6 shows
the plot of R )(r) for data from Model 2 introduced in section 4.4.
In Figure 4.6(a) and 4.6(b), we see the plot of Rg,g)(r) when 50 and 500 points respectively
have been drawn from each class. Figure 4.6(c) shows Rf, ;) (r) as derived from equation (4.8).
For any target class point, we would like to choose the ball of maximum radius that does not
intersect the discriminant region of the other class. In Model 2, this is a ball of radius one for
the point located at (0,0). The line r = 1 is displayed in Figure 4.6(c). Ideally, we would like
to characterize the behavior of R,(r) at the point when the ball first intersects the discriminant

region for the non-target class. Unfortunately this task is difficult if not impossible. Figure 4.7
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Figure 4.7: R?o,75,0)(r)

(showing a plot of R?o.75,0)(r)) as compared to Figure 4.6(c) illustrates this. Both curves have
approximately the same shape (on different scales), yet the ideal radius for a ball centered at
(0.75,0) is 0.25. The shapes of the two curves seem to be very different at these points.

So how should we determine the radius for a point? One possible method is to look for the
“knee” of the curve. Recall from the simple example with constant densities that the R, (r)
curve will increase like r¢ (where d is the dimension of the data) in the discriminant region for
the target class. Vaguely stated, in the case of non-constant densities, we would like to expand
a covering ball as long as R,(r) is increasing fast enough. The word “enough” implies that the
“knee” of the curve is open to interpretation.

Since R, (r) curves are step functions, we cannot work easily with derivatives, which may be

helpful in finding the knee. We will instead find the knee with the following formula
ry = argmax{R,(r) — Py(r)}

where P,(r) is an increasing penalty function that biases toward choosing radii smaller than
argmax,{R,(r)}. The choice of smaller radii as opposed to larger radii has two advantages; we
can more accurately approximate the discriminant region with smaller balls, and our balls have
a higher probability of lying completely in the target class’ discriminant region. The choice of
P, (r) has a large influence on the make-up of the cover. Our standard choice of P,(r) is a line

through the origin with slope s(z) where s(z) is defined

_max, {R(r)}

s(x):=46 (4.9)

where § € [0,1]. The parameter ¢ indirectly influences the size of covering balls in the cover.
For example, setting § = 0 is equivalent to setting r* = arg max, R, (r). Somewhat surprisingly,

this choice of § seems to work best in practice. Any radius larger than arg max,{R,(r)} implies
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that the covering ball intersects with the discriminant region of the non-target class and thus is
not considered. We have concluded that this approach to finding the knee of the curve warrants
further investigation.

Finally, we note that the covering balls used in the RW-CCP are closed balls. This is

because the optimal radius r*

, as chosen by the method outlined here, is always the exact
distance between the center and some target class point since the function R, (r) only increases
at target class points. Since the boundary of every covering ball is passing through a target

class point we will include this point by making the covering balls closed.

4.6.2 Finding the Cover

Ideally we would like to find the cover which maximizes the performance of our classifier. Be-
cause of the combinatorial explosion of possibilities an exhaustive search is unreasonable. Instead
we choose our cover greedily. That is, we will choose our cover one ball at a time, each ball
attempting to improve the current classifier as much as possible. Instead of checking the per-
formance of our classifier at each stage we will instead use a closely related surrogate test. To
determine which ball to add next to the cover we will favor covering balls which most improve
our preclassifier. That is we will favor balls with a high number of (as yet uncovered) target
class points and a low number of non target class points. We will also consider the radius of a
ball. If two covering balls contain the same number of target and non-target class points but
have different radii, we will choose the ball with the smaller radii. This is because the smaller
ball may be more representative of the points it is covering.

We begin by assigning a score, Ty, to each potential covering ball of radius r} for a target
class point z. We imagine R,(r%) as a raw score since it represents a measure of the difference
of the number of target class points and non-target class points in the covering ball. Again,
because of the local nature of our CCP methodology, it will be advantageous to favor smaller
covering balls over larger balls (as mentioned in section 4.6.1). This is achieved by imposing
on R,(r*) an increasing penalty function p,(r) that increases with radius. This penalty also
has the effect of favoring balls which are good representatives of the points that they cover.
For the ball centered at z we assign a score T, = R,(r}) — p.(r}) and we choose the ball with
maximum score to add to the cover. We have found that a linear function serves as an effective

penalty function. As we will see in the next paragraph, scores as well as radii for balls will be
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recomputed after a ball is added to the cover. The slope of the penalty function p,(r) should
be dependent on the number of points still uncovered by the current cover. If at some point in
the process of finding a cover n,, target class points remain to be covered we use the function

Ny T

Per) = g,

as our penalty function where d,, is the largest distance from x to any other target class point.

After a ball is added to a cover, any points covered by that ball are disregarded and we
recompute radii for each uncovered point and choose a new ball to add to the cover based on
newly computed scores. We continue adding balls in this way until all target class points are

covered. The algorithm for finding the covers for both classes is presented below.

Random Walk CCP Classifier Construction
Input: Training sets Xp, X} in dissimilarity space (Q,d).
Output: Covers for Xy and A;.
For j = 0,1
Set C; = X;,Ch—; = X1—;,S = 0.
While C; # 0.
Compute radii r} for each x € &; as in Section 4.6.1.
Compute scores T}, for each z € &; as above.
z* = argmax{T, : z € &;}
S;=8;U{z*}.
Cj=Cj —{B;»N4&;}, Ci1j=C1—j —{By= NX1_;}

return Sg, S -

The adaptive procedure for finding the covering ball radii makes it necessary to recompute
the radii for all unchosen balls after a new ball is chosen for the cover. This is because of the
difficulty in choosing the radius mentioned in the previous section. The assumption is that a
ball chosen for the cover is a good representative of the points that it covers. Once these points
are removed from consideration, it may be easier to find radii for some of the remaining points,

that is, to represent some of the remaining points with balls. This idea is well illustrated with
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the following example.

Suppose the target class is uniformly distributed on the square [%,3] x [1, 2] and the non
target class is uniformly distributed on the unit square in two dimensions. Figure 4.8(a) shows
200 random observations from each class. Figures 4.8(b) and 4.8(c) show the Rg.5,0.5) (r) and
Ro.3,0.7)(r) curves respectively. Notice if we choose 6 = 0 that the radius of the ball centered
at (3, %) is ~ 0.27 and the radius of the ball centered at (0.3,0.7) is ~ 0.55. The covering ball
centered at (0.3,0.7) is not representative of the target class points it is covering and is not
considered because it has a relatively low score (~ 10). The covering ball centered at (3,1) is
chosen first since it has the largest score (~ 100).

In the second iteration we remove points covered by the ball centered at (%, %) (See Figure
4.8(d)) and recompute radii and scores for uncovered target class points. Figure 4.8(e) shows
the new random walk for the point (0.3,0.7). The radius of covering ball for the point (0.3,0.7)
is a much more reasonable ~ 0.047. This covering ball is chosen next since it has the highest
score (~ 4) among covering balls centered at the remaining uncovered points. Figure 4.8(f)
shows the final cover for the target class.

This system of choosing the radius for each covering ball and then choosing a ball based on
the score of that ball makes up for our difficulty in choosing the ideal radius for every covering
ball. The algorithm starts out by trying to crudely model the discriminant region for the target
class. It then uses smaller balls to fill in the uncovered areas of the discriminant region. Of
course, this last step is the most difficult part since there is very little data in these areas.

We note finally a modification to the algorithm that seems to improve performance. Usually
after a few iterations, the algorithm begins finding balls containing only a few target class
points. These points may or may not be in the discriminant region for the target class. Because
of the small number of points, we decide to not include these balls in our cover. We find that a
threshold of log(n) works well in practice, where n is the number of target class points in our

training set.

4.6.3 The Classifier

Once we have the cover for both classes, we choose a cover-dissimilarity function p to describe
distance to a cover and then use the classifier as defined in equation (4.2) to perform the

classification. The cover-dissimilarity function we have the most success with is a generalization
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1 2 3 4

Figure 4.9: Comparing plots of m;(z) for a ball with r; = 2 and T, = 2,5,10 for the solid,
medium and heavy dashed lines respectively.

of the scaled function in equation (4.7). For a cover C' made up of balls B; with centers x; and

radius r;,

(2,C) :== min d(z,z:) B (4.10)
pas\e, L) = {#:B;€C} i ' '

The parameter € is a control parameter in [0,1]. This parameter controls how closely the
classification regions of the classifier will follow the boundary of the high scoring covering balls.
For instance, let € = 1 and consider a ball with a large score. Let m;(z) := [@]Tm As
T, — oo, mi(z) = 0 for any z such that d(z,z;) < r; and m;(2) = oo for any z such that
d(z,z;) > r;. Thus any point inside such a ball will tend to be classified as the same class as
the point that is the center of the ball. Figure 4.9 illustrates this point. The three plotted lines
represent ;(z) for balls with various scores.

Consider the situation in Figure 4.10. Suppose the light and dark circles are covering balls
from different classes (say class zero and one respectively) and that the score of the light ball is
larger than that of the dark ball. If € = 0 then we see that the score of the balls is disregarded.
The solid vertical line represents points that are equally close to both covers when ¢ = 0.
However, increasing the value of € draws the classification region toward the higher scoring ball.
This is consistent with the logic that a ball with a higher score should be favored in the region
of intersection with a ball of lower score.

Figure 4.11 shows the classification regions for two data sets with two different values of e.
Figures 4.11(b) and 4.11(c) show classification regions for classifiers built on training data from
figure 4.6(a) using the same cover shown in figure 4.11(a). The boundary of the discriminant
region is shown by the black square. Notice that in figure 4.11(b) with € = 0, the classification

region is oddly shaped compared to the classification region in figure 4.11(c) which follows the

99



Figure 4.10: The solid vertical line corresponds to € = 0, the medium dashed line to € = 0.5 and
the dashed line to e = 1.

cover for the data which is distributed on the smaller square. Figures 4.11(e) and 4.11(f) show
classification regions built on the data of Model 2 (introduced in section 4.4) shown in figure
4.3(a) using the cover in figure 4.11(d). In this case, the discriminant boundary is the vertical

line passing through the z-axis at one.

4.6.4 Future Improvements

There are three important stages in the creation of the random walk CCP classifier; choosing
the radii of potential covering balls, choosing a set of covering balls to be the cover and choosing
the cover-dissimilarity function. For each task, we have presented a method; however, there
is room for improvement in each. For example, instead of choosing each cover independently,
another possibility is to choose both covers simultaneously in a greedy manner. This idea holds
merit because the classifier makes its decision based on the interaction between the two covers.
A more detailed description of this method and examples of its application are presented in [39].

Improvements could also be made in the choice of the cover-dissimilarity function by more
careful exploitation of the curve R,(r) for each point at the center of a covering ball. The
cover-dissimilarity function presented here works well for classifying points inside one or both
class covers. However, improvement is possible for the classification of points outside of both
covers. We might use the shape of R;(r) to gain better classifier performance. For example if
R, (r) falls sharply in some interval (r*, R) then we might guess that a point z just outside of
this ball (d(z,z) < R) is not likely to be the same class as . Exactly how to implement this

idea is not clear.
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Chapter 5

Clustering

5.1 Clustering

Another potential application of the ideas presented above is to unsupervised classification or
clustering. In unsupervised classification, we are not given a training set of labeled observations.
Instead we are asked to cluster the given data into k¥ groups where £ is an integer that may or
may not be specified. The ability to effectively cluster data is helpful in discovering unknown
structure in a data set.

We are given a single data set X C 2 from a dissimilarity space (2,d). Our approach is to
use a one-class version of the random walk CCP. That is, for each point z € X we will define a
random walk C(r) by

Cp(r) =|{z € X :d(z,2) <1} (5.1)

This is very similar to the definition of R, (r) in section 4.6 except there is only one class. We
picture this as a random walk that increases by one at r if the boundary of a ball centered at x
intersects some point in X' and otherwise stays at its present value.

Stated casually, we would like to place a covering ball at a point x to represent the local
cluster that = belongs to. This is very similar to our goal with the random walk classifier.
In this case, however, C;(r) is an increasing function, so choosing the value of r where C;(r)
reaches its maximum will not work, since every ball would cover every point in X'. Our goal is
to differentiate a point at or near the “center” of a cluster from a point which is not near the

)

center of a cluster. We will use “not near the center of a cluster” as a null hypothesis. That
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is, we will assume that every point is not near the center of a cluster unless we see evidence
that contradicts this. One way in which a point is not near the center of a cluster is if there is
complete spatial randomness, that is, the points of X are uniformly distributed in space. The
curve C,(r) for a point z among other points uniformly distributed looks like mr? for some
scalar m, where d is the dimensionality of the data. One way to choose the radius for a covering
ball for a point z is to find the largest positive value of C,(r) — mr?. Once we have a covering
ball for each point we can find a dominating set in some fashion and use the points covered by
each ball as a separate cluster.

This method of clustering is similar to a common clustering method called k-means cluster-
ing [15]. The object of k-means clustering is to find the mean vectors g1, pa, ..., ur of the k
clusters (assuming the data is drawn from a mixture of k probability distributions with means
1, Moy -y pg)- In the CCP clustering method, the representative for a cluster ¢ is the center
¢; of the ball B; containing those points. The point ¢; is a an approximation to the mean of
the points covered by the ball B; since this ball was chosen as a good representative of the
points it covers. One possible advantage of the CCP clustering method over k-means clustering
algorithms is that it adaptively chooses the parameter k. This can be helpful in cases where k
is unknown.

Figure 5.1(a) shows 100 observations drawn from a mixture of three normals. The exact
distribution is 35, 1®(i1;, ;) where /i = (0,0), @ = (2,1), g3 = (—2,2) and 2; = (0.1 %
i + 0.3)I,. Figure 5.1(b) shows the cover of the data. Using m = 0.2, our method has chosen
three balls (clusters) centered at (—0.03,0.10), (2.06,1.03) and (—1.95,2.03). Notice that several
points have not been included in any cluster. We have chosen to implement a threshold on the
number of points in a covering ball similar to our method in Section 4.6.2. Figure 5.1(c) shows
100 observation drawn from another mixture of three normals. This distribution has the same
mean vectors but with larger standard deviations. The exact distribution is Ele $9(11;, 35)
where 3; = (0.1%i+0.4)I,. The RW-CCP method finds three clusters centered at (—0.01, —0.23),
(2.15,1.22) and (—1.20,1.60). We used m = 0.07. Finally, Figure 5.1(e) shows 100 observations
of data uniformly distributed on the unit square. Figure 5.1(f) shows the cluster found by the
RW-CCP method. In this case, our method has found one large cluster. It is unclear what the

correct answer is for this case since one definition of a cluster is an area or non-uniform density.
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Chapter 6

Performance of CCP Classifiers

In this chapter we will investigate the performance of our CCP based classifiers, ans compare
against a few well-known classifiers on several data sets, both simulated and real. We compare
the performances of the nearest neighbor, and k-nearest neighbor classifiers, SVM’s and three
different CCP classifiers. The naive CCP is as described in section 4.4 using pure and proper
covers and the cover-dissimilarity function ps. The «, CCP classifier (section 4.5) allows a
non-zero choice of the a and 8 parameters for each class and also uses the p, dissimilarity. And
finally we use the random walk classifier as described in section 4.6. The Euclidean metric is
used in all tests. We attempted to optimize parameter choice for all training sets for all classifiers
except the nearest neighbor and naive CCP. Parameter values are reported in Appendix A. We
also introduce the linear classifier when considering model 2 data. A brief description of the

competing classifiers used is presented below.

6.1 Other Classifiers

6.1.1 Nearest Neighbor/k-Nearest Neighbor Classifier

The nearest neighbor is one of the simplest classification rules in existence. It’s performance

can be surprisingly good, however. The nearest neighbor classifier is defined as

0 if mingex, d(2,2) < mingex, d(z,y)
gNN(z) =
1 otherwise
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Thus the nearest neighbor classifier assigns the class label of the training observation that is
closest. This classifier is not universally consistent, but its misclassification rate is guaranteed
to converge to at most twice the Bayes optimal rate [15].

The k-nearest neighbor classifier assigns an unknown observation the class label which is most
prevalent among its k-nearest training set neighbors. This rule is slightly more complicated than
the nearest neighbor rule; however, its misclassification rate is guaranteed to converge to Bayes

optimal as long as k goes to infinity along with the training sample size and % goes to zero.

6.1.2 Linear Classifier

A general binary linear classifier can be expressed as

0 ifw-z+w,>0
9(z) == (6.1)
1 ifw-z4+w, <0.

In the case of two multivariate normal densities with equal prior probabilities and with means
o and pp respectively and covariance matrices 3o = ¥; = I, the Bayes optimal classifier is

linear and of the form

0 if (o — p)"(x +%,) >0
g1(z) := (6.2)
1if (o — )" (x +%,) <0

where

X0 = 5(po — 1)

DN | =

This implies that the optimal linear classifier is the hyperplane that is the perpendicular bisector
of the line segment connecting po and p3. When pg and p; are not known we may use an
approximate version of this classifier by substituting the sample means fig and fi; for the means

in Equation 6.2. We will be using the linear classifier in our Model 2 only.

6.1.3 Support Vector Machines

We say a training set is linearly separable if a hyperplane exists such that class zero observations

are separated from class one observations. In other words, there is a vector a such that a”’z > 0
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if z € Xy and aT’z < 0 if 2 € X;. The vector a is perpendicular to the separating hyperplane.
The margin of a separating hyperplane is the minimum distance between the hyperplane and any
point in the training set. We call the points of the training set closest to the optimal separating
hyperplane (the separating hyperplane with the largest margin) are called the support vectors.

The goal of a support vector machine [15, 43] is to find the separating hyperplane with the
largest margin. Of course not all training sets are linearly separable, but with an appropriate
mapping ¢(-) to a higher dimension, any training set can become linearly separable. The
classifier is a linear classifier in the higher dimension but can be highly non-linear in the original
space. The choice of the mapping ¢(-) is called the kernel function.

The decision function for a support vector machine with kernel ¢(-) and support vectors
T1,%2,...,TN IS

0 (Zﬁil a;ip(z, i) — b) <0

1 otherwise

gsum (2) ==

where q; are the coefficients for the optimal separating hyperplane. Of particular interest to our
research is the radial basis kernel function. These kernel functions K (|z — z;|) depend only on
the distance between two vectors. Support vector machines with radial basis kernel functions
are similar to CCP based classifiers since the classification decision based on the distance of a

given point to a set of representative points.

6.2 Simulation Data

For each model and data dimensionality, we created training sets of n observations from each
class (n € {50,100, 200, 500}) and then performed Monte Carlo replicates on test sets of 100 new
observations from each class. For each replicate, the performance of a classifier is measured by
the fraction of observations misclassified (as an approximation of the misclassification rate L(g)).
We performed Monte Carlo replicates until the standard deviation for the average performance
became less than 0.003.

In each section below we examine the performance on different data sets in two, three and
five dimensions of our CCP classifiers, the nearest neighbor classifier, the k-nearest neighbor
classifier and support vector machines. We use the radial basis function kernel included in the

SVM-light package to implement our support vector machines [22].
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6.3 Model 1

In this simulation we have Fy = U[0,1]? and F; = 1 U[0.1,0.55] + £ U[0.6,0.8]¢ where d is

the dimension of the data. The Bayes optimal decision rule for this model is

0 if z ¢ {[0.1,0.55]¢U[0.6,0.8]%}

1 otherwise

and the Bayes optimal error rate is given by

L* = - ((0.55 - 0.1)* + (0.8 — 0.6)%) .

N[ =

This model presents a special challenge to classifiers because of the sharp corners of the dis-
criminant region. The CCP based classifiers perform well even using the Euclidean metric. The

results for these classifiers would improve if we switched to the L, metric.

6.3.1 Two dimensions

Figures 6.1(a) and 6.3(a) show training sets in two dimensions of size 100 and 500 points from
each class respectively. The points from Fj are represented as empty circles and those drawn
from Fj as black filled circles. The experimental approximation of the misclassification rate for
each classifier is shown in Table 6.1. For this model in two dimensions we have L* ~ 0.121.
Notice that the a, 8 and RW CCP-based classifiers outperform the nearest neighbor and the
optimized k-nearest neighbor classifiers. classifier complexity. Table 6.2 on page 75 shows the
average number of balls in a cover for each class for each value of n.

Figures 6.1 and 6.3 show the covers of a training sets of size 100 and 500 respectively. The
covering balls for class one are represented as dashed balls. Figures 6.2 and 6.4 illustrate the clas-
sification regions calculated by the various classifiers for n = 100 and n = 500 respectively. The
gray regions are the regions each classifier will classify as class one. The optimal classification

regions for class one are outlined in black.
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(b) Pure, proper cover

(a) Simulation data

(d) RW cover

(¢) a, B cover

(100 points).

imensions

Covers of model one data in two d

Figure 6.1
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0.2 0.4 0.6 0.8 1

(c) SVM (d) Naive CCP

(e) @, 8 CCP (f) RW-CCP

Figure 6.2: Comparison of classification regions for model one data in two dimensions (100
points).
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(d) Naive CCP
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Figure 6.4: Comparison of classification regions for model one data in two dimensions (500

points).



6.3.2 Three Dimensions

Figure 6.5(a) shows a sample of 100 observations from each class. Figures 6.5(b) and 6.5(c)
display the class zero and class one covers (respectively) for the data as determined by the «, 8
CCP using ag = a1 = 1 =0, o = 3. Figures 6.5(d) and 6.5(e) show the covers for the random
walk CCP for class zero and class one respectively.

The sample misclassification rates are shown in Table 6.3. In three dimensions, L* ~ 0.099.
Once again, the CCP classifiers outperform the nearest neighbor and k-nearest neighbor classi-
fiers. RW and a, CCP classifiers are competitive with SVM’s in three dimension. Also note

the drop in classifier complexity from the naive CCP to the RW CCP (Table 6.4).

6.3.3 Five Dimensions

Finally we present results in five dimensions where L* = 0.019. Here we begin to see effects of
choosing the Euclidean metric. The sample misclassification rates are shown in Table 6.5. Once
again, the CCP classifiers outperform the nearest neighbor and k-nearest neighbor classifiers.
RW and a,3 CCP classifiers are competitive with SVM’s in three dimension. Also note the
drop in classifier complexity from the naive CCP to the RW CCP (Table 6.6).
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(a) Model one data in three dimen-
sions

(d) RW cover of class zero (e) RW cover of class one

Figure 6.5: Covers of model one data in three dimensions.
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Training Size || NN k-NN | SVM | Naive CCP | a,8 CCP | RW-CCP
50 0.242 | 0.240 | 0.201 | 0.228 0.212 0.212
100 0.224 | 0.212 | 0.184 | 0.213 0.190 0.183
200 0.210 | 0.188 | 0.168 | 0.201 0.171 0.165
500 0.199 | 0.166 | 0.152 | 0.194 0.154 0.153

Table 6.1: Misclassification rates for model one data in two dimensions.

Training Size Naive CCP a,3 CCP RW-CCP
class 1 | class O | class 1 | class 0 | class 1 | class O
50 14.3 16.3 6.7 16.3 2.8 5.3
100 27.0 28.2 9.3 28.2 3.4 8.4
200 51.2 49.5 13.4 49.6 4.6 13.0
500 122.7 110.1 27.3 110.1 5.9 19.2

Table 6.2: Average cover cardinality for model one data in two dimensions.

Training Size || NN k-NN | SVM | Naive CCP | a,8 CCP | RW-CCP
50 0.187 | 0.187 | 0.132 | 0.158 0.148 0.140
100 0.162 | 0.162 | 0.111 | 0.141 0.130 0.118
200 0.144 | 0.138 | 0.096 | 0.128 0.114 0.104
500 0.126 | 0.114 | 0.082 | 0.114 0.097 0.0935

Table 6.3: Misclassification rates for model one in three dimensions.

Training Size Naive CCP a, CCP RW-CCP
class 1 | class O | class1 | class 0 | class 1 | class 0
50 9.4 14.4 6.1 14.4 2.2 4.9
100 17.0 22.8 6.9 22.8 2.5 7.0
200 31.3 374 11.0 374 3.0 10.1
500 70.9 75.3 4.7 16.7

Table 6.4: Average cover cardinality for model one data in three dimensions.

Training Size || NN k-NN | SVM | Naive CCP | «,8 CCP | RW-CCP
50 0.146 | 0.146 | 0.054 | 0.093 0.086 0.090
100 0.118 | 0.118 | 0.046 | 0.078 0.070 0.072
200 0.097 | 0.097 | 0.040 | 0.068 0.059 0.058
500 0.078 | 0.079 | 0.034 | 0.057 0.051 0.048

Table 6.5: Misclassification rates for model one in five dimensions.

Training Size Naive CCP a, CCP RW-CCP
class 1 | class O | class1 | class 0 | class 1 | class 0
50 5.1 15.9 3.4 15.8 2.1 5.5
100 8.35 22.7 3.2 22.7 2.1 7.0
200 14.5 32.7 4.6 32.7 2.3 9.6
500 30.8 55.0 7.5 55.0 2.7 13.8

Table 6.6: Average cover cardinality for model one data in five dimensions.
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6.4 Model 2

In this model, Fp is the normal distribution with mean at the origin and the identity covariance
matrix and Fj is the normal distribution with mean (2,0,...,0) and the identity covariance

matrix. The Bayes optimal classification rule for this model for an unknown point z € R? is

i 0 if 2[1] <1,
g% (2) =
1 otherwise.

The linear non-parametric classifier is the most efficient classifier for this model. We compare
our CCP based classifiers with the linear classifier, the nearest and k-nearest neighbor classifiers,
and support vector machines. In this case we use a linear kernel function for the SVM. The
linear classifier and the SVM perform very well on this data set since the optimal discriminant

boundary is linear. Also the k-nearest neighbor does very well with high k-values.

6.4.1 Two Dimensions

Figure 6.6(a) shows a training set in two dimensions of size 100 points from each class. The
points from Fy are represented as empty circles and those drawn from Fj as black filled circles.
The experimental approximation of the misclassification rate for each classifier is shown in
Table 6.7. The Bayes optimal error rate for this model in any dimension is approximately
0.1586. The average number of balls per cover for each CCP classifier is presented in Table
6.8. The optimal parameter choice for a, give an average of one ball per class. This is not
surprising since the classification region between two equal sized balls from different classes will
be a straight line. The random walk classifier covers tend to have one large ball and several
smaller balls. Unfortunately this does not provide the best cover for classification purposes. A
linear discriminant boundary is most efficiently represented with one ball from each cover.
Figure 6.6 shows the covers of a training set of size 100. The covering balls for class zero are
represented as dashed balls. Figure 6.7 illustrates the classification regions calculated by the
various classifiers for n = 100. The gray regions are the regions each classifier will classify as

class zero. The optimal classification region is to the left of the vertical line z = 1.
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Figure 6.6: Covers of model two data in two dimensions.
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Figure 6.7: Comparison of classification regions for Model two data in two dimensions.
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6.4.2 Three and Five Dimensions

We have performed the same tests as the above section for Model two in three and five dimen-
sions. Figures 6.8 show covers for Model 2 data in three dimensions using 100 training points
from each class. Both the «a, 8 cover and the random walk cover consist of one ball per class.
The sample misclassification rates are presented in Tables 6.13 and 6.11 for three and five di-
mensions respectively. Also Tables 6.14 and 6.12 show the average number of balls in each cover

for Model two in three and five dimensions respectively.

(a) a, B cover (b) Random Walk cover

Figure 6.8: Covers of model two data in three dimensions.
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Tr. Size || Linear | NN k-NN | SVM | Naive CCP | «,8 CCP | RW-CCP
50 0.161 0.228 | 0.164 | 0.162 | 0.181 0.167 0.172
100 0.160 | 0.227 | 0.161 | 0.161 | 0.178 0.164 0.170
200 0.159 | 0.226 | 0.160 | 0.161 | 0.176 0.162 0.166
500 0.159 | 0.225 | 0.159 | 0.161 | 0.176 0.160 0.163

Table 6.7: Misclassification rates for model two data in two dimensions.

Training Size Naive CCP a,3 CCP RW-CCP
class 0 | class 1 | class O | class 1 | class 0 | class 1
50 13.9 13.9 1.0 1.0 1.4 1.4
100 27.0 27.0 1.0 1.0 2.0 2.0
200 53.3 53.3 1.0 1.0 3.1 3.1
500 132.1 132.0 1.0 1.0 6.2 6.2

Table 6.8: Average cover cardinality for model two data in two dimensions.

Training Size || Linear | NN k-NN | SVM | Naive CCP | a, 8 CCP | RW-CCP
50 0.163 | 0.235 | 0.166 | 0.192 | 0.218 0.172 0.179
100 0.160 | 0.232 | 0.162 | 0.163 | 0.216 0.167 0.175
200 0.159 | 0.229 | 0.160 | 0.162 | 0.215 0.164 0.170
500 0.159 0.227 | 0.159 | 0.161 | 0.213 0.161 0.166

Table 6.9: Misclassification rates for model two data in three dimensions.

Tr. Size Naive CCP a,p CCP RW-CCP
class 0 | class 1 | class 0 | class 1 | class 0 | class 1
50 14.1 14.1 1.0 1.0 1.6 1.6
100 26.9 26.9 1.0 1.0 2.3 2.3
200 52.8 52.8 1.0 1.0 3.7 3.6
500 129.2 129.3 1.0 1.0 7.2 7.2

Table 6.10: Average cover cardinality for model two data in three dimensions.

Training Size || Linear | NN k-NN | SVM | Naive CCP | o,8 CCP | RW-CCP
50 0.165 0.250 | 0.171 | 0.205 | 0.221 0.182 0.184
100 0.162 0.244 | 0.165 | 0.167 | 0.218 0.174 0.177
200 0.160 0.240 | 0.162 | 0.162 | 0.215 0.169 0.172
500 0.160 | 0.236 | 0.161 | 0.159 | 0.200 0.166 0.170

Table 6.11: Misclassification rates for model two data in five dimensions.

Tr. Size Naive CCP a,p CCP RW-CCP
class 0 | class 1 | class O | class 1 | class 0 | class 1
50 15.0 14.9 1.0 1.0 1.7 1.7
100 28.3 28.4 1.0 1.0 2.2 2.1
200 54.0 54.0 1.0 1.0 3.0 3.0
500 130.6 130.7 1.0 1.0 5.0 4.9

Table 6.12: Average cover cardinality for model two data in five dimensions.
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6.5 Minefield Data

The experimental data set is multispectral data observations of minelike objects taken by an
unmanned aerial vehicle as part of the Coastal Battlefield Reconnaissance and Analysis (CO-
BRA) Program. There are 39 observations, of which 12 are actual mines and 27 are false alarms.
The raw data is six dimensional (six spectral bands), but we consider the two dimensions most
valuable to classification based on the work of Olson, Pang and Priebe [31]. Figure 6.9(a) shows
a two-dimensional plot of these two features. The filled disks represent mines and the circles
represent non-mines. Figure 6.9 shows the covers for the three CCP based classifiers.

Figure 6.10 shows the classification regions produced by the six different classifiers. Using the
leave-one-out error rate estimate we observe that the random walk CCP and «, 8 CCP classifiers
have the best performance of 9/39 and 8/39 incorrect respectively. The nearest neighbor, k-
nearest neighbor and SVM classifiers classify 10/39 incorrectly or worse. Optimal parameter

choice for the minefield data is given in Table A.7.
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Figure 6.9: Covers for minefield data.
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(a) NN

(c) SVM

(e) a, 8 CCP

(b) k-NN

(d) Naive CCP

(f) RW-CCP

Figure 6.10: Comparison of classification regions for minefield data.



6.6 Synthetic Data

In this experiment we use the minefield data in the previous section to generate what is called
synthetic data. We use the available data to estimate the class conditional densities fy, and f;.
We perform the density estimation using a kernel density estimation techniques [37]. Kernel
density estimates are a generalization of histograms. For a set of data Y = {y1,y2,...,yn} from

density f we achieve a kernel density estimate f as follows

o= 2x (45)

where k() is the kernel function and h is a smoothing factor. In our estimation of the class
conditional densities, we use a kernel function of #eé and an h value of 0.4. To draw a
random observation from our kernel density estimate we simply choose uniformly at random a
point x among the observed data and then draw a point from a normal distribution centered at
z with standard deviation 0.4.

Figure 6.11(a) shows an example of 100 points from each class and Figure 6.11 shows the
covers for the three CCP based classifiers. Notice the similarity of the covers in Figure 6.9 and

Figure 6.11. Figure 6.12 shows the classification regions for the six classifiers.

Training Size || NN k-NN | SVM | Naive CCP | a,8 CCP | RW-CCP
50 0.345 | 0.319 | 0.284 | 0.339 0.316 0.326
100 0.339 | 0.292 | 0.268 | 0.332 0.300 0.289
200 0.337 | 0.272 | 0.261 | 0.329 0.292 0.273
500 0.335 | 0.260 | 0.257 | 0.326 0.287 0.266

Table 6.13: Misclassification rates for synthetic minefield data.

Tr. Size Naive CCP a,B CCP RW-CCP
class 0 | class 1 | class O | class 1 | class 0 | class 1
50 21.3 20.8 13.7 19.9 2.8 3.3
100 41.4 40.0 14.1 36.9 3.3 4.0
200 80.8 77.6 48.2 72.4 3.0 4.7
500 200.0 191.7 125.3 181.3 | 4.8 6.4

Table 6.14: Average cover cardinality for synthetic minefield data.
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(a) Synthetic data based on Minefield

(d) RW cover

(¢) a, B cover

Figure 6.11: Covers of synthetic minefield data
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(c) SVM (d) Naive CCP

(e) @, 8 CCP (f) RW-CCP

Figure 6.12: Comparison of classification regions for synthetic minefield data.
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Chapter 7

Conclusions

We have presented the class cover problem from two different angles. In Part IT of this work, we
investigate the theoretical properties of a specific CCP. In Chapter 2 we introduce class cover
catch digraphs. We give a necessary condition for a digraph to be a CCCD and show this is
also a sufficient condition for a special class of CCCDs: Euclidean CCCDs. We also present
some results involving the domination number of CCCDs. There remain many unanswered
questions regarding the structure of CCCD’s in high dimensional Euclidean space and other
dissimilarity spaces. For example, there is no conjecture on sufficient conditions for CCCDs in
R? for any ¢ > 1. Other research directions include approximation algorithms for the domination
number in CCCDs, and the study of invariants such as chromatic number, number of edges,
and maximum cardinality independent sets. Another interesting topic is the study of the pair of
CCCD digraphs induced by considering one class as the target class and then switching roles. In
Chapter 3 we present results on the domination number in randomized CCCDs. Most of these
results involve the CCP in one dimension. Work is currently underway to find similar results
in higher dimensions. Random CCP results are motivated by the applications of the CCP to
statistical pattern recognition.

In Part IIT we present applications of the CCP. We introduce three new CCP based classifiers.
Each new classifier has its own strengths and weaknesses and are all generalizations of the
reduced nearest neighbor classifier. The Naive CCP classifier also behaves much like the nearest
neighbor classifier; it is simple to implement and tends to overfit. The a,8 CCP classifier is

analogous to the k-nearest neighbor classifier as it attempts to improve generalization of the
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Naive CCP classifier. The random walk CCP classifier is an adaptive version of the a,3 CCP
classifier. This presentation of CCP based classifiers is intended to be a proof-of-concept. There
is still much work that can be done to improve the performance and our understanding of
these methods. This is especially true in the case of the random walk CCP classifier. Many
of the methods presented here are ad hoc in nature and could possibly be replaced with more
theoretically founded methods. We have also presented an application of the class cover problem
to unsupervised classification or clustering. Our method adaptively chooses the number of
clusters. In Chapter 6 we present the results of several experiments comparing CCP based
classifiers to several popular classifiers. In these tests the performance of our classifiers was

competitive.
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Appendix A

Parameter selection

Training set size || k-NN | SVM a,B CCP

k g ag | Bo|on | B | T
50 3 35 0 [2 |0 |0 |05
100 3 46 1 3 [0 |0 |0.001
200 4 57 1 5 [0 |0 |0.001
500 4 76 1 6 [0 |0 |0.001

Table A.1: Optimal parameters for model one in two dimensions.

Training set size || k-NN | SVM a,B CCP

k 9 ag | Bo|oa | B | T
50 1 18 0 |1 |0 |0 |05
100 1 29 0 |3 |0 [0 |o0.001
200 3 46 1 {3 |0 [0 |05
500 5 69 1 4 0 0 0.001

Table A.2: Optimal parameters for model one in three dimensions.

Training set size || k-NN | SVM a, CCP

k g ag | Po|lar | B | T
50 1 9 0 0 |0 0 |05
100 1 11 1 3 10 0 | 0.001
200 1 14 2 4 10 0 | 0.001
500 3 26 5 6 |0 0 | 0.001

Table A.3: Optimal parameters for model one in five dimensions.
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Training set size || k-NN a,B CCP

k ag |Bo|oa |Bi|T
50 55 15 | 8 15 | 8 1
100 105 30 |18 |30 | 18 | 0.5
200 216 48 | 37148 | 37|05
500 491 105 | 85 | 105 | 85 | 0.001

Table A.4: Optimal parameters for model two in two dimensions.

Training set size || k-NN a, CCP

k ap | Bo a1 | B | T
50 61 11 |13 |11 | 13 | 0.5
100 113 22 (2222221
200 191 44 | 37144 | 37| 1
500 477 98 |1 96 | 98 | 96 | 0.001

Table A.5: Optimal parameters for model two in three dimensions.

Training set size || k-NN a, CCP

k oo |Bo a1 | P | T
50 55 16 [ 13 |16 | 13 | 0.5
100 121 28 | 20 | 28 | 20 | 0.001
200 223 46 | 47 | 46 | 47 | 0.001
500 501 5 (6 |0 |0 |0.001

Table A.6: Optimal parameters for model two in five dimensions.

k-NN a, 3 CCP
oo |Bo|oa | B | T
3 1|4 2 2 1 1

Table A.7: Optimal parameters for minefield data.

Training set size || k-NN a, CCP

k a | Bo|oa | B | T
50 5 4 |3 (3 |0 |0.001
100 9 4 |3 (3 |0 |0.001
200 21 6 1 |5 |0 | 0.001
500 37 8 1 |10 |0 | 0.001

Table A.8: Optimal parameters for synthetic minefield data.
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Appendix B

Notation

RY

Ry

z[i] for x € R?

{0}

Lx,y,z

M; ; for a matrix M

xT

Ac¢ for A C Q
B(z,r)

the set of integers ({...—2,-1,0,1,2,...})
the set of natural numbers ({0,1,2,...})

q dimensional real space

{reR:z>0}

the 3" element in the ¢ dimensional vector
the origin in R? for any ¢

the angle formed by points z,y, and z.

the element in row ¢ column j in matrix M.
the transpose of the vector x

the complement of the set A, in other words 2 — {A}.
the ball centered at = with radius 7.
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isomorphic, 10

kernel density estimation, 102
kernel function, 83
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kissing number, 20
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partially ordered set, 14

relation, 14

semi-parametric, 51

simple cycle, 13

sphere digraphs, 14
supervised learning, 49
support vector machine, 83

synthetic data, 102

training data, 50

transitive closure, 15

unsupervised learning, 49
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Voronoi diagram, 22
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