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Abstract

The CCCD problem is motivated by its applications in pattern classification.

The domination number is an important measurement of the complexity of CCCD

classifiers. Priebe et al. found the exact distribution of the domination number of

CCCDs for the uniform distribution in one dimension. Under the same conditions,

DeVinney and Wierman proved the Strong Law of Large Numbers (SLLN).

Based on DeVinney and Wierman’s result, our research establishes the SLLN for

general distributions in one dimension. In addition, we give an upper bound for the

limiting value in the SLLN, which could lead to a statistical test for the equality of two

distributions. After a lengthy calculation, we obtain the variance of the domination

number in one dimension, and find the limiting variance. From this result, by using

two limit theorems for negatively associated random variables, we prove the Central

Limit Theorem (CLT) for the domination number in this one-dimensional case.

In two dimensions, we resort to “subadditive processes” to prove the Law of Large

Numbers for the domination number. We first consider a Poissonized problem, then

convert the SLLN in the Poisson case to the Weak Law of Large Numbers (WLLN)
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in the uniform distribution case. We finally generalize the WLLN to more general

distributions, using the same idea in the one dimensional problem. At the end of this

dissertation, we describe Monte Carlo simulations to empirically test the SLLN and

CLT. The results support the limit theorems proved in this dissertation, and strongly

suggest the CLT still holds in higher dimensions.

Advisor: John C. Wierman

Readers: John C. Wierman and Carey E. Priebe
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Chapter 1

Introduction

1.1 Mathematical Model

1.1.1 Class Cover Problem

The study of the class cover problem (CCP) was initiated by Cowen and Can-

non [1], motivated by applications in statistical pattern classification [2]. Priebe et

al. [3] introduced a general version of the CCP, described in the following way.

For a sample space Ω, a dissimilarity function d : Ω× Ω → R satisfies d(α, β) =

d(β, α) ≥ d(α, α) = 0 for all α, β ∈ Ω. Note that throughout this dissertation we

will only consider the case where d is the Euclidean norm. Suppose there are two

classes of Ω-elements, denoted as X ≡ {xi ∈ Ω : i = 1, · · · , n} and Y ≡ {yj ∈ Ω : j =

1, · · · ,m}. For each xi, its covering ball is defined as follows.
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Definition 1.1.1. B(xi) =
{
ω ∈ Ω : d(ω, xi) < min

j
d(yj, xi)

}
.

A class cover of X is a subset of covering balls whose union contains all xi ∈ X .

Suppose d(α, β) = 0 if and only if α = β for any α, β ∈ Ω. If we assume each point in

X is distinct from each point in Y , then every covering ball B(xi) will be nonempty

and contain xi, hence the set consisting of all covering balls is a class cover. The CCP

considered by Priebe et al. is to find a minimum cardinality class cover.

1.1.2 Class Cover Catch Digraph

The CCP can be converted to a graph theory problem, as follows.

Definition 1.1.2. The class cover catch digraph (CCCD) induced by a CCP is the

digraph D = (V,A) with vertex set V = {xi : i = 1, · · · , n} and arc set A =
{
(xi, xj) :

xj ∈ B(xi)
}
.

The definition above basically says that the CCCD induced by a CCP contains

the directed edge from xi to xj if and only if xj is included in the covering ball of

xi. An illustration of the construction of a CCCD is given in Figure 1.1. In this

figure, the covering balls are drawn on the left as dashed circles, with the class X

observations indicated by black dots and the class Y observations indicated by small

circles; the induced CCCD is shown on the right.

A dominating set of a general digraph is defined as follows.

Definition 1.1.3. The set S ⊂ V is a dominating set of a digraph D = (V,A) if and
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Figure 1.1: An illustration of the construction of a CCCD

only if for all v ∈ V , either v ∈ S or (s, v) ∈ A for some s ∈ S.

In other words, for any vertex v of a digraph, v is either contained in a dominating

set, or there exists a directed edge from some vertex in the same dominating set to

v. Recall that in a CCCD, there is a directed edge from xi to xj if and only if xj is

contained in the covering ball of xi. Therefore, finding a minimum cardinality class

cover of a CCP is equivalent to finding a minimum cardinality dominating set of the

induced CCCD. We still use Figure 1.1 to illustrate this concept. In Figure 1.1, the

darkened covering balls of x2, x3, x4 and x7 make up a minimum cardinality class

cover, and {x2, x3, x4, x7} is a minimum cardinality dominating set of the induced

CCCD.

Note that the covering balls of x2, x3, x4 and x5 constitute another minimum

cardinality class cover of the same CCP. Generally, there could be more than one

solution to a CCP. Hence the minimum cardinality dominating set of a CCCD could

3



be non-unique as well.

Finding a minimum cardinality dominating set in a general digraph is an NP-hard

problem. However, this does not immediately imply that the CCP is NP-hard, since

we have not characterized which digraphs are CCCDs. This topic is more thoroughly

covered in DeVinney’s dissertation [4].

1.1.3 Domination Number

Definition 1.1.4. The domination number of a CCCD is the cardinality of the

CCCD’s minimum dominating set.

Since Ore [5] first used the name “domination number” in 1962, there has been

increasing interest in this topic because of its computational complexity and many

applications in computer networks, social sciences and other fields. Haynes, Hedet-

niemi and Slater provide a comprehensive discussion of both the fundamentals [6] and

advanced topics [7] of domination in graphs. In the CCCD setting, the domination

number is the size of the minimum cardinality class cover, which in turn determines

the complexity of the CCCD classifiers as shown in Section 1.2. This dissertation

is devoted to the study of the domination number of CCCDs due to its theoretical

importance in analyzing the CCCD classifiers.
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1.1.4 Randomization

To study the problem from a statistical angle, randomness needs to be added to

the Ω-valued points xi and yj. Specifically, xi is replaced by a random variable Xi,

and yj is replaced by a random variable Yj. We assume that the Xi, i = 1, · · · , n

are independent of the Yj, j = 1, · · · ,m, and all Xi’s and Yj’s are distinct with

probability one. After such randomization, all the previous definitions still apply. In

particular, we let X ≡ {Xi : i = 1, · · · , n} and Y ≡ {Yj : j = 1, · · · ,m} be two sets

of i.i.d. random variables taking values in Ω, with distribution functions FX and FY ,

respectively. In addition, we denote the domination number by Γn,m(X ,Y), or simply

Γn,m.

1.2 Applications in Pattern Classification

Pattern classification, “the assignment of a physical object or event to one of

several prespecified categories” [8, page 2], has wide applications to various real world

problems such as automated speech recognition, DNA sequence identification and

fingerprint identification. For a thorough description of pattern classification, see the

seminal texts by Duda et al. [9] and Lugosi et al. [10].

The abstract mathematical model of the pattern classification problem is for-

mulated in the following way [2]. For simplicity, but without loss of generality, we

suppose there are two classes of objects of interest, referred to as class X and class

5



Y , respectively. Assuming that the objects of both classes belong to a sample space

Ω, to model the uncertainty about which class the objects belong to, we assume prior

probabilities PX and PY for these two classes
(∑

c∈{X,Y } Pc = 1
)
. We further assume

that given the class, X or Y , the objects of that class are drawn according to the

class-conditional distribution functions, FX(x) or FY (y), respectively. A random pair

(
c(Ψ),Ψ

)
is then generated in a two-step process: first we choose the random class

label c(Ψ) ∈ {X,Y } according to the prior probabilities; and then, based on the cho-

sen class, we select Ψ according to the corresponding class-conditional distribution

function.

In a classification problem, for an observation pair
(
c(ψ), ψ

)
generated as above,

only the data part ψ is given; the class label part c(ψ) is unknown. Therefore, the

goal of a classifier is to guess correctly whether c(ψ) is X or Y . Given a training

sample Dk of size k with known class labels

Dk =
{(
c(ψ1), ψ1

)
, · · · ,

(
c(ψk), ψk

)}

,

then a classifier is a function ĉk(ψ) = ĉk(ψ,Dk) that, based on the training data Dk,

assigns a class label X or Y to any input point ψ ∈ Ω. The performance of a classifier

ĉ is measured by the probability of error, or misclassification rate, given by

E
[

P
(
ĉk(Ψ) 6= c(Ψ) | Dk

)]

.

The CCP has been actively studied recently because its solution can be directly

used to generate classifiers competitive with other methods. The data point sets
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X = {Xi : i = 1, · · · , n} and Y = {Yj : j = 1, · · · ,m} constitute the training data

from classes X and Y , respectively. Thus, in the setting of classification, the CCP is

simply a problem of selecting a small set of data points to be representative of a class.

This set is chosen to be as small as possible, i.e., a minimal cardinality dominating

set, to make the classifier less complex while keeping most of the relevant information.

A simple CCCD classifier is constructed as follows: by switching the roles of X and

Y , a pair of dual CCPs generates two solutions such as BX =
{
B(Xi) : i ∈ I

}
, I ⊂

{1, · · · , n}, and BY =
{
B(Yj) : j ∈ J

}
, J ⊂ {1, · · · ,m}, respectively. If we define

CX =
{
ω ∈ Ω : ω ∈ B(Xi) s.t. B(Xi) ∈ BX

}
, CY =

{
ω ∈ Ω : ω ∈ B(Yj) s.t. B(Yj) ∈

BY

}
, incorporating these two solutions gives a classifier ĉ(ψ) : Ω → {X,Y } as follows:

ĉ(ψ) =







X ψ ∈ CX ∩ CY
c,

Y ψ ∈ CY ∩ CX
c,

determined by further criteria otherwise.

More details about the CCP’s application to classification are presented in Preibe et

al. [11]. Note that the complexity of the classifier ĉ(ψ) is determined by the sizes

of BX and BY , i.e., the domination numbers Γn,m(X ,Y) and Γm,n(Y ,X ). In other

words, the domination number serves as a measure of efficiency in distinguishing the

classes X and Y from each other.
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1.3 Our Results

In this dissertation, we investigate the limit theory for the domination number

of CCCDs. DeVinney and Wierman [12] have proved the the strong law of large

numbers (SLLN) for the domination number generated by uniformly distributed data

in one dimension (see Theorem 2.1.2). In Chapter 2, we extend their result to more

general cases in which the class-conditional densities fX and fY are bounded and

continuous in any bounded interval.

To obtain the central limit theorem (CLT) for the domination number Γn,m of

CCCDs, we calculate the variance of Γn,m (see Chapter 3). This calculation is con-

ducted in one dimension for uniform class-conditional distributions. Under the same

assumptions, in Chapter 4, we prove the CLT for the domination number in one

dimension. An important tool used in this proof is negative association.

The work in two dimensions is more challenging because the exact distribution of

Γn,m is unavailable in any dimension higher than one. In Chapter 5, by using subad-

ditive processes, we prove the SLLN for the domination number generated by Poisson

points. Based on this result, we obtain the weak law of large numbers (WLLN) when

the points are uniformly distributed in the unit square [0, 1]2. Then, applying the

same technique used in Chapter 2, we generalize the WLLN to the case in which fX

and fY are positive, bounded and continuous.

In Chapter 6, we explore the empirical evidence for the CLT by Monte Carlo sim-

ulation methods. Although the CLT for the domination number in two dimensions is

8



not obtained in this dissertation, we find that, as expected, the empirical distribution

of the domination number in this situation is asymptotically normally distributed.

The techniques and ideas used in this research are not exclusive to the domination

number. In Chapter 7, we present possibilities for applying our methods to other

properties of CCCDs and suggest other research directions.
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Chapter 2

SLLN for the Domination Number

in One Dimension

Our first interest is to establish the SLLN for the domination number in one

dimension. There have been several research results on the probabilistic properties of

the domination number generated by uniform data. In Section 2.1, we introduce these

previous results, which we will rely upon to prove the SLLN for continuous densities

in later sections. The proof is first done for the case of piecewise constant densities

in Section 2.2, and then extended to the case of continuous densities in Section 2.3.

Finally, in Section 2.4, we discuss an upper bound for the limiting value in the SLLN,

and its potential in building a statistical test for the equality of two distributions.
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2.1 Previous Results

In one-dimensional space, we denote Y(j) as the jth order statistic of Y1, · · · , Ym,

and define Y(0) ≡ 0, Y(m+1) ≡ 1. The random variable αj,m is defined as the minimum

number of covering balls needed to cover the Nj,m X-points located between Y(j)

and Y(j+1). The random variables α0,m and αm,m are referred to as the external

components, and αj,m for j = 1, · · · ,m−1 are referred to as the internal components.

It should be noted that Γn,m =
∑m

j=0 αj,m; thus, the original CCP is decomposed into

m+ 1 sub-CCPs of finding the domination number αj,m in the interval [Y(j), Y(j+1)).

It is obvious that αj,m = 0 if and only if Nj,m = 0. It should also be noted that

αj,m is at most 2, because all Xi’s in [Y(j), Y(j+1)) are contained in the covering balls

of the two X-points that are closest to the midpoint of this interval on the right and

left. Since the domination number is a non-negative integer, αj,m can only be 0, 1 or

2. In particular, external components α0,m and αm,m can only be 0 or 1.

Through careful analysis, the probability of each of these values was determined

exactly by Priebe, DeVinney and Marchette [3]. They found the conditional distri-

bution of αj,m given Nj,m for the special case of FX = FY = U [0, 1], where U [0, 1] is

the uniform distribution on the interval [0, 1].

Theorem 2.1.1. If Ω = R and FX = FY = U [0, 1], then the following are true:

• For j ∈ {0, 1, · · · ,m}, if Nj,m = 0 then αj,m = 0.

• For j ∈ {0,m}, if Nj,m > 0 then αj,m = 1.

11



• For j ∈ {1, 2, · · · ,m− 1}, if Nj,m = nj,m > 0 then

P (αj,m = 1 | Nj,m = nj,m) = 1− P (αj,m = 2 | Nj,m = nj,m)

=
5

9
+

4

9

1

4nj,m−1
.

Also, it should be noted that the internal components αj,m, j = 1, · · · ,m− 1 are

identically distributed, and the external components αj,m, j = 0,m are also identically

distributed.

The theorem above shows that for j ∈ {1, 2, · · · ,m − 1}, given Nj,m = nj,m > 0,

the conditional probability of αj,m = 2 is an increasing function of nj,m, meaning that

for fixed m, each component αj,m tends to become larger as the number of X-points

increases.

Basing on Theorem 2.1.1, DeVinney and Wierman [12] proved the SLLN for uni-

form data, stated as follows:

Theorem 2.1.2. If Ω = R, FX = FY = U [0, 1] and m = brnc, r ∈ (0,∞), then

lim
n→+∞

Γn,m

n
= g(r) a.s.,

where

g(r) ≡ r(12r + 13)

3(r + 1)(4r + 3)
.

The result above is equivalent to lim
n→+∞

Γn,m

m
= g(r)/r a.s. From the formula g(r),

it is apparent that g(r)/r → 0 when r → ∞, which is justified by the fact that
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Figure 2.1: A graph of the limiting function g(r), plotted using MATLAB.

asymptotically a typical interval between Y(j) and Y(j+1) almost certainly contains no

X-point. Moreover, g(r)/r → 13
9

as r → 0, which corresponds to the situation in

which each interval between Y(j) and Y(j+1) contains a very large number of X-points.

According to Theorem 1.1, the probability that αj,m = 1 is approximately 5
9
, while

the probability that αj,m = 2 is approximately 4
9
, so 13

9
= 5

9
· 1 + 4

9
· 2 can be viewed

simply as an asymptotic expectation value of αj,m.

In their proof [12], DeVinney and Wierman first treated the special case of r = 1.

First, they constructed two Poisson processes, A and B, with a common rate λ ∈

(0,∞). A-points play the role of X-points, and B-points play the role of Y -points.

There are a random numberNm of A-points before the (m+1)-stB-point. Conditional

on the (m+ 1)-st arrival of the B process, the m B-points and Nm A-points before it

are uniformly distributed. DeVinney and Wierman proved the complete convergence
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result for the domination number of the CCCD induced by these A-points and B-

points. Hence the complete convergence result holds in the original setting with Nm

X-points and m Y -points uniformly distributed on [0, 1]. Writing Nm as m + Gm,

then for 0 < ε ≤ 1, according to Chernoff’s theorem,

P

( |Nm − n|
m

≥ ε

)

= P

( |Nm −m|
m

≥ ε

)

= P

( |Gm|
m

≥ ε

)

≤ C1e
−α1(mε−1) + C2e

−α2(mε−1) (2.1.1)

for all m ≥ 1, where α1, α2 > 0 and C1 and C2 are constants. Thus, the difference

between Nm and n is negligible in the limit. Based on the exponential bound above,

complete convergence for the domination number in the case with Nm X-points is

proved to be still true in the case with n X-points, and therefore almost sure conver-

gence holds in the original setting.

For the r 6= 1 case, the proof can be extended by letting process A have rate rλ

and process B have rate λ.

In the following theorem, we weaken the condition of m = brnc in Theorem 2.1.2

to m/n→ r.

Theorem 2.1.3. If Ω = R, FX = FY = U [0, 1], and m ≡ m(n) with m/n → r as

n→∞ where r ∈ (0,∞), then

lim
n→+∞

Γn,m

n
= g(r) a.s,

where g(r) is the same as in Theorem 2.1.2.
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Proof. The whole proof is almost the same as that for Theorem 2.1.2, with the only

difference given below. Given that m/n → r, when n is sufficiently large, we have

|m−rn|
m

≤ ε
2
. Hence, from Inequality (2.1.1), we get

P

(∣
∣Nm − rn

∣
∣

m
≥ ε

)

= P

(∣
∣m+Gm − rn

∣
∣

m
≥ ε

)

≤ P

( |Gm|
m

≥ ε

2

)

≤ C1e
−α1(mε/2−1) + C2e

−α2(mε/2−1).

In the next two sections, we extend Theorem 2.1.3 to the general case in which

the densities fX and fY are bounded and continuous.

2.2 Piecewise Constant Densities

First, we consider a simpler situation in which fX and fY are piecewise constant

densities. Without loss of generality, the intervals of constancy for fX and fY can be

taken to be the same. Hence we suppose

fX(x) =
k∑

l=1

alI[cl−1,cl)(x),

fY (y) =
k∑

l=1

blI[cl−1,cl)(y),

where a = c0 < c1 < · · · < ck = b and al, bl are nonnegative. We define the following

random variables:

Nl =
∣
∣
{
Xi : Xi ∈ [cl−1, cl)

}∣
∣ ,

Ml =
∣
∣
{
Yj : Yj ∈ [cl−1, cl)

}∣
∣ .
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Lemma 2.2.1. If m/n→ r, r ∈ (0,∞), then for [cl−1, cl), l = 1, · · · , k, as n→∞,

Ml

m
→ bl(cl − cl−1) a.s.,

Nl

n
→ al(cl − cl−1) a.s.,

and if al 6= 0, then

Ml

Nl

→ rl a.s.,

where

rl ≡ r · fY (u)

fX(u)
= r

bl
al

for all u ∈ [cl−1, cl).

Proof. Since Yj, j = 1, · · · ,m, are i.i.d., the indicator random variables I{Yj∈[cl−1,cl)}

are also i.i.d. Therefore, by applying the standard SLLN, we get

Ml

m
=

∣
∣
{
Yj : Yj ∈ [cl−1, cl)

}∣
∣

m

=

∑m
j=1 I{Yj∈[cl−1,cl)}

m

→ E
(
I{Yj∈[cl−1,cl)}

)

= P
(
Yj ∈ [cl−1, cl)

)

= bl(cl − cl−1) a.s.

Similarly,

Nl

n
→ al(cl − cl−1) a.s.
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Hence,

Ml

Nl

=
m · Ml

m

n · Nl

n

→ r · bl(cl − cl−1)

al(cl − cl−1)
a.s. provided that al 6= 0

= rl.

Dividing the original CCP into k sub-CCPs, each induced by X l =
{
Xi : Xi ∈

[cl−1, cl)
}

and Y l =
{
Yj : Yj ∈ [cl−1, cl)

}
, l = 1, · · · , k, we denote the cardinality of a

minimum class cover of the l-th CCP by Γn,m(X l,Y l). Since Lemma 2.2.1 shows that

Ml/Nl → rl, from Theorem 2.1.3 it follows that

Γn,m(X l,Y l)

Nl

→ g(rl) a.s.

The points cl, l = 1, · · · , k − 1, are referred to as “filter” points in that for each

l ∈ {1, · · · , k}, only X-points and Y -points in [cl−1, cl) determine Γn,m(X l,Y l). (Note

that c0 = a and ck = b are fixed.) Recall that the domination number in one dimen-

sion is additive over intervals between Y -points. Specifically, we have Γn,m(X ,Y) =

∑m
j=0 αj,m, where each component αj,m is determined by the X-points contained in

[Y(j), Y(j+1)). For any interval [Y(j), Y(j+1)) containing no filter point, αj,m must be a

component of Γn,m(X l,Y l) for the l such that [Y(j), Y(j+1)) ⊂ [cl−1, cl). However, if

[Y(j), Y(j+1)) contains one “filter” point cl, then αj,m is decomposed into the right exter-

nal component of Γn,m(X l,Y l) plus the left external component of Γn,m(X l+1,Y l+1).

Finally, if [Y(j), Y(j+1)) contains two or more “filter” points: cl1 , · · · , clTj
(Tj ≥ 2), then

αj,m is divided into the following Tj +1 components: the right external component of
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Γn,m(X l1 ,Y l1), plus Γn,m(X l2 ,Y l2), · · · ,Γn,m(X lTj ,Y lTj ), plus the left external com-

ponent of Γn,m(X lTj+1 , Y lTj+1). In summary, for any interval [Y(j), Y(j+1)) containing

no filter point, the corresponding component αj,m of Γn,m(X ,Y) is also a compo-

nent of
k∑

l=1

Γn,m(X l,Y l); for any interval [Y(j), Y(j+1)) containing Tj filter points, the

corresponding component αj,m of Γn,m(X ,Y) is decomposed into Tj + 1 components

of
k∑

l=1

Γn,m(X l,Y l). Furthermore, since any component mentioned above could only

be 0, 1 or 2 (see Theorem 2.1.1), the Tj “filter” points contained in a given interval

[Y(j), Y(j+1)) could contribute to the difference Γn,m(X ,Y)−
k∑

l=1

Γn,m(X l,Y l) by at least

0 − 2 ∗ (Tj + 1) = −2Tj − 2 and at most 2 − 0 ∗ (Tj + 1) = 2. Supposing the set J

consists of all j such that [Y(j), Y(j+1)) contains at least one “filter” point, we have

∑

j∈J

(−2Tj − 2) ≤ Γn,m(X ,Y)−
k∑

l=1

Γn,m(X l,Y l) ≤
∑

j∈J

2.

There are k−1 “filter” points, hence there are at most k−1 such intervals [Y(j), Y(j+1))

that contain one or more “filter” points, thus |J | ≤ k − 1. Therefore, from the

inequality above we obtain

−2
∑

j∈J

Tj − 2(k − 1) ≤ Γn,m(X ,Y)−
k∑

l=1

Γn,m(X l,Y l) ≤ 2(k − 1).

By considering
∑

j∈J

Tj = k − 1, the inequality above becomes

−4(k − 1) ≤ Γn,m(X ,Y)−
k∑

l=1

Γn,m(X l,Y l) ≤ 2(k − 1).
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Since k is fixed,

lim
n→∞

Γn,m(X ,Y)

n
= lim

n→∞

k−1∑

l=0

Γn,m(X l,Y l)

n

=
k−1∑

l=0

lim
n→∞

Γn,m(X l,Y l)

Nl

· Nl

n
. (2.2.1)

If al 6= 0, then by Lemma 2.1.3, Γn,m(X l,Yl)

Nl
→ g(rl) a.s., and by Lemma 2.2.1,

Nl

n
→ al(cl − cl−1) a.s. Hence lim

n→∞
Γn,m(X l,Yl)

Nl
· Nl

n
= g(rl)al(cl − cl−1) a.s. If instead

al = 0, then, almost surely, there are no X-points in [cl−1, cl), so Γn,m(X l,Y l) = 0 a.s.

Thus we still have lim
n→∞

Γn,m(X l,Yl)

n
= 0 = g(rl)al(cl − cl−1) a.s. where rl = ∞ and

g(∞) ≡ lim
r→∞

g(r) = 0. Therefore from Equation (2.2.1) we get

lim
n→∞

Γn,m(X ,Y)

n
=

k∑

l=1

g(rl)al(cl − cl−1) a.s.

Rewriting the expressions in the sum in the form of integrals generates

lim
n→∞

Γn,m(X ,Y)

n
=

k∑

l=1

∫ cl

cl−1

g

(

r · fY (u)

fX(u)

)

fX(u)du

=

∫ b

a

g

(

r · fY (u)

fX(u)

)

fX(u)du a.s.

2.3 Continuous Densities

The formula obtained in the previous section is also valid when the densities fX

and fY are bounded and continuous. Specifically, we address the following main

theorem in this chapter.
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Theorem 2.3.1. If Ω = R, the density functions fX , fY are bounded and continuous

on [a, b], and m/n→ r, r ∈ (0,∞), then

lim
n→∞

Γn,m(X ,Y)

n
=

∫ b

a

g

(

r · fY (u)

fX(u)

)

· fX(u)du a.s.,

where g(r) is the same as in Theorem 2.1.2.

Proof. Since the density functions fX , fY are bounded and continuous on [a, b], fX and

fY are uniformly continuous. Thus for any ε > 0, there exists a δ ≡ δ(ε) > 0 such that

for all x and y with |x−y| < δ, |fX(x)−fX(y)| ≤ ε
4(b−a)

and |fY (x)−fY (y)| ≤ ε
4r(b−a)

.

Let ∆l = [a + (l − 1)δ, a + lδ) ∩ [a, b] for l ≥ 1. Define piecewise constant functions

that approximate fX and fY by

f̄X(x) = min
{
fX(u) : u ∈ ∆l

}
for x ∈ ∆l,

f̄Y (y) = min
{
fY (u) : u ∈ ∆l

}
for y ∈ ∆l.

Note that f̄X and f̄Y both depend on ε via δ; hence all functions and random variables

derived from f̄X and f̄Y are also ε-dependent, but for simplicity we drop an explicit

reference to ε throughout the proof.

Since f̄X ≤ fX , f̄Y ≤ fY , it follows that
∫ b

a
f̄X ≤ 1 and

∫ b

a
f̄Y ≤ 1. Re-scaling f̄X

and f̄Y gives density functions f̂X and f̂Y , which approximate fX and fY , respectively.

Our next step is to construct two classes of coupled random vectors: X vs. X̂ ,

and Y vs. Ŷ . Every component of the random vector X has density function fX ,

whereas every component of X̂ has density function f̂X ; and a similar property holds

for Y and Ŷ as well. Now that we have introduced all the key notations, we first
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describe the overall structure of the proof before getting into the details. Recall that

the ultimate goal is to prove that ∀η > 0, with probability 1, there exists an Nη > 0

such that, when n > Nη,

∣
∣
∣
∣

Γn,m(X ,Y)

n
−
∫ b

a

g

(

r · fY (u)

fX(u)

)

fX(u)du

∣
∣
∣
∣
≤ η. (2.3.1)

Hence it suffices to prove that when n > Nη,
∣
∣
∣
∣
∣

Γn,m(X ,Y)

n
− Γn,m(X̂ , Ŷ)

n

∣
∣
∣
∣
∣
≤ η/3, (2.3.2)

∣
∣
∣
∣
∣

Γn,m(X̂ , Ŷ)

n
−
∫ b

a

g

(

r · f̂Y (u)

f̂X(u)

)

f̂X(u)du

∣
∣
∣
∣
∣
≤ η/3, (2.3.3)

and
∣
∣
∣
∣
∣

∫ b

a

g

(

r · f̂Y (u)

f̂X(u)

)

f̂X(u)du−
∫ b

a

g

(

r · fY (u)

fX(u)

)

fX(u)du

∣
∣
∣
∣
∣
≤ η/3. (2.3.4)

We first consider Inequality (2.3.4). Note that the expressions inside the integral

above are polynomials in the density functions f̂X and f̂Y . Since as ε→ 0, f̂X(u) →

fX(u) and f̂Y (u) → fY (u) for any u ∈ [a, b], the Dominated Convergence Theorem

gives

∫ b

a

g

(

r · f̂Y (u)

f̂X(u)

)

· f̂X(u)du→
∫ b

a

g

(

r · fY (u)

fX(u)

)

fX(u)du as ε→ 0.

Thus, for any given η, there must exist an εη ≤ η/3 such that
∣
∣
∣
∣
∣

∫ b

a

g

(

r · f̂Y (u)

f̂X(u)

)

· f̂X(u)du−
∫ b

a

g

(

r · fY (u)

fX(u)

)

fX(u)du

∣
∣
∣
∣
∣
≤ η/3,

where f̂X and f̂Y are constructed as described in the very beginning of the proof by

choosing ε = εη. In the rest of this proof, we show that for the ε = εη, Inequalities

(2.3.2) and (2.3.3) hold when n is sufficiently large.
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We continue to describe the construction of X̂ and Ŷ . First, consider i.i.d. random

points (X1i, X2i), 1 ≤ i ≤ n, distributed uniformly over the region bounded by the

x-axis, the line x = a, the line x = b, and the graph of fX . Then,

P (s ≤ X1i ≤ t) =

∫ t

s

fX(u)du for all a ≤ s ≤ t ≤ b,

so the marginal density function of X1i is fX . Similarly, construct i.i.d. random

points (Y1j, Y2j), 1 ≤ j ≤ m, with Y1j’s marginal density function being fY . Denote

X = {X1i : i = 1, · · · , n} and Y = {Y1j : j = 1, · · · ,m}.

Next, let (X̄1i, X̄2i) and (Ȳ1j, Ȳ2j) be i.i.d. random points uniformly distributed

over the regions under the graph of f̄X and f̄Y respectively. By the same argument

as in the last paragraph, we can prove that the marginal density function of X̄1i is

f̂X , and the marginal density function of Ȳ1j is f̂Y .

Denote R̄X as the region between the graphs of fX and f̄X , and R̄Y as the region

between the graphs of fY and f̄Y . Finally, define

(

X̂1i, X̂2i

)

=
(

X1iI{(X1i,X2i)/∈R̄X} + X̄1iI{(X1i,X2i)∈R̄X},

X2iI{(X1i,X2i)/∈R̄X} + X̄2iI{(X1i,X2i)∈R̄X}

)

and

(

Ŷ1j, Ŷ2j

)

=
(

Y1jI{(Y1j ,Y2j)/∈R̄Y } + Ȳ1jI{(Y1j ,Y2j)∈R̄Y },

Y2jI{(Y1j ,Y2j)/∈R̄Y } + Ȳ2jI{(Y1j ,Y2j)∈R̄Y }

)

.

Here the idea is to set
(

X̂1i, X̂2i

)

=
(

X1i, X2i

)

if (X1i, X2i) /∈ R̄X , and
(

X̂1i, X̂2i

)

=
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(

X̄1i, X̄2i

)

if (X1i, X2i) ∈ R̄X . The same idea applies for Y -points. Denote X̂ =

{
X̂1i : i = 1, · · · , n

}
and Ŷ =

{
Ŷ1j : j = 1, · · · ,m

}
.

Lemma 2.3.1. X̂1i and Ŷ1j have piecewise constant density functions f̂X and f̂Y ,

respectively.

Proof. Any interval [s, t] ⊂ [a, b] can be written as a disjoint union ∪m
k=0[sk, tk], where

each [sk, tk] ⊆ ∆k for distinct k. Denote f̂X(∆k) ≡ f̂X(x) for all x ∈ ∆k. If we can

prove P (sk ≤ X̂1i ≤ tk) = (tk − sk)f̂X(∆k) for each k, then it follows that

P (s ≤ X̂1i ≤ t) =
m∑

k=0

(tk − sk)f̂X(∆k),

hence X̂1i has piecewise constant density functions f̂X . In fact, we know that for any

k,

P
(

sk ≤ X̂1i ≤ tk

)

= P
(

sk ≤ X̂1i ≤ tk | (X1i, X2i) /∈ R̄X

)

P
(
(X1i, X2i) /∈ R̄X

)

+ P
(

sk ≤ X̂1i ≤ tk | (X1i, X2i) ∈ R̄X

)

P
(
(X1i, X2i) ∈ R̄X

)
.

By recalling that
(

X̂1i, X̂2i

)

=
(

X1i, X2i

)

if (X1i, X2i) /∈ R̄X , and
(

X̂1i, X̂2i

)

=

(

X̄1i, X̄2i

)

if (X1i, X2i) ∈ R̄X , the equation above becomes

P
(

sk ≤ X̂1i ≤ tk

)

= P
(
sk ≤ X1i ≤ tk | (X1i, X2i) /∈ R̄X

)
P
(
(X1i, X2i) /∈ R̄X

)

+ P
(
sk ≤ X̄1i ≤ tk | (X1i, X2i) ∈ R̄X

)
P
(
(X1i, X2i) ∈ R̄X

)
.

Observe that given (X1i, X2i) /∈ R̄X , the random point (X1i, X2i) is bounded above

by f̄X , hence the random variable X1i has conditional density f̂X . Meanwhile, given
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(X1i, X2i) ∈ R̄X , the conditional density of random variable X̄1i is the same as its

unconditional density f̂X , because X̄1i is independent of X1i and X2i. Therefore,

P
(

sk ≤ X̂1i ≤ tk

)

= (tk − sk)f̂X(∆k)P
(
(X1i, X2i) /∈ R̄X

)

+ (tk − sk)f̂X(∆k)P
(
(X1i, X2i) ∈ R̄X

)

= (tk − sk)f̂X(∆k).

A similar result for Ŷ1j can be obtained by the same argument.

Recall that the random variable Γn,m(X ,Y) represents the size of a minimum

class cover of X ≡ {X1i, i = 1, · · · , n} with respect to Y ≡ {Y1j, j = 1, · · · ,m}, and

Γn,m(X̂ , Ŷ) represents the size of a minimum class cover of X̂ ≡ {X̂1i, i = 1, · · · , n}

with respect to Ŷ ≡ {Ŷ1j, j = 1, · · · ,m}. For any point (X1i, X2i) ∈ R̄X , we have set

X̂1i = X̄1i, which is equivalent to replacing X1i by X̄1i, hence the original domination

number Γn,m(X ,Y) changes. Note that deleting any X1i can decrease the original

domination number Γn,m(X ,Y) by at most 1, while adding any X̄1i can further de-

crease Γn,m(X ,Y) by at most 1. Therefore, replacing X1i by X̄1i can contribute to

the difference
∣
∣Γn,m(X ,Y)−Γn,m(X̂ , Ŷ)

∣
∣ by at most 2. Similarly, (Y1i, Y2i) in R̄Y can

also change the difference between Γn,m(X ,Y) and Γn,m(X̂ , Ŷ) by at most 2. Thus,

∣
∣Γn,m(X ,Y)− Γn,m(X̂ , Ŷ)

∣
∣ ≤ 2

(
n∑

i=1

I{(X1i,X2i)∈R̄X} +
m∑

i=1

I{(Y1i,Y2i)∈R̄Y }

)

.

Since the I{(X1i,X2i)∈R̄X}, i = 1, · · · , n are i.i.d. random variables, applying the SLLN
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yields

n∑

i=1

I{(X1i,X2i)∈R̄X}

n

n→∞−→ E
(
I{(X1i,X2i)∈R̄X}

)

= P
(
(X1i, X2i) ∈ R̄X

)

≤ (b− a) · εη
4(b− a)

=
εη
4

a.s., (2.3.5)

and

m∑

i=1

I{(Y1i,Y2i)∈R̄Y }

n
=

m

n
·

m∑

i=1

I{(Y1i,Y2i)∈R̄Y }

m

n→∞−→ r · E
(
I{(Y1i,Y2i)∈R̄Y }

)

= r · P
(
(Y1i, Y2i) ∈ R̄Y

)

≤ r · (b− a) · εη
4r(b− a)

=
εη
4

a.s. (2.3.6)

Recall that εη ≤ η/3. Consequently, with probability 1, there exists an N ′(εη) > 0

such that when n > N ′(εη),

∣
∣
∣
∣
∣

Γn,m(X ,Y)− Γn,m(X̂ , Ŷ)

n

∣
∣
∣
∣
∣
≤ 2 ·

(εη
4

+
εη
4

)

= εη ≤ η/3,

which is exactly Inequality (2.3.2).

By the SLLN for piecewise constant densities, with probability 1, there exists an

N ′′(εη) > 0 such that when n > N ′′(εη),

∣
∣
∣
∣
∣

Γn,m(X̂ , Ŷ)

n
−
∫ b

a

g

(

r · f̂Y (u)

f̂X(u)

)

f̂X(u)du

∣
∣
∣
∣
∣
≤ εη ≤ η/3,

which is exactly Inequality (2.3.3).
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Therefore, both Inequalities (2.3.2) and (2.3.3) hold when n > Nη ≡ max{N ′(εη),

N ′′(εη)}. Hence, Inequality (2.3.1) immediately follows as we have showed Inequality

(2.3.4) holds when choosing ε = εη. Considering η > 0 is arbitrary, we conclude that

lim
n→∞

Γn,m(X ,Y)

n
=

∫ b

a

g

(

r · fY (u)

fX(u)

)

fX(u)du a.s.

Remark 2.3.1. For simplicity, we assumed that the density functions fX and fY are

continuous and bounded. However, for some more general cases (e.g., when the

densities are bounded but with only a finite number of discontinuities, when the

densities have a finite number of vertical asymptotes, or when the densities are defined

on unbounded intervals), our proof can apply as well by a slight modification. The

key is to find appropriate piecewise constant functions f̄X (bounded above by fX)

and f̄X (bounded above by fY ), where f̄X and f̄Y sufficiently approximate fX and

fY , respectively, so that Inequality (2.3.4), P
(
(X1i, X2i) ∈ R̄X

)
≤ εη

4
as in Inequality

(2.3.5), and P
(
(Y1i, Y2i) ∈ R̄Y

)
≤ εη

4
as in Inequality (2.3.6) still hold.

2.4 An Upper Bound for the Limiting Value in the

SLLN

We obtain the following upper bound for the limiting value in Theorem 2.3.1:

Corollary 2.4.1. Under the same conditions as in Theorem 2.3.1, we have

∫ b

a

g

(

r · fY (u)

fX(u)

)

fX(u)du ≤ g(r),
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where the equality holds if and only if fX = fY a.e.

Proof. From elementary calculus, g(r) has a negative second derivative, so it is a

strictly concave function. Let U denote the random variable that has density function

fX . Then, by applying Jensen’s inequality on the function g, we get

∫ b

a

g

(

r · fY (u)

fX(u)

)

fX(u)du ≤ g

(∫ b

a

r · fY (u)

fX(u)
fX(u)du

)

= g(r).

Since g is strictly concave, Jensen’s theorem also tells us that the equality in the

inequality above holds if and only if r · fY (U)
fX(U)

= EX

(

r · fY (U)
fX(U)

)

= r, i.e., fX = fY

a.e.

The corollary above can be viewed in the following intuitive way. When class

X and class Y both have the same distribution pattern, their objects tend to be

interspersed. In this case, a larger domination number Γn,m(X ,Y) would be needed

to distinguish X from Y than when they have different distributions, because the

domination number serves as a measure of efficiency in distinguishing the classes X

and Y from each other.

We can apply Corollary 2.4.1 to build a distribution-free statistical test for the

equality of two distributions, described as follows. Under the null hypothesis H0 :

fX = fY a.e., the limiting value of Γn,m

n
achieves the maximum value g(r). Therefore,

one form of statistical test would be to acceptH0 if Γn,m

n
> cα, and rejectH0 otherwise,

where the critical value cα is determined by solving P
(Γn,m

n
≤ cα | H0

)
= α for a given
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significance level α. Thus, in order to calculate the critical value, we need to know

the distribution of the domination number Γn,m under H0. This issue is partly solved

in Chapter 4 where we prove the CLT for Γn,m when FX = FY = U [0, 1]. However, it

remains as an open problem whether the CLT still holds when fX and fY are any two

equal densities. Although in this dissertation we haven’t been able to establish the

CLT for any equal densities other than the uniform densities, Monte Carlo simulation

does suggest the CLT is still valid in this case (see Chapter 6).

28



Chapter 3

Variance of the Domination

Number in One Dimension

As an important first step in proving the CLT for the domination number Γn,m,

we need to compute its variance V ar(Γn,m). By decomposing Γn,m into internal and

external components, we can write the variance as follows:

V ar(Γn,m) = V ar(α0,m +
m−1∑

j=1

αj,m + αm,m).

The formula above can be expressed as a sum of the variance and covariance of the

components:

V ar(Γn,m) = 2V ar(α0,m) + (m− 1)V ar(α1,m)

+ 2 Cov(α0,m, αm,m) + 2(m− 1)Cov(α0,m, α1,m) +m(m− 1)Cov(α1,m, α2,m),

(3.0.1)
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since the internal components are identically distributed and the external components

are also identically distributed (refer to Lemma 3.2.2), and the covariance between any

two components only depends on whether each component is an internal component

or external component (refer forward to Lemma 3.2.3).

Thus, to obtain V ar(Γn,m), we need to calculate the V ar(αj,m), j = 0, · · · ,m,

and Cov(αj1,m, αj2,m), j1, j2 = 0, · · · ,m, j1 6= j2. Throughout this chapter we assume

that FX = FY = U [0, 1]. Section 3.1 gives some facts about the distribution of

Nj,m. In Section 3.2, we first calculate the conditional moments of αj,m given Nj,m,

and then we obtain the exact formula of V ar(Γn,m) in terms of the expectations

of some expressions involving Nj,m. In Section 3.3, based on the knowledge about

the distribution of Nj,m, we further express V ar(Γn,m) in terms of n and m. But

such expression is too complicated to evaluate explicitly, so we settle for the limiting

variance. In Section 3.4, we apply the dominated convergence theorem to determine

the limiting value of V ar(Γn,m) when m/n→ r as n→∞.

3.1 Preliminary Distribution Facts

We let Y(j) denote the jth order statistic of Y1, · · · , Ym, and define Y(0) ≡ 0, Y(m+1)

≡ 1. Let Lj,m = Y(j+1) − Y(j) for j = 0, · · · ,m.

Proposition 3.1.1. Given Lj,m = lj,m > 0, j = 0, · · · ,m, the random vector {Nj,m :

j = 0, · · · ,m} is multinomially distributed with parameters {n, lj,m :
m∑

j=0

lj,m = 1}.
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Proof. Recall that Nj,m is the number of X-points contained in the interval [Y(j),

Y(j+1)). Since the length of [Y(j), Y(j+1)) is fixed as lj,m and the X-points are uniformly

distributed on [0, 1], each X-point falls into [Y(j), Y(j+1)) with probability lj,m. Thus,

P (N0,m = n0,m, · · · , Nm,m = nm,m) =

(
n

n0,m, · · · , nm,m

)

(l0,m)n0,m · · · (lm,m)nm,m ,

where
m∑

j=0

nj,m = n.

Proposition 3.1.2. For any different j1, j2, given Nj1,m and Nj2,m, the correspond-

ing components αj1,m and αj2,m are conditionally independent, and the conditional

distribution of αj1,m is independent of Nj2,m.

Proof. When Nj1,m = nj1,m, Nj2,m = nj2,m, there are exactly nj1,m X-points in Lj1,m

and nj2,m X-points in Lj2,m, while all other X-points fall in (Lj1,m ∪ Lj2,m)c. So the

event {Nj1,m = nj1,m, Nj2,m = nj2,m} can be decomposed into a union of the following

disjoint sub-events indexed by two disjoint subsets {s1, · · · , snj1,m
} and {t1, · · · , tnj2,m

}

of {1, · · · , n}:

A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

≡
{
Xi ∈ Lj1,m for i ∈ {s1, · · · , snj1,m

}, Xi ∈ Lj2,m for i ∈ {t1, · · · , tnj2,m
},

Xi ∈ (Lj1,m ∪ Lj2,m)c for i /∈ {s1, · · · , snj1,m
, t1, · · · , tnj2,m

}
}
.

Given any sub-event A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}, αj1,m is a function of Xs1 , · · · , Xsnj1,m

and αj2,m is a function of Xt1 , · · · , Xtnj2,m
, and these two groups of X-points are

independent of each other, so αj1,m and αj2,m are also independent of each other.
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Therefore, for any integer µ, ν,

P
(

αj1,m = µ, αj2,m = ν | A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

= P
(

αj1,m = µ | A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

·P
(

αj2,m = ν | A{s1,··· ,tnj1,m},{t1,··· ,tnj2,m}

)

.

(3.1.1)

Recall that the event {Nj1,m = nj1,m, Nj2,m = nj2,m} is the union of the disjoint sub-

events A{p1,··· ,pnj1,m},{q1,··· ,qnj2,m}, hence

P
(

αj1,m = µ |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=
P
(

αj1,m = µ,
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

P
({
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=

∑
P
(

αj1,m = µ,A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

P
({
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=

∑
P
(

αj1,m = µ | A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

P
(

A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

P
({
Nj1,m = nj1,m, Nj2,m = nj2,m

}) .

Since the probability P
(

αj1,m = µ | A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

is the same for every

A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}, we can factor out P
(

αj1,m = µ | A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

from the sum in the equation above. It follows that for any A{s1,··· ,snj1,m},{t1,··· ,tnj2,m},

P
(

αj1,m = µ |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

= P
(

αj1,m = µ | A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

. (3.1.2)
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Similarly,

P
(

αj2,m = ν |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

= P
(

αj2,m = ν | A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

. (3.1.3)

Plugging Equations (3.1.2) and (3.1.3) into Equation (3.1.1) yields

P
(

αj1,m = µ, αj2,m = ν | A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

= P
(

αj1,m = µ |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

·P
(

αj2,m = ν |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

. (3.1.4)

Recall that the event {Nj1,m = nj1,m, Nj2,m = nj2,m} is the union of the disjoint sub-

events A{p1,··· ,pnj1,m},{q1,··· ,qnj2,m}, thus

P
(

αj1,m = µ, αj2,m = ν |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=
P
(

αj1,m = µ, αj2,m = ν,
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

P
({
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=

∑
P
(

αj1,m = µ, αj2,m = ν,A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

P
({
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=

∑
P
(

αj1,m = µ, αj2,m = ν |A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

P
(

A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)

P
({
Nj1,m = nj1,m, Nj2,m = nj2,m

}) .
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By substituting Equation (3.1.4) into the formula above, we get

P
(

αj1,m = µ, αj2,m = ν |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=
∑

P
(

αj1,m = µ |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

·P
(

αj2,m = ν |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

·P
(

A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)/

P
({
Nj1,m = nj1,m, Nj2,m = nj2,m

})

= P
(

αj1,m = µ |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

·P
(

αj2,m = ν |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

·
∑

P
(

A{s1,··· ,snj1,m},{t1,··· ,tnj2,m}

)/

P
({
Nj1,m = nj1,m, Nj2,m = nj2,m

})

= P
(

αj1,m = µ |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

·P
(

αj2,m = ν |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

.

Hence αj1,m and αj2,m are independent given {Nj1,m = nj1,m, Nj2,m = nj2,m}.

Furthermore, given the event {Nj1,m = nj1,m, Nj2,m = nj2,m}, for any fixed sub-

set {p1, · · · , pnj1,m
} of {1, · · · , n}, the event A′

{p1,··· ,pnj1,m} ≡
{
Xi ∈ Lj1,m for i ∈

{p1, · · · , pnj1,m
}, Xi ∈ (Lj1,m)c for i /∈ {p1, · · · , pnj1,m

}
}

is independent of nj2,m. Thus,

P
(

A′
{p1,··· ,pnj1,m} |

{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=P
(

A′
{p1,··· ,pnj1,m} | Nj1,m = nj1,m

)

.

Therefore, applying once again the technique of decomposing an event into the union
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of disjoint sub-events, we achieve the desired result as follows:

P
(

αj1,m = µ |
{
Nj1,m = nj1,m, Nj2,m = nj2,m

})

=
∑

P
(

αj1,m = µ | A′
{p1,··· ,pnj1,m}

)

· P
(

A′
{p1,··· ,pnj1,m} | Nj1,m = nj1,m, Nj2,m = nj2,m

)

=
∑

P
(

αj1,m = µ | A′
{p1,··· ,pnj1,m}

)

· P
(

A′
{p1,··· ,pnj1,m} | Nj1,m = nj1,m

)

=P
(
αj1,m = µ | Nj1,m = nj1,m

)
.

Proposition 3.1.3. Supposing that Yj, j = 1, · · · ,m are uniformly distributed on

[0, 1], we let Y(j), j = 1, · · · ,m denote the order statistics of Y1, · · · , Ym, and define

Y(0) ≡ 0, Y(m+1) ≡ 1. If we define Lj = Y(j+1) − Y(j), j = 0, · · · ,m, then the density

function of Lj is

fLj
(lj) = m(1− lj)

m−1,

and the joint density function of Li and Lj is

fLj1
,Lj2

(lj1 , lj2) = m(m− 1)(1− lj1 − lj2)
m−2.

Proof. We know that the joint density function of order statistics Y(1), . . . , Y(m) is

m!
m∏

j=1

fY (yj),

where fY is the common marginal distribution of Yj, j = 1, · · · ,m. Since fY (yj) =

Iyj∈[0,1], we have

fY(1),...,Y(m)
(y(1), . . . , y(m)) =







m! 0 = y(0) ≤ y(1) ≤ · · · ≤ y(m) ≤ y(m+1) = 1,

0 otherwise.
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Therefore, the marginal density function of (Y(j), Y(j+1)) is

fY(j),Y(j+1)
(y(j), y(j+1)) =

∫

· · ·
∫

0≤y(j)<y(j+1)≤1

f(y(1), . . . , y(m))dy(1) . . . dy(j−1)dy(j+2) . . . dy(m)

=
m!

(j − 1)!(m− j − 1)!
yj−1

(j) (1− y(j+1))
m−j−1.

Applying the distribution theory of transformations of random vectors using z = y(j)

and z + lj = y(j+1), we obtain

fLj ,Z(lj, z) =

∣
∣
∣
∣

∂(y(j), y(j+1))

∂(lj, z)

∣
∣
∣
∣
· fY(j),Y(j+1)

(y(j), y(j+1))

= 1 · fY(j),Y(j+1)
(z, z + l(j))

=
m!

(j − 1)!(m− j − 1)!
zj−1(1− lj − z)m−j−1,

thus

fLj
(lj) =

m!

(j − 1)!(m− j − 1)!

∫ 1−lj

0

zj−1(1− lj − z)m−j−1dz.

By letting z̃ = z/(1− lj), the above becomes

fLj
(lj) =

m!

(j − 1)!(m− j − 1)!

∫ 1

0

(
(1− lj) · z̃

)j−1(
(1− lj) · (1− z̃)

)m−j−1
dz̃

=
m!(1− lj)

m−1

(j − 1)!(m− j − 1)!

∫ 1

0

z̃j−1(1− z̃)m−j−1dz̃.

Recalling the standard Beta function B(p, q) is defined as
∫ 1

0
up−1(1 − u)q−1du =

(p−1)!(q−1)!
(p+q−1)!

, we obtain

fLj
(lj) =

m!(1− lj)
m−1

(j − 1)!(m− j − 1)!
· (j − 1)!(m− j − 1)!

(m− 1)!

= m(1− lj)
m−1.
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Similarly, for any j1 < j2, we have

fY(j1),Y(j1+1),Y(j2),Y(j2+1)
(y(j1), y(j1+1), y(j2), y(j2+1))

=

∫

· · ·
∫

f(y(1), . . . , y(n))dy(1) . . . dy(j1−1)dy(j1+2) . . . dy(j2−1)dy(j2+2) . . . dy(m)

=

∫

· · ·
∫

0≤y(1)<...<y(m)≤1

m!dy(1) . . . dy(j1−1)dy(j1+2) . . . dy(j2−1)dy(j2+2) . . . dy(m)

=
m!

(j1 − 1)!(j2 − j1 − 2)!(m− j2 − 1)!
yj1−1

(j1) (y(j2) − y(j1+1))
j2−j1−2(1− y(j2+1))

m−j2−1.

If we let lj1 = y(j1+1)−y(j1), lj2 = y(j2+1)−y(j2), by again transforming the distribution,

we get

fLj1
,Lj2

,Y(j1),Y(j2+1)
(lj1 , lj2 , y(j1), y(j2+1))

=

∣
∣
∣
∣

∂(y(j1), y(j1+1), y(j1), y(j2+1))

∂(lj1 , lj2 , y(j1), y(j2+1))

∣
∣
∣
∣
· fY(j1),Y(j1+1),Y(j2),Y(j2+1)

(y(j1), y(j1+1), y(j2), y(j2+1))

=1 · fY(j1),Y(j1+1),Y(j2),Y(j2+1)
(y(j1), y(j1) + lj1 , y(j2+1) − lj2 , y(j2+1))

=
m!

(j1−1)!(j2−j1−2)!(m−j2−1)!
·yj1−1

(j1) (y(j2+1)−y(j1)− lj1− lj2)j2−j1−2(1−y(j2+1))
m−j2−1.

It follows that

fLj1
,Lj2

(lj1 , lj2)

=

∫∫

fLj1
,Lj2

,Y(j1),Y(j2+1)
(lj1 , lj2 , y(j1), y(j2+1))dy(j1)dy(j2+1)

=
m!

(j1−1)!(j2−j1−2)!(m−j2−1)!

∫∫

y
j1−1
(j1)

(1−y(j2+1))
m−j2−1(y(j2+1)−y(j1)−lj1−lj2)

j2−j1−2
dy(j1)dy(j2+1),

where the integral above is taken over the region {y(j1), y(j2+1) : 0 ≤ y(j1) ≤ y(j2+1) ≤

1, y(j2+1) − y(j1) ≥ lj1 + lj2}. Calculating the integral generates

fLj1
,Lj2

(lj1 , lj2) = m(m− 1)(1− lj1 − lj2)
m−2.
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The following two identities are frequently used in our later calculations.

Corollary 3.1.1. If FX = FY = U [0, 1], then

P (Nj,m = 0) =
m

m+ n
,

P (Nj1,m = 0, Nj2,m = 0) =
m(m− 1)

(m+ n)(m+ n− 1)
.

Proof. From Proposition 3.1.1, we know that

P (Nj,m = 0 | Lj,m = lj,m) = (1− lj,m)n.

Hence,

P (Nj,m = 0) =

∫ 1

0

P (Nj,m = 0 | Lj,m = lj,m)fLj,m
(lj,m)dlj,m

=

∫ 1

0

(1− lj,m)nm(1− lj,m)m−1dlj,m.

Calculating the integration above gives

P (Nj,m = 0) =
m

m+ n
.

Similarly, for j1 < j2 we have

P (Nj1,m = 0, Nj2,m = 0)

=

∫∫

P (Nj1,m=0, Nj2,m=0 | Lj1,m=lj1,m, Lj2,m=lj2,m)fLj1,m,Lj2,m
(lj1,m, lj2,m)dlj1,mdlj2,m

=

∫∫

(1− lj1,m − lj2,m)n ·m(m− 1)(1− lj1,m − lj2,m)m−2dlj1,mdlj2,m

=

∫∫

m(m− 1)(1− lj1,m − lj2,m)m+n−2dlj1,mdlj2,m,
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where the integrating area is {lj1 , lj2 : 0 ≤ lj1,m + lj2,m ≤ 1, 0 ≤ lj1,m, lj2,m ≤ 1}.

Calculating the integral, we get

P (Nj1,m = 0, Nj2,m = 0)

=

∫ 1

0

∫ 1−lj1,m

0

m(m− 1)(1− lj1,m − lj2,m)m+n−2dlj2,mdlj1,m

=

∫ 1

0

m(m− 1)

m+ n− 1
(1− lj1,m)m+n−1dlj1,m

=
m(m− 1)

(m+ n)(m+ n− 1)
.

3.2 Variance Expressed as the Expectations of Func-

tions of Nj,m

3.2.1 Conditional Moments

The next lemma gives the exact formula of the conditional first and second mo-

ments of αj,m given Nj,m.

Lemma 3.2.1. If FX = FY = U [0, 1], then

E(αj,m | Nj,m) =







0 Nj,m = 0, j = 0, · · · ,m,

1 Nj,m > 0, j = 0,m,

13
9
− 16

9
1

4Nj,m
Nj,m > 0, j = 1, · · · ,m− 1,
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V ar(αj,m | Nj,m) =







0 Nj,m = 0, j = 0, · · · ,m,

0 Nj,m > 0, j = 0,m,

20
81
− 16

81
1

4Nj,m
− 256

81
1

42Nj,m
Nj,m > 0, j = 1, · · · ,m− 1.

Proof. We compute the conditional moments of αj,m according to the conditional

distribution formulas given in Theorem 2.1.1.

A) When Nj,m = 0, since αj,m ≡ 0, we have

E(αj,m | Nj,m = 0) = 0 for j = 0, · · · ,m,

V ar(αj,m | Nj,m = 0) = 0 for j = 0, · · · ,m.

B) When Nj,m > 0, depending on whether αj,m is an external or internal compo-

nent, we have the following two sub-cases.

B.1) For external components, since αj,m ≡ 1 given Nj,m > 0, we have

E(αj,m | Nj,m = nj,m) = 1 for nj,m > 0, j = 0 or m,

V ar(αj,m | Nj,m = nj,m) = 0 for nj,m > 0, j = 0 or m.

B.2) For internal components, since αj,m ∈ {1, 2} given Nj,m > 0, we have

E(αj,m | Nj,m = nj,m) = 1 · P (αj,m = 1 | Nj,m = nj,m)

+ 2 · P (αj,m = 2 | Nj,m = nj,m).
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Plugging the formulas in Theorem 2.1.1 into the equation above yields

E(αj,m | Nj,m = nj,m) = 1 ·
(

5

9
+

4

9

1

4nj,m−1

)

+ 2 ·
(

4

9
− 4

9

1

4nj,m−1

)

=
13

9
− 4

9

1

4nj,m−1
;

thus,

E(αj,m | Nj,m = nj,m) =
13

9
− 16

9

1

4nj,m
for nj,m > 0, j = 1, · · · ,m− 1.

Similarly, the second conditional moment can be calculated as

E(α2
j,m | Nj,m = nj,m) = 12 · P (αj,m = 1 | Nj,m = nj,m)

+ 22 · P (αj,m = 2 | Nj,m = nj,m).

Applying Theorem 2.1.1, the above becomes

E(α2
j,m | Nj,m = nj,m) = 1 ·

(
5

9
+

4

9

1

4nj,m−1

)

+ 4 ·
(

4

9
− 4

9

1

4nj,m−1

)

=
7

3
− 4

3

1

4nj,m−1
;

thus,

E(α2
j,m | Nj,m = nj,m)=

7

3
− 16

3

1

4nj,m
for nj,m > 0, j = 1, · · · ,m− 1.

It immediately follows that

V ar(αj,m | Nj,m) = E(α2
j,m | Nj,m)−

(
E(αj,m | Nj,m)

)2

=
7

3
− 16

3

1

4Nj,m
−
(

13

9
− 16

9

1

4Nj,m

)2

.
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By expanding the quadratic term and combining similar terms, we get

V ar(αj,m | Nj,m)

=
7

3
− 16

3

1

4Nj,m
−
(

169

81
− 416

81

1

4Nj,m
+

256

81

1

42Nj,m

)

=
20

81
− 16

81

1

4Nj,m
− 256

81

1

42Nj,m
.

3.2.2 Variance of the Individual Component

Using some of the distribution facts obtained in Section 3.1, we can further cal-

culate V ar(αj,m). The result is given in the following lemma.

Lemma 3.2.2. If FX = FY = U [0, 1], then

V ar(αj,m) =







mn
(m+n)2

j = 0,m,

20
81

n
m+n

+ 169
81

mn
(m+n)2

−
(

16
81

+ 416
81

m
m+n

)
µn,m− 256

81
µn,m

2 j = 1, · · · ,m− 1,

where µn,m ≡ E
(

1

4Nj,m
I{Nj,m>0}

)

.

Proof. Since V ar(αj,m) = E
[
V ar(αj,m | Nj,m)

]
+ V ar

[
E(αj,m | Nj,m)

]
, we write

V ar(αj,m) as

V ar(αj,m) = E
[
V ar(αj,m | Nj,m)

]
+ E

[
E(αj,m | Nj,m)2

]
−
(

E
[
E(αj,m | Nj,m)

])2

.

Given that 1 = I{Nj,m>0} + I{Nj,m=0}, the equation above can be rewritten as

V ar(αj,m) = E
[
V ar(αj,m | Nj,m)(I{Nj,m>0} + I{Nj,m=0})

]

+ E
[
E(αj,m | Nj,m)2(I{Nj,m>0} + I{Nj,m=0})

]

−
(

E
[
E(αj,m | Nj,m)(I{Nj,m>0} + I{Nj,m=0})

])2

,
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thus by linearity,

V ar(αj,m) = E
[
V ar(αj,m | Nj,m)I{Nj,m>0}

]
+ E

[
V ar(αj,m | Nj,m)I{Nj,m=0}

]

+ E
[
E(αj,m | Nj,m)2I{Nj,m>0}

]
+ E

[
E(αj,m | Nj,m)2I{Nj,m=0}

]

−
(

E
[
E(αj,m | Nj,m)I{Nj,m>0}

]
+ E

[
E(αj,m | Nj,m)I{Nj,m=0}

])2

.

Recall that E(αj,m | Nj,m = 0) = 0 and V ar(αj,m | Nj,m = 0) = 0 (Lemma 3.2.1), the

equation above can be simplified as

V ar(αj,m) = E
[
V ar(αj,m | Nj,m)I{Nj,m>0}

]

+ E
[
E(αj,m | Nj,m)2I{Nj,m>0}

]

−
(

E
[
E(αj,m | Nj,m)I{Nj,m>0}

])2

.

By substituting the formulas given in Lemma 3.2.1, we simplify the equations above

as follows:

A) When αj,m is an external component,

V ar(αj,m) = E(I{Nj,m>0})−
(
E(I{Nj,m>0})

)2

= P (Nj,m > 0)−
(
P (Nj,m > 0)

)2

= P (Nj,m = 0)
(
1− P (Nj,m = 0)

)
;

thus, applying Corollary 3.1.1 gives

V ar(αj,m) =
mn

(m+ n)2
.
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B) When αj,m is an internal component,

V ar(αj,m) = E

[(
20

81
− 16

81

1

4Nj,m
− 256

81

1

42Nj,m

)

I{Nj,m>0}

]

+ E

[(
13

9
− 16

9

1

4Nj,m

)2

I{Nj,m>0}

]

−
(

E

[(
13

9
− 16

9

1

4Nj,m

)

I{Nj,m>0}

])2

.

Expanding the terms on the RHS of the equation above yields

V ar(αj,m)

=
20

81
P (Nj,m > 0)− 16

81
E

(
1

4Nj,m
I{Nj,m>0}

)

− 256

81
E

(
1

42Nj,m
I{Nj,m>0}

)

+
169

81
P (Nj,m > 0)− 416

81
E

(
1

4Nj,m
I{Nj,m>0}

)

+
256

81
E

(
1

42Nj,m
I{Nj,m>0}

)

− 169

81

(
P (Nj,m > 0)

)2
+

416

81
P (Nj,m > 0)E

(
1

4Nj,m
I{Nj,m>0}

)

−256

81

[

E

(
1

4Nj,m
I{Nj,m>0}

)]2

,

and collecting similar terms generates

V ar(αj,m) =
20

81
− 20

81
P (Nj,m = 0)− 16

81
E

(
1

4Nj,m
I{Nj,m>0}

)

+
169

81
P (Nj,m = 0)

(
1− P (Nj,m = 0)

)

− 416

81
P (Nj,m = 0)E

(
1

4Nj,m
I{Nj,m>0}

)

− 256

81

[

E

(
1

4Nj,m
I{Nj,m>0}

)]2

.

Again, by applying Corollary 3.1.1, the equation above reduces to

V ar(αj,m) =
20

81
− 20

81

m

m+ n
− 16

81
E

(
1

4Nj,m
I{Nj,m>0}

)

+
169

81

mn

(m+ n)2

− 416

81

m

m+ n
E

(
1

4Nj,m
I{Nj,m>0}

)

− 256

81

[

E

(
1

4Nj,m
I{Nj,m>0}

)]2

.
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Collecting similar terms on the RHS of the above finishes the proof.

3.2.3 Covariance Between Components

Lemma 3.2.3. If FX = FY = U [0, 1], then the covariance between any two compo-

nents is given by

Cov(αj1,m, αj2,m) =






− mn
(m+n)2(m+n−1)

j1 = 0, j2 = m

−13
9

mn
(m+n)2(m+n−1)

− 16
9
δn,m j1 = 0, j2 = 1, · · · ,m− 1

−169
81

mn
(m+n)2(m+n−1)

− 416
81
δn,m + 256

81
(νn,m − µn,m

2) j1, j2 = 1, · · · ,m− 1,

where

δn,m ≡ E

(
1

4Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

− n

m+ n
E

(
1

4Nj2,m
I{Nj2,m>0}

)

,

νn,m ≡ E

(
1

4Nj1,m+Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

.

Proof. We first express the covariance in terms of the conditional expectation as

follows:

Cov(αj1,m, αj2,m) = E(αj1,mαj2,m)− E(αj1,m)E(αj2,m)

= E
[
E(αj1,mαj2,m | Nj1,m, Nj2,m)

]

− E
[
E(αj1,m | Nj1,m)

]
E
[
E(αj2,m | Nj2,m)

]
.
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From Proposition 3.1.2, the last equality can be further written as

Cov(αj1,m, αj2,m) = E
[
E(αj1,m | Nj1,m, Nj2,m)E(αj2,m | Nj1,m, Nj2,m)

]

− E
[
E(αj1,m | Nj1,m)

]
E
[
E(αj2,m | Nj2,m)

]

= E
[
E(αj1,m | Nj1,m)E(αj2,m | Nj2,m)

]

− E
[
E(αj1,m | Nj1,m)]E[E(αj2,m | Nj2,m)

]
.

By substituting the formulas obtained in Lemma 3.2.1, we simplify the equation above

in different cases as follows:

A) When αj1,m and αj2,m are both external components,

Cov(αj1,m, αj2,m) = E
(
I{Nj1,m>0,Nj2,m>0}

)
−
[

E
(
I{Nj2,m>0}

)]2

.

Since Nj1,m and Nj2,m are non-negative,

1 = I{Nj1,m>0,Nj2,m>0} + I{Nj1,m=0} + I{Nj2,m=0} − I{Nj1,m=0,Nj2,m=0}.

Hence,

Cov(αj1,m, αj2,m)

= 1− E(I{Nj1,m=0})− E(I{Nj2,m=0}) + E(I{Nj1,m=0,Nj2,m=0})−
[
E(I{Nj2,m>0})

]2

= 1− 2P (Nj2,m = 0) + P (Nj1,m = 0, Nj2,m = 0)−
(
1− P (Nj2,m = 0)

)2
.

Applying Corollary 3.1.1 reduces the equation above to

Cov(αj1,m, αj2,m) = 1− 2
m

m+ n
+

m(m− 1)

(m+ n)(m+ n− 1)
−
(

1− m

m+ n

)2

.
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If we expand the quadratic term and then cancel similar terms, it follows that

Cov(αj1,m, αj2,m)

= 1− 2
m

m+ n
+

m(m− 1)

(m+ n)(m+ n− 1)
−
(

1− 2
m

m+ n
+

(
m

m+ n

)2
)

=
m(m− 1)

(m+ n)(m+ n− 1)
− (

m

m+ n
)2.

Reducing the factions above to a common denominator gives

Cov(αj1,m, αj2,m) = − mn

(m+ n)2(m+ n− 1)
.

B) When αj1,m is an external component while αj2,m is an internal component,

Cov(αj1,m, αj2,m) = E

[(
13

9
− 16

9

1

4Nj2,m

)

I{Nj1,m>0,Nj2,m>0}

]

− E
(
I{Nj1,m>0}

)
E

[(
13

9
− 16

9

1

4Nj2,m

)

I{Nj2,m>0}

]

.

Through expansion of the terms in the expectation, the above is simplified as

Cov(αj1,m, αj2,m)

=
13

9
E
(
I{Nj1,m>0,Nj2,m>0}

)
− 16

9
E

(
1

4Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

− 13

9

[
E
(
I{Nj2,m>0}

)]2
+

16

9
E
(
I{Nj1,m>0}

)
E

(
1

4Nj2,m
I{Nj2,m>0}

)

=
13

9

(

E
(
I{Nj1,m>0,Nj2,m>0}

)
−
[
E
(
I{Nj2,m>0}

)]2
)

− 16

9

[

E

(
1

4Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

− E
(
I{Nj1,m>0}

)
E

(
1

4Nj2,m
I{Nj2,m>0}

)]

.

Recall that in the previous case we obtained

E
(
I{Nj1,m>0,Nj2,m>0}

)
−
[
E
(
I{Nj2,m>0}

)]2
= − mn

(m+ n)2(m+ n− 1)
,
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and that by Corollary 3.1.1 we have

E
(
I{Nj2,m>0}

)
= P (Nj2,m > 0) =

n

m+ n
.

Therefore, we further write the covariance as

Cov(αj1,m, αj2,m) = −13

9

mn

(m+ n)2(m+ n− 1)
− 16

9
δn,m,

where

δn,m ≡ E

(
1

4Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

− n

m+ n
E

(
1

4Nj2,m
I{Nj2,m>0}

)

.

C) When αj1,m and αj2,m are both internal components,

Cov(αj1,m, αj2,m)

= E

[(
13

9
− 16

9

1

4Nj1,m

)(
13

9
− 16

9

1

4Nj2,m

)

I{Nj1,m>0,Nj2,m>0}

]

− E

[(
13

9
− 16

9

1

4Nj1,m

)

I{Nj1,m>0}

]

E

[(
13

9
− 16

9

1

4Nj2,m

)

I{Nj2,m>0}

]

.

Expanding the expressions inside the expectations above gives

Cov(αj1,m, αj2,m)

=

(
13

9

)2

E
(
I{Nj1,m>0,Nj2,m>0}

)
− 2 · 13

9
· 16

9
E

(
1

4Nj1,m
I{Nj1,m>0,Nj2,m>0}

)

+

(
16

9

)2

E

(
1

4Nj1,m+Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

−
(

13

9

)2
[
E
(
I{Nj2,m>0}

)]2
+ 2 · 13

9
· 16

9
E
(
I{Nj2,m>0}

)
E

(
1

4Nj2,m
I{Nj2,m>0}

)

−
(

16

9

)2 [

E

(
1

4Nj2,m
I{Nj2,m>0}

)]2

.
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Collecting terms simplifies the above to

Cov(αj1,m, αj2,m)

=

(
13

9

)2 (

E
(
I{Nj1,m>0,Nj2,m>0}

)
−
[
E(I{Nj2,m>0})

]2
)

−2· 13
9
· 16

9

[

E

(
1

4Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

−E(I{Nj2,m>0})E

(
1

4Nj2,m
I{Nj2,m>0}

)]

+

(
16

9

)2
(

E

(
1

4Nj1,m+Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

−
[

E

(
1

4Nj2,m
I{Nj2,m>0}

)]2
)

.

Denote

νn,m = E

(
1

4Nj1,m+Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

.

By recalling

E
(
I{Nj1,m>0,Nj2,m>0}

)
−
[
E
(
I{Nj2,m>0}

)]2
= − mn

(m+ n)2(m+ n− 1)

as obtained in the previous case, we have

Cov(αj1,m, αj2,m)

= −169

81

mn

(m+ n)2(m+ n− 1)
− 416

81
δn,m +

256

81

(
νn,m − µn,m

2
)

as desired.

3.2.4 Summary

In the very beginning of this chapter, we decomposed the variance of the domina-

tion number as follows:

V ar(Γn,m) = 2V ar(α0,m) + (m− 1)V ar(α1,m)

+ 2 Cov(α0,m, αm,m) + 2(m− 1)Cov(α0,m, α1,m) +m(m− 1)Cov(α1,m, α2,m).
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In Lemmas 3.2.2 and 3.2.3 in this section, we proved that

V ar(αj,m) =






mn
(m+n)2

j = 0,m

20
81

n
m+n

+ 169
81

mn
(m+n)2

−
(

16
81

+ 416
81

m
m+n

)
µn,m − 256

81
µn,m

2 j = 1, · · · ,m− 1,

and

Cov(αj1,m, αj2,m) =






− mn
(m+n)2(m+n−1)

j1 = 0, j2 = m

−13
9

mn
(m+n)2(m+n−1)

− 16
9
δn,m j1 = 0, j2 = 1, · · · ,m− 1

−169
81

mn
(m+n)2(m+n−1)

− 416
81
δn,m + 256

81
(νn,m − µn,m

2) j1, j2 = 1, · · · ,m− 1,

where

µn,m ≡ E

(
1

4Nj,m
I{Nj,m>0}

)

,

δn,m ≡ E

(
1

4Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

− n

m+ n
E

(
1

4Nj2,m
I{Nj2,m>0}

)

,

νn,m ≡ E

(
1

4Nj1,m+Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

.

Therefore, V ar(Γn,m) can be expressed in terms of µn,m, δn,m and νn,m, which are

expectations of some exponential functions involving Nj,m.
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3.3 Variance Expressed in the Summation Form in

Terms of n and m

We have proved that Nj,m, j = 1, · · · ,m, are multinomially distributed condi-

tioned on Lj,m, j = 1, · · · ,m, and in Proposition 3.1.3 we obtained the distribution of

Lj,m. Therefore, theoretically, we know the distribution of Nj,m, using which we can

integrate the expectations into the formulas for µn,m, δn,m and νn,m. In this section,

we calculate the explicit summation forms of µn,m, δn,m and νn,m.

3.3.1 Component Variance Expressed in the Summation Form

in Terms of n and m

From Lemma 3.2.2, we know that each component’s variance is determined by

µn,m. In this sub-section, we convert µn,m into a summation form.

Given that µn,m is defined as E
(

1

4Nj,m
I{Nj,m>0}

)

, it follows that

µn,m = E

[
1

4Nj,m

(
I{Nj,m≥0} − I{Nj,m=0}

)
]

= E

(
1

4Nj,m

)

− P (Nj,m = 0) .

From Proposition 3.1.1, we have

P (Nj,m = q | Lj,m = lj,m) =

(
n

q

)

lqj,m(1− lj,m)n−q,
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so

E

(
1

4Nj,m
| Lj,m = lj,m

)

=
n∑

q=0

1

4q

(
n

q

)

lqj,m(1− lj,m)n−q.

Applying Corollary 3.1.1 yields

µn,m = E

[

E

(
1

4Nj,m
| Lj,m

)]

− P (Nj,m = 0)

= E

[
n∑

q=0

1

4q

(
n

q

)

Lq
j,m(1− Lj,m)n−q

]

− m

m+ n
.

Using the distribution of Lj,m as given in Proposition 3.1.3, the last expectation can

be written in the integration form as

µn,m =

∫ 1

0

n∑

q=0

1

4q

(
n

q

)

lj,m
q(1− lj,m)n−qm(1− lj,m)m−1dlj,m −

m

m+ n
.

When the integration and summation operations are exchanged, the above becomes

µn,m =
n∑

q=0

∫ 1

0

1

4q

(
n

q

)

lj,m
q(1− lj,m)n−qm(1− lj,m)m−1dlj,m −

m

m+ n
.

Computing the integrals above gives

µn,m = m
n∑

q=0

(
1

4

)q (
n

q

)

B(q + 1,m+ n− q)− m

m+ n
,

where B(i, j) is the standard beta function with value (i−1)!(j−1)!
(i+j−1)!

when i and j are

positive integers. Therefore,

µn,m = m

n∑

q=0

(
1

4

)q
n!

q!(n− q)!

q!(m+ n− q − 1)!

(m+ n)!
− m

m+ n
.

By cancelling the factor q! inside the summation and factoring out m
m+n

from the

entire expression, we finally obtain

µn,m =
m

m+ n

(
n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!
− 1

)

. (3.3.1)
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3.3.2 Component Covariance Expressed in the Summation

Form in Terms of n and m

From Lemma 3.2.2, we know that the covariance between any two components is

determined by µn,m, δn,m and νn,m. In this sub-section, we convert δn,m and νn,m into

a summation form.

3.3.2.1 δn,m Expressed in the Summation Form in Terms of n and m

Recall that δn,m is defined as

δn,m = E

(
1

4Nj2,m
I{Nj1,m>0,Nj2,m>0}

)

− E
(
I{Nj2,m>0}

)
E

(
1

4Nj2,m
I{Nj2,m>0}

)

.

Since I{Nj1,m>0,Nj2,m>0} + I{Nj1,m=0} + I{Nj2,m=0} − I{Nj1,m=0,Nj2,m=0} ≡ 1, we have

δn,m = E

[
1

4Nj2,m

(
1− I{Nj1,m=0} − I{Nj2,m=0} + I{Nj1,m=0,Nj2,m=0}

)
]

−E
(
1− I{Nj2,m=0}

)
E

[
1

4Nj2,m

(
1− I{Nj2,m=0}

)
]

.

Expanding terms in the equality above gives

δn,m

=E

(
1

4Nj2,m

)

−E

(
1

4Nj2,m
I{Nj1,m=0}

)

−E

(
1

4Nj2,m
I{Nj2,m=0}

)

+E

(
1

4Nj2,m
I{Nj1,m=0,Nj2,m=0}

)

−E

(
1

4Nj2,m

)

+E

(
1

4Nj2,m
I{Nj2,m=0}

)

+E
(

I{Nj2,m=0}

)

E

(
1

4Nj2,m

)

−E
(

I{Nj2,m=0}

)

E

(
1

4Nj2,m
I{Nj2,m=0}

)

.

Collecting similar terms yields

δn,m = − E

(
1

4Nj2,m
I{Nj1,m=0}

)

+ E

(
1

4Nj2,m
I{Nj1,m=0,Nj2,m=0}

)

+ E
(
I{Nj2,m=0}

)
E

(
1

4Nj2,m

)

− E
(
I{Nj2,m=0}

)
E

(
1

4Nj2,m
I{Nj2,m=0}

)

. (3.3.2)
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By conditioning on Lj1,m and Lj2,m, the first term at the RHS of (3.3.2) becomes

E

(
1

4Nj2,m
I{Nj1,m=0}

)

= E

[

E

(
1

4Nj2,m
I{Nj1,m=0} | Lj1,m, Lj2,m

)]

.

From the distribution of Nj,m as given in Proposition 3.1.1, the above becomes

E

(
1

4Nj2,m
I{Nj1,m=0}

)

= E

[
n∑

q=0

(
1

4

)q (
n

q

)

(Lj2,m)q (1− Lj1,m − Lj2,m)n−q

]

.

Similarly, the third term in (3.3.2) can be written as

E
(
I{Nj2,m=0}

)
E

(
1

4Nj2,m

)

= P (Nj2,m = 0)E

[
n∑

q=0

(
1

4

)q (
n

q

)

(Lj2,m)q (1− Lj2,m)n−q

]

.

By applying Corollary 3.1.1, the last equality becomes

E
(
I{Nj2,m=0}

)
E

(
1

4Nj2,m

)

=
m

m+ n
E

[
n∑

q=0

(
1

4

)q (
n

q

)

(Lj2,m)q (1− Lj2,m)n−q

]

.

The second and fourth terms in Equation (3.3.2) can be calculated as

E

(
1

4Nj2,m
I{Nj1,m=0,Nj2,m=0}

)

= P (Nj1,m = 0, Nj2,m = 0) =
m(m− 1)

(m+ n)(m+ n− 1)
,

and

E
(
I{Nj2,m=0}

)
E

(
1

4Nj2,m
I{Nj2,m=0}

)

= [P (Nj2,m = 0)]2 =

(
m

m+ n

)2

.

Therefore, Equation (3.3.2) becomes

δn,m = − E

[
n∑

q=0

(
1

4

)q (
n

q

)

(Lj2,m)q (1− Lj2,m − Lj2,m)n−q

]

+
m

m+ n
E

[
n∑

q=0

(
1

4

)q (
n

q

)

(Lj2,m)q (1− Lj2,m)n−q

]

+
m(m− 1)

(m+ n)(m+ n− 1)
−
(

m

m+ n

)2

.
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The two expectations above can be calculated as

E

[
n∑

q=0

(
1

4

)q (
n

q

)

(Lj2,m)q (1− Lj2,m − Lj2,m)n−q

]

=
n∑

q=0

(
1

4

)q (
n

q

)∫ 1

0

∫ 1−lj1,m

0

lqj2,m(1− lj1,m − lj2,m)n−q

·m(m− 1)(1− lj1,m − lj2,m)m−2dlj2,mdlj1,m

z=
lj2,m

1−lj1,m
= m(m− 1)

n∑

q=0

(
1

4

)q (
n

q

)∫ 1

0

(1− lj1,m)m+n−1 dlj1,m

∫ 1

0

zq(1− z)m+n−q−2dz

= m(m− 1)
n∑

q=0

(
1

4

)q (
n

q

)
1

m+ n
B(q + 1,m+ n− q − 1),

and

E

[
n∑

q=0

(
1

4

)q (
n

q

)
(
Lj2,m

)q
(1− Lj2,m)n−q

]

=
n∑

q=0

(
1

4

)q (
n

q

)∫ 1

0

lqj2,m(1− lj2,m)n−qm(1− lj2,m)m−1dlj2,m

= m
n∑

q=0

(
1

4

)q (
n

q

)

B(q + 1,m+ n− q).

Hence,

δn,m = −m(m− 1)
n∑

q=0

(
1

4

)q (
n

q

)
1

m+ n
B(q + 1,m+ n− q − 1)

+
m

m+ n
m

n∑

q=0

(
1

4

)q (
n

q

)

B(q + 1,m+ n− q)

+
m(m− 1)

(m+ n)(m+ n− 1)
−
(

m

m+ n

)2

.
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By considering B(x, y) = (x+y−1)!
(x−1)!(y−1)!

, it follows that

δn,m = −m(m− 1)
n∑

q=0

(
1

4

)q
n!

(n− q)!q!

q!(m+ n− q − 2)!

(m+ n)!

+
m2

m+ n

n∑

q=0

(
1

4

)q
n!

(n− q)!q!

q!(m+ n− q − 1)!

(m+ n)!

+
m(m− 1)

(m+ n)(m+ n− 1)
−
(

m

m+ n

)2

.

Collecting similar terms gives

δn,m =
n∑

q=0

(
1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!

(
m2(m+ n− q − 1)

m+ n
−m(m− 1)

)

− mn

(m+ n)2(m+ n− 1)
.

Thus,

δn,m =
n∑

q=0

(
1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!

mn−m2q

m+ n
− mn

(m+ n)2(m+ n− 1)
.

(3.3.3)

3.3.2.2 νn,m − µn,m
2 Expressed in the Summation Form in Terms of n and

m

Since I{Nj1,m>0,Nj2,m>0} + I{Nj1,m=0} + I{Nj2,m=0} − I{Nj1,m=0,Nj2,m=0} ≡ 1, we get

νn,m = E

(
1

4Nj1,m+Nj2,m

)

− E

(
1

4Nj2,m
I{Nj1,m=0}

)

− E

(
1

4Nj1,m
I{Nj2,m=0}

)

+ E
(
I{Nj1,m=0,Nj2,m=0}

)
.

In the previous section, we found that the second term is equal to

E

(
1

4Nj2,m
I{Nj1,m=0}

)

= m(m− 1)
n∑

q=0

(
1

4

)q (
n

q

)
1

m+ n
B(q + 1,m+ n− q − 1),
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and the third term, by symmetry, is equal to the second term. By Corollary 3.1.1,

the fourth term is equal to

E
(
I{Nj1,m=0,Nj2,m=0}

)
= P (Nj1,m = 0, Nj2,m = 0) =

m(m− 1)

(m+ n)(m+ n− 1)
.

Next, we focus on calculating the first term in the expression of νn,m. By applying

Proposition 3.1.1, we get

E

(
1

4Nj1,m+Nj2,m
I{Nj1,m≥0,Nj2,m≥0}

)

= E

[

E

(
1

4Nj1,m+Nj2,m
I{Nj1,m≥0,Nj2,m≥0} | Lj1,m, Lj2,m

)]

= E






∑

p,q≥0
p+q≤n

(
1

4

)p+q (
n

p, q

)

(Lj1,m)p (Lj2,m)q (1− Lj1,m − Lj2,m)n−p−q




 .

Interchanging the expectation and summation yields

E

(
1

4Nj1,m+Nj2,m
I{Nj1,m≥0,Nj2,m≥0}

)

=
∑

p,q≥0
p+q≤n

(
1

4

)p+q (
n

p, q

)

E
[
(Lj1,m)p (Lj2,m)q (1− Lj1,m − Lj2,m)n−p−q] .

By plugging in the joint distribution of Lj1,m and Lj2,m, the expectation above can

be integrated as

E

(
1

4Nj1,m+Nj2,m
I{Nj1,m≥0,Nj2,m≥0}

)

= m(m− 1)
∑

p,q≥0
p+q≤n

(
1

4

)p+q(
n

p, q

)∫ 1

0

∫ 1−lj1,m

0

(lj1,m)p (lj2,m)q

· (1− lj1,m − lj2,m)m+n−p−q−2 dlj2,mdlj1,m.
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A simple substitution of z =
lj2,m

1−lj1,m
yields

E

(
1

4Nj1,m+Nj2,m
I{Nj1,m≥0,Nj2,m≥0}

)

= m(m− 1)
∑

p,q≥0
p+q≤n

(
1

4

)p+q (
n

p, q

)∫ 1

0

lj1,m
p(1− lj1,m)m+n−p−1dlj1,m

·
∫ 1

0

zq(1− z)m+n−p−q−2dz.

By the definition of a Beta function, the above becomes

E

(
1

4Nj1,m+Nj2,m
I{Nj1,m≥0,Nj2,m≥0}

)

=m(m− 1)
∑

p,q≥0
p+q≤n

(
1

4

)p+q (
n

p, q

)

B(p+ 1,m+ n− p)B(q + 1,m+ n− p− q − 1).

Therefore, we can finally write vn,m in the following summation form:

νn,m

= m(m− 1)
∑

p,q≥0
p+q≤n

(
1

4

)p+q (
n

p, q

)

B(p+ 1,m+ n− p)B(q + 1,m+ n− p− q − 1)

− 2 m(m− 1)
n∑

q=0

(
1

4

)q (
n

p, q

)
1

m+ n
B(q + 1,m+ n− q − 1)

+
m(m− 1)

(m+ n)(m+ n− 1)
.

By factoring out m(m− 1) and substituting for the Beta function, we get

νn,m = m(m− 1)

{
∑

p,q≥0
p+q≤n

(
1

4

)p+q
n!(m+ n− p− q − 2)!

(n− p− q)!(m+ n)!

− 2
n∑

q=0

(
1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!

+
1

(m+ n)(m+ n− 1)

}

.
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Let k = p + q. Then the first double-sum term in the bracket above can be reduced

to a single-sum form as follows:

n∑

k=0

(
1

4

)k
n!(m+ n− k − 2)!

(n− k)!(m+ n)!
(k + 1).

Combining the above with the second term in the expression of νn,m, we get

νn,m = m(m− 1)

{
n∑

q=0

(
1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!
(q − 1) +

1

(m+ n)(m+ n− 1)

}

.

This together with Equation (3.3.1) gives

νn,m − µn,m
2

= m(m− 1)

{
n∑

q=0

(
1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!
(q − 1) +

1

(m+ n)(m+ n− 1)

}

−
{

m
n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n)!
− m

m+ n

}2

.

Multiplying the factor m(m − 1) with the two terms inside the first bracket and

expanding the quadratic term in the equation above yields

νn,m − µn,m
2

= m(m− 1)
n∑

q=0

(
1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!
(q − 1) +

m(m− 1)

(m+ n)(m+ n− 1)

−m2

(
n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n)!

)2

+
2m2

m+ n

n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n)!

− m2

(m+ n)2
.

Combining the first summation with the third summation in the last equality, keeping

59



the second summation, and adding up the two non-summmational terms, we get

νn,m − µn,m
2

= m
n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n)!

(
(m− 1)(q − 1)

m+ n− q − 1
+

2m

m+ n

)

−m2

(
n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n)!

)2

− mn

(m+ n)2(m+ n− 1)
.

A reduction to a common denominator in the final factor in the first summation above

produces

νn,m − µn,m
2

= m

n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n)!

(m− 1)(q − 1)(m+ n) + 2m(m+ n− q − 1)

(m+ n)(m+ n− q − 1)

− m2

(m+ n)2

(
n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!

)2

− mn

(m+ n)2(m+ n− 1)
.

Cancelling the factor (m + n − q − 1) and applying (m + n)! = (m + n − 2)!(m +

n)(m+ n− 1) in the first summation gives

νn,m − µn,m
2

= m

n∑

q=0

(
1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n− 2)!

(m− 1)(q − 1)(m+ n) + 2m(m+ n− q − 1)

(m+ n)2(m+ n− 1)

− m2

(m+ n)2

(
n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!

)2

− mn

(m+ n)2(m+ n− 1)
.
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Once we factor out m2

(m+n)2
from the first two terms in the equation above, it follows

that

νn,m − µn,m
2

=
m2

(m+n)2

{
n∑

q=0

(
1

4

)q
n!(m+n−q−2)!

(n−q)!(m+n−2)!

(m−1)(q−1)(m+n)+2m(m+n−q−1)

m(m+n−1)

−
(

n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!

)2}

− mn

(m+ n)2(m+ n− 1)
.

By using (m+n)(m−1)(q−1)+2m(m+n−q−1)
m(m+n−1)

= q + 1 + n−(2m+n)q
m2+mn−m

, the above reduces to

νn,m − µn,m
2

=
m2

(m+n)2

{
n∑

q=0

(
1

4

)q
n!(m+n−q−2)!

(n−q)!(m+n−2)!

(

q + 1 +
n− (2m+ n)q

m2 +mn−m

)

−
(

n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!

)2}

− mn

(m+ n)2(m+ n− 1)
. (3.3.4)

3.4 Asymptotic Results

In this section, we show that if m/n→ r as n→∞, then

µn,m = µr + o(1),

δn,m = δr ·
1

n
+ o

(
1

n

)

,

νn,m − µn,m
2 = νr ·

1

n
+ o

(
1

n

)

,
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where µr, δr, νr are all constants determined by r.

In the calculation of the exact limiting values µr, δr, νr, we rely heavily on the

following version of the dominated convergence theorem (DCT).

Theorem 3.4.1. If Dn(q)
n→∞−→ D(q), and |Dn(q)| ≤ D∗(q) for all n, where

∞∑

q=0

D∗(q) <

∞, then

∞∑

q=0

Dn(q)
n→∞−→

∞∑

q=0

D(q).

3.4.1 Limiting Value of µn,m

Recall that in Equation (3.3.1),

µn,m =
m

m+ n

(
n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!
− 1

)

,

and let Dn(q) =







(
1
4

)q n!(m+n−q−1)!
(n−q)!(m+n−1)!

q ≤ n

0 q > n

. Then µn,m can be written as

m

m+ n

(
∞∑

q=0

Dn(q)− 1
)
.

Recall that m ≡ m(n) and m/n→ r as n→∞. It can be easily checked that

Dn(q) =

(
1

4

)q
n

m+ n− 1

n− 1

m+ n− 2
· · · n− q + 1

m+ n− q

n→∞−→
(

1

4

)q
1

1 + r

1

1 + r
· · · 1

1 + r
︸ ︷︷ ︸

total of q factors

=

(
1

4(r + 1)

)q

,
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and

|Dn(q)| =

(
1

4

)q
n

m+ n− 1

n− 1

m+ n− 2
· · · n− q + 1

m+ n− q

≤
(

1

4

)q

,

where
∞∑

q=0

(
1
4

)q
= 4

3
<∞. Therefore, by Theorem 3.4.1, the limiting value of µn,m is

µr =
r

r + 1

( ∞∑

q=0

(
1

4(r + 1)

)q

− 1

)

=
r

r + 1

(

1

1− 1
4(r+1)

− 1

)

=
r

(r + 1)(4r + 3)
,

thus,

µn,m =
r

(r + 1)(4r + 3)
+ o(1). (3.4.1)

3.4.2 Limiting Value of δn,m

As shown at the end of this subsection, the limiting value of δn,m is actually 0.

However, we need a finer result since V ar(Γn,m) is expressed in terms of n · δn,m. In

fact, we can prove that δn,m = δr · 1
n

+ o
(

1
n

)
as follows.

Recall Equation (3.3.3):

δn,m =
n∑

q=0

(
1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!

mn−m2q

m+ n
− mn

(m+ n)2(m+ n− 1)
.
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The summand above multiplied by n becomes

n ·
(

1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!

mn−m2q

m+ n

= n ·
(

1

4

)q
n

m+ n

n− 1

m+ n− 1
· · · n− q + 1

m+ n− q

1

m+ n− q

1

m+ n− q − 1

mn−m2q

m+ n

=

(
1

4

)q
n

m+ n

n− 1

m+ n− 1
· · · n− q + 1

m+ n− q

n

m+ n− q

n

m+ n− q − 1

mn−m2q

n(m+ n)
,

(3.4.2)

which, as m/n→ r, converges to

(
1

4

)q
1

1 + r

1

1 + r
· · · 1

1 + r
︸ ︷︷ ︸

total of q+2 factors

r − r2q

r + 1
=

(
1

4

)q (
1

r + 1

)q+2
r − r2q

r + 1
.

Also note that in (3.4.2) each factor after
(

1
4

)q
is less than 1, so the whole expression

(3.4.2) is bounded above by
(

1
4

)q
. Since

n∑

q=0

(
1
4

)q
= 4

3
< ∞, applying Theorem 3.4.1

as in the last subsection, we get

∞∑

q=0

n ·
(

1

4

)q
n!(m+ n− q − 2)!

(n− q)!(m+ n)!

mn−m2q

m+ n

→
∞∑

q=0

(
1

4

)q (
1

r + 1

)q+2
r − r2q

r + 1

=
12r

(r + 1)(4r + 3)3
.

Hence, considering n · −mn
(m+n)2(m+n−1)

→ − r
(r+1)3

as m/n → r, we know that n · δn,m

converges to

δr =
12r

(r + 1)(4r + 3)3
− r

(r + 1)3
=

r(−4r2 + 3)

(r + 1)3(4r + 3)2
.

Thus,

δn,m =
r(−4r2 + 3)

(r + 1)3(4r + 3)2
· 1

n
+ o

(
1

n

)

. (3.4.3)
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3.4.3 Limiting Value of νn,m − µn,m
2

Recall Equation (3.3.4):

νn,m − µn,m
2

=
m2

(m+n)2

{
n∑

q=0

(
1

4

)q
n!(m+n−q−2)!

(n−q)!(m+n−2)!

(

q + 1 +
n− (2m+ n)q

m2 +mn−m

)

−
(

n∑

q=0

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!

)2}

− mn

(m+ n)2(m+ n− 1)
.

The summand of the first summation above can be written as

(
1

4

)q
n

m+ n− 2

n− 1

m+ n− 3
· · · n− q + 1

m+ n− q − 1

(

q + 1 +
n− (2m+ n)q

m2 +mn−m

)

.

Since n
m+n−2

= n
m+n

(
1 + 2

m+n−2

)
, n−1

m+n−3
= n

m+n

(

1 + 2n−m
n(m+n−3)

)

, · · · , n−q+1
m+n−q−1

=

n
m+n

(

1 + 2n−(q−1)m
n(m+n−q−1)

)

, the above becomes

(
1

4

)q(
n

m+n

)q(

1+
2

m+n−2

)(

1+
2n−m

n(m+n−3)

)

· · ·
(

1+
2n−(q−1)m

n(m+n−q−1)

)(

q+1+
n−(2m+n)q

m2+mn−m

)

.

By expanding the factors after
(

1
4

)q ( n
m+n

)q
, the above reduces to

(
1

4

)q(
n

m+n

)q
{

q+1+
n−(2m+n)q

m2+mn−m
+(q+1)

(
2

m+n−2
+

2n−m

n(m+n−3)
+· · ·+ 2n−(q−1)m

n(m+n−q−1)

)

+o

(
1

n

)}

.

(3.4.4)

We now consider the summand of the second summation in Equation (3.3.4). By the

same techniques used above, this summand can be simplified as follows.

(
1

4

)q (
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!

)

=

(
1

4

)q (
n

m+ n− 1

n− 1

m+ n− 2
· · · n− q + 1

m+ n− q

)
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Since n
m+n−1

= n
m+n

(
1 + 1

m+n−1

)
, n−1

m+n−2
= n

m+n

(

1 + n−m
n(m+n−2)

)

, · · · , n−q+1
m+n−q

= n
m+n

·
(

1 + n−(q−1)m
n(m+n−q−1)

)

, the above becomes

(
1

4

)q
n!(m+ n− q − 1)!

(n− q)!(m+ n− 1)!

=

(
1

4

)q(
n

m+n

)q(

1+
1

m+n−1

)(

1+
n−m

n(m+n− 2)

)

· · ·
(

1+
n−(q−1)m

n(m+n−q−1)

)

=

(
1

4

)q(
n

m+n

)q

+

(
1

4

)q(
n

m+n

)q(
1

m+n−1
+

n−m
n(m+n−2)

+· · ·+ n−(q−1)m

n(m+n−q−1)

)

+o

(
1

n

)

.

(3.4.5)

Substituting Expression (3.4.4) for the summand of the first summation in Equation

(3.3.4), and Expression (3.4.5) for the summand of the second summation in Equation

(3.3.4), we get

νn,m − µn,m
2

=
m2

(m+n)2

[
n∑

q=0

(
1

4

)q(
n

m+n

)q
{

q+1+
n−(2m+n)q

m2+mn−m
+(q+1)

(
2

m+n−2
+

2n−m

n(m+n−3)
+· · ·+ 2n−(q−1)m

n(m+n−q−1)

)

+o

(
1

n

)}

−
{

n∑

p=0

(
1

4

)p(
n

m+n

)p

+
n∑

q=0

(
1

4

)q(
n

m+n

)q(
1

m+n−1
+

n−m

n(m+n−2)
+· · ·+ n−(q−1)m

n(m+n−q−1)

)

+o

(
1

n

)}2]

− mn

(m + n)2(m + n− 1)
.
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Note that we have changed the index in the second summation from q to p. Breaking

the first summation into two parts, and expanding the quadratic term, we get

νn,m − µn,m
2

=
m2

(m+n)2

[
n∑

q=0

(
1

4

)q(
n

m+n

)q

(q+1)

+
n∑

q=0

(
1

4

)q(
n

m+n

)q
{

n−(2m+n)q

m2+mn−m
+(q+1)

(
2

m+n−2
+

2n−m

n(m+n−3)
+· · ·+ 2n−(q−1)m

n(m+n−q−1)

)}

−
{

n∑

p=0

(
1

4

)p(
n

m+n

)p
}2

−2

{
n∑

p=0

(
1

4

)p(
n

m+n

)p
}

·
n∑

q=0

(
1

4

)q(
n

m+n

)q(
1

m+n−1
+

n−m

n(m+n−2)
+· · ·+ n−(q−1)m

n(m+n−q−1)

)

−
{

n∑

q=0

(
1

4

)q(
n

m+n

)q(
1

m+n−1
+

n−m

n(m+n−2)
+· · ·+ n−(q−1)m

n(m+n−q−1)

)}2

+ o

(
1

n

)]

− mn

(m + n)2(m + n− 1)
.

Combining the summation in the first line with the summation in the third line, and

combining the summation in the second line with the summation in the fourth line,

it follows that

νn,m − µn,m
2

=
m2

(m+n)2

[
n∑

q=0

(
1

4

)q(
n

m+n

)q

(q+1)−
{

n∑

p=0

(
1

4

)p(
n

m+n

)p
}2

+
n∑

q=0

(
1

4

)q(
n

m+n

)q
{

n−(2m+n)q

m2+mn−m
+(q+1)

(
2

m+n−2
+

2n−m

n(m+n−3)
+· · ·+ 2n−(q−1)m

n(m+n−q−1)

)

−2

{ n∑

p=0

(
1

4

)p(
n

m+n

)p}

·
(

1

m+n−1
+

n−m

n(m+n−2)
+· · ·+ n−(q−1)m

n(m+n−q−1)

)}

−
{

n∑

q=0

(
1

4

)q(
n

m+n

)q( 1

m+n−1
+

n−m

n(m+n−2)
+· · ·+ n−(q−1)m

n(m+n−q−1)

)}2

+ o

(
1

n

)]

− mn

(m + n)2(m + n− 1)
.
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Distributing the factor m2

(m+n)2
to each term inside the square bracket, and multiplying

the whole equation by n, we obtain

n(νn,m − µn,m
2)

=
m2

(m+n)2
· n
[

n∑

q=0

(
1

4

)q(
n

m+n

)q

(q+1)−
{

n∑

p=0

(
1

4

)p(
n

m+n

)p
}2]

m2

(m+n)2
·

n∑

q=0

(
1

4

)q(
n

m+n

)q
{

n2−(2m+n)nq

m2+mn−m
+(q+1)

(

2n

m+n−2
+

n(2n−m)

n(m+n−3)
+· · ·+n

(
2n−(q−1)m

)

n(m+n−q−1)

)

−2

{ n∑

p=0

(
1

4

)p(
n

m+n

)p}

·
(

n

m+n−1
+

n(n−m)

n(m+n−2)
+· · ·+ n

(
n−(q−1)m

)

n(m+n−q−1
)

)}

− m2

(m+n)2
· 1

n

{
n∑

q=0

(
1

4

)q(
n

m+n

)q
(

n

m+n−1
+

n(n−m)

n(m+n−2)
+· · ·+ n

(
n−(q−1)m

)

n(m+n−q−1)

)}2

− mn2

(m + n)2(m + n− 1)
+ o(1). (3.4.6)

As shown later, the first line at the RHS of the equation above converges to 0 as

m/n→ r, i.e.,

n

[
n∑

q=0

(
1

4

)q (
n

m+ n

)q

(q + 1)−
(

n∑

p=0

(
1

4

)p(
n

m+ n

)p
)2 ]

→ 0. (3.4.7)

Meanwhile, we can check that, as m/n → r, the summand in the second and third

line at the RHS of Equation (3.4.6) converges to

(
1

4

)q (
1

r + 1

)q
{

1− (2r + 1)q

r(r + 1)
+ (q + 1)

(
2

r + 1
+

2− r

r + 1
+ · · ·+ 2− (q − 1)r

r + 1

)

−2
1

1− 1
4(r+1)

(
1

r + 1
+

1− r

r + 1
+ · · ·+ 1− (q − 1)r

r + 1

)}

,

hence by applying Theorem 3.4.1 as before, the term in the second and third line at

the RHS of Equation (3.4.6) converges to

(
r

r + 1

)2 ∞∑

q=0

(
1

4

)q ( 1

r + 1

)q
{

1− (2r + 1)q

r(r + 1)
+

(q + 1)(2q − q(q − 1)r/2)

r + 1
− 2

4(r + 1)

4r + 3

q − q(q − 1)r/2)

r + 1

}

=

(
r

r+1

)2 ∞∑

q=0

(
1

4(r+1)

)q
{

−r

2(r+1)
q3+

(
2

r+1
+

4r

4r+3

)

q2+

(−(2r+1)

r(r+1)
+

r + 4

2(r+1)
− 4(r+2)

4r+3

)

q+
1

r(r+1)

}

.
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Let x = 1
4(r+1)

. Note that 0 < x < 1 since r > 0. Recall that for any x ∈ (0, 1),

the following identities hold:
∞∑

q=0

xq = 1
1−x

,
∞∑

q=0

xqq = x
(1−x)2

,
∞∑

q=0

xqq2 = x(1+x)
(1−x)3

and

∞∑

q=0

xqq3 = x(x2+4x+1)
(1−x)4

. Hence, the limiting value above is further reduced to

(
r

r+1

)2
{

−r

2(r+1)

x(x2+4x+1)

(1−x)4
+

(
2

r+1
+

4r

4r+3

)
x(1+x)

(1−x)3
+

(−(2r+1)

r(r+1)
+

r+4

2(r+1)
−4(r+2)

4r+3

)
x

(1−x)2
+

1

r(r+1)

1

1−x

}

=

(
r

r+1

)2
{

−r

2(r+1)

4(r + 1) + 64(r + 1)2 + 64(r + 1)3

(4r + 3)4
+

4r2 + 12r + 6

(r + 1)(4r + 3)

4(r + 1)(4r + 5)

(4r + 3)3

+
−4r3 − 21r2 − 24r − 6

2r(r + 1)(4r + 3)

4(r + 1)

(4r + 3)2
+

1

r(r + 1)

4(r + 1)

4r + 3

}

=

(
r

r+1

)2
{

−r(32r2 + 96r + 66)

(4r + 3)4
+

4(4r2 + 12r + 6)(4r + 5)

(4r + 3)4
+

2(−4r3 − 21r2 − 24r − 6)

r(4r + 3)3
+

4

r(4r + 3)

}

=

(
r

r+1

)2
{

−32r4−96r3−66r2

r(4r + 3)4
+

64r4+272r3+336r2+120r

r(4r + 3)4
+
−32r4−192r3−318r2−192r−36

r(4r + 3)4
+

256r3+576r2+432r+108

r(4r + 3)4

}

=

(
r

r+1

)2 240r3 + 528r2 + 360r + 72

r(4r + 3)4

=

(
r

r+1

)2 8(r + 1)(30r2 + 36r + 9)

r(4r + 3)4
. (3.4.8)

Similarly, we can prove that, as m/n → r, the summation in the fourth line at the

RHS of Equation (3.4.6) converges to a constant C > 0, i.e.,

n∑

q=0

(
1

4

)q(
n

m+n

)q(
n

m+n−1
+

n−m
m+n−2

+· · ·+ n−(q−1)m

m+n−q−1

)

→ C.

Hence

m2

(m+ n)2
· 1

n

{
n∑

q=0

(
1

4

)q(
n

m+n

)q(
n

m+n−1
+

n−m
m+n−2

+· · ·+ n−(q−1)m

m+n−q−1

)}2

→ 0

(3.4.9)

Applying the limiting expressions (3.4.7), (3.4.8) and (3.4.9) to Equation (3.4.6), and

considering mn2

(m+n)2(m+n−1)
→ r

(r+1)3
as m/n → r, we conclude that n(νn,m − µn,m

2)
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converges to

νr =

(
r

r + 1

)2
8(r + 1)(30r2 + 36r + 9)

r(4r + 3)4
− r

(r + 1)3

=
8r(r + 1)2(30r2 + 36r + 9)− r(4r + 3)4

(r + 1)3(4r + 3)4

=
r(−16r4 + 24r2 − 9)

(r + 1)3(4r + 3)4

= − r(4r2 − 3)2

(r + 1)3(4r + 3)4
.

Hence,

νn,m − µn,m
2 = − r(4r2 − 3)2

(r + 1)3(4r + 3)4
· 1

n
+ o

(
1

n

)

. (3.4.10)

We now go back to prove that Expression (3.4.7) is indeed true.

Proof of Formula (3.4.7). Given δ > 0, for n sufficiently large, 0 < r − ε < m/n <

r + ε. Then the first series inside the square brackets in (3.4.7) can be bounded as

follows:

n∑

q=0

(
1

4

)q (
n

m+ n

)q

(q + 1)

=
∞∑

q=0

(
1

4

)q (
n

m+ n

)q

(q + 1)−
∞∑

q=n+1

(
1

4

)q (
n

m+ n

)q

(q + 1)

=

(

1

1− n
4(m+n)

)2

−
∞∑

q=n+1

(
n

4(m+ n)

)q

(q + 1)

≤
(

1

1− n
4(m+n)

)2

−
(

n

4(m+ n)

)n+1

(n+ 1 + 1).

When n is sufficiently large, m/n < r + ε, so the above reduces to

n∑

q=0

(
1

4

)q (
n

m+ n

)q

(q + 1) ≤
(

1

1− n
4(m+n)

)2

−
(

1

4(r + ε+ 1)

)n+1

(n+ 2).
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On the other hand, the second series inside the square brackets in (3.4.7) can be

bounded as follows:

n∑

p=0

(
1

4

)p(
n

m+ n

)p

=
∞∑

p=0

(
1

4

)p(
n

m+ n

)p

−
∞∑

p=n+1

(
1

4

)p(
n

m+ n

)p

=
1

1− n
4(m+n)

−

(
n

4(m+n)

)n+1

1− n
4(m+n)

≥ 1

1− n
4(m+n)

(

1−
(

1

4(r − ε+ 1)

)n+1
)

.

Applying the last two bounds to the LHS of (3.4.7), we get

n ·
[

n∑

q=0

(
1

4

)q (
n

m + n

)q

(q + 1)−
{

n∑

p=0

(
1

4

)p(
n

m + n

)p
}2]

≤ n ·
[(

1

1− n
4(m+n)

)2

−(n + 2)

(
1

4(r + ε + 1)

)n+1

−
{

1

1− n
4(m+n)

(

1−
(

1

4(r − ε + 1)

)n+1
)}2]

.

By expanding the quadratic term in the brackets, the RHS of the inequality above

can be simplified as

n ·
[(

1

1− n
4(m+n)

)2

− (n + 2)

(
1

4(r + ε + 1)

)n+1

−
(

1

1− n
4(m+n)

)2

+ 2

(

1

1− n
4(m+n)

)2 (
1

4(r − ε + 1)

)n+1

−
(

1

1− n
4(m+n)

)2 (
1

4(r − ε + 1)

)2(n+1)
]

= n ·
[

− (n + 2)

(
1

4(r + ε + 1)

)n+1

+ 2

(

1

1− n
4(m+n)

)2(
1

4(r − ε + 1)

)n+1

−
(

1

1− n
4(m+n)

)2(
1

4(r − ε + 1)

)2(n+1)
]

.

The above is further bounded by

n ·
[

− (n + 2)

(
1

4(r + ε + 1)

)n+1

+ 2

(

1

1− 1
4(r−ε+1)

)2(
1

4(r − ε + 1)

)n+1

−
(

1

1− 1
4(r+ε+1)

)2(
1

4(r − ε + 1)

)2(n+1)
]

=−n(n + 2)

(
1

4(r + ε + 1)

)n+1

+ 2n

(

1

1− 1
4(r−ε+1)

)2(
1

4(r − ε + 1)

)n+1

−n

(

1

1− 1
4(r+ε+1)

)2 (
1

4(r − ε + 1)

)2(n+1)

.

Since ns

tn
→ 0 for any fixed s > 0 and t > 1, it follows that the three terms above all

converge to 0. Hence, the whole bound converges to 0.
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3.4.4 Summary

Using all the limiting values achieved before, we are now able to prove the following

main theorem in this chapter.

Theorem 3.4.2. If FX = FY = U [0, 1] and m/n → r, r ∈ (0,∞), then for internal

components,

V ar(αj,m) = varr + o(1),

Cov(αj1,m, αj2,m) = covr ·
1

m
+ o

(
1

m

)

,

and the variance of the domination number is in the order of m, i.e.,

V ar(Γn,m)

m
→ v(r),

where

varr =
144r3 + 360r2 + 237r + 20

9(r + 1)2(4r + 3)2
,

covr = −r
2(2304r4 + 9984r3 + 16096r2 + 11440r + 3025)

9(r + 1)3(4r + 3)4
,

v(r) =
1536r5 + 6848r4 + 11536r3 + 8836r2 + 2793r + 180

9(r + 1)3(4r + 3)4
.

Proof. Substituting the limiting value of µn,m given in Equation (3.4.1) into Lemma

3.2.2 gives

V ar(αj,m) =
144r3 + 360r2 + 237r + 20

9(r + 1)2(4r + 3)2
+ o(1) for j ∈ {1, · · · ,m− 1}.

Substituting the limiting value of µn,m, δn,m and νn,m − µn,m
2
(
given in Equations
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(3.4.1), (3.4.3) and (3.4.10), respectively
)

into Lemma 3.2.3 yields

Cov(αj1,m, αj2,m) = −r
2(−64r3 + 208r2 + 312r + 187)

9(r + 1)3(4r + 3)2
· 1

m
+ o

(
1

m

)

for j1 = 0, j2 = 1, · · · ,m− 1,

and

Cov(αj1,m, αj2,m) = −r
2(2304r4 + 9984r3 + 16096r2 + 11440r + 3025)

9(r + 1)3(4r + 3)4
· 1

m
+ o

(
1

m

)

for j1, j2 = 1, · · · ,m− 1.

Recall Equation (3.0.1):

V ar(Γn,m) = 2V ar(α0,m) + (m− 1)V ar(α1,m)

+ 2 Cov(α0,m, αm,m) + 2(m− 1)Cov(α0,m, α1,m) +m(m− 1)Cov(α1,m, α2,m).

From the orders of the variances and covariances obtained above, we can see that only

the terms V ar(α1,m) and Cov(α1,m, α2,m) contribute to lim
n→∞

V ar(Γn,m)

m
. Specifically,

applying the limiting values of variances and covariances above to Equation (3.0.1)

and dividing the equation by m, we obtain

V ar(Γn,m)

m

→ 144r3 + 360r2 + 237r + 20

9(r + 1)2(4r + 3)2
− r2(2304r4 + 9984r3 + 16096r2 + 11440r + 3025)

9(r + 1)3(4r + 3)4

=
1536r5 + 6848r4 + 11536r3 + 8836r2 + 2793r + 180

9(r + 1)3(4r + 3)4
.

Remark 3.4.1. The complicated formula above is empirically checked by using Monte

Carlo simulations in Section 6.1.1. The result (see Figure 6.2) shows that, when n and
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m are sufficiently large, the sample variance is in good agreement with the theoretical

limiting variance.
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Chapter 4

CLT for the Domination Number

in One Dimension

In this chapter, we prove the central limit theorem (CLT) for the domination num-

ber in one dimension. An important tool used in the proof is “negative association.”

In Section 4.1, we define negatively associated random variables and their CLT; in

Section 4.2, by using characteristic functions and applying this CLT for negatively

associated random variables, we establish the CLT for the domination number in one

dimension.

4.1 Negative Association

The concept of negatively associated (NA) random variables was introduced and

carefully studied by Joag-Dev and Proschan [13]. The law of large numbers for NA
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random variables was established by Taylor et al. [14], and the CLT for NA random

variables was proven by Newman [15].

Definition 4.1.1. Consider random variables X1, · · · , Xk. For every pair of disjoint

subsets I, J of {1, · · · , k} and any increasing functions fI , fJ such that the following

covariance exists, if

Cov
{
fI(Xi, i ∈ I), fJ(Xj, j ∈ J)

}
≤ 0,

then X1, · · · , Xk are said to be negatively associated (NA).

In this chapter, “NA” may also refer to the vector X = (X1, · · · , Xk) or to the

underlying distribution of X.

The following propositions easily follow from the definition above:

Proposition 4.1.1. A subset of two or more NA random variables is NA.

Proposition 4.1.2. A set of independent random variables is NA.

Proposition 4.1.3. Random variables defined as increasing functions on disjoint

subsets of a set of NA random variables are NA.

Joag-Dev and Proschan [13] have proven several distributions to be NA, particu-

larly the following:

Proposition 4.1.4. A multinomial distribution is NA.
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Proposition 4.1.5. If X1, · · · , Xm are m independent random variables with log-

concave densities, then the joint conditional distribution of X1, · · · , Xm given
m∑

i=1

Xi

is NA.

Occasionally, as illustrated below, a dependence condition weaker than NA may

be used.

Definition 4.1.2. Random variables X1, · · · , Xk are said to be negatively dependent

(ND) if for all real x1, · · · , xk,

P (Xi > xi, i = 1, · · · , k) ≤
k∏

i=1

P (Xi > xi)

and

P (Xi ≤ xi, i = 1, · · · , k) ≤
k∏

i=1

P (Xi ≤ xi).

Note: It has been shown that that negative association implies negative depen-

dence [13].

Taylor, Patterson and Bozorgnia proved that the SLLN holds for ND random

variables [14]. However, here we quote only that part of their theorem to be used in

this chapter.

Theorem 4.1.1. Let {Xk,m : 1 ≤ k ≤ m,m ≥ 1} be row-wise ND random variable

arrays such that E[Xk,m] = 0 for each k and m. If |Xk,m| ≤M , then

1

m1/p

m∑

k=1

Xk,m
a.s.−→ 0, 0 < p < 2.

77



Newman established the CLT for ND sequences [15]. We now state the distribu-

tional limit theorem for row-wise ND random variable arrays, which was proved in

[15, Theorem 11].

Theorem 4.1.2. Suppose Xk,m and Yk,m(1 ≤ k ≤ m,m ≥ 1) are triangular arrays

such that for each m and k, random variable Xk,m is equidistributed with Yk,m. Assume

for each m, the random variables Xk,m, k = 1, · · · ,m are ND, but Yk,m, k = 1, · · · ,m

are independent. If in addition,

lim
m→∞

∑

1≤i<j≤m Cov(Xi,m, Xj,m)

m
= 0,

then 1
m1/2

m∑

k=0

Xk,m converges in distribution to X if and only if 1
m1/2

m∑

k=0

Yk,m converges

in distribution to the same X.

When the classical CLT for bounded i.i.d. random variable arrays is applied to

{Yk,m} in the theorem above, it immediately follows the following theorem.

Theorem 4.1.3. Let {Xk,m : 1 ≤ k ≤ m,m ≥ 1} be identically distributed row-wise

ND random variable arrays such that E[Xk,m] = 0 for each k and m. If |Xk,m| ≤M ,

and

lim
m→∞

∑

1≤k<l≤m Cov(Xk,m, Xl,m)

m
= 0,

then

1

m1/2

m∑

k=1

Xk,m
L−→ N(0, σ2),

where σ2 = lim
m→∞

V ar[
∑m

k=1 Xk,m]
m

.
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Remark 4.1.1. Since negative association implies negative dependence, Theorems 4.1.1,

4.1.2 and 4.1.3 are all valid if {Xk,m : 1 ≤ k ≤ m,m ≥ 1} is row-wise NA.

In our problem, if we could show that {αj,m, j = 0, · · · ,m} is NA, then by The-

orem 4.1.3, we would immediately obtain the CLT for Γn,m =
∑m

j=0 αj,m. However,

we haven’t been able to prove the negative association of {αj,m, j = 0, · · · ,m}. In-

stead, we first prove that {Lj,m, j = 0, · · · ,m} is NA, based on which we show

that {Nj,m, j = 0, · · · ,m} is also NA. Next, we express the conditional character-

istic function of Γn,m given Nj,m, j = 0, · · · ,m, in terms of increasing functions of

{Nj,m, j = 0, · · · ,m}. Since {Nj,m, j = 0, · · · ,m} is NA, the increasing functions

above are also NA. Finally, applying the SLLN and CLT for the increasing function

of {Nj,m, j = 0, · · · ,m}, we show that the expectation of conditional characteristic

function converges to a constant, thus the CLT for Γn,m is established. In the rest

of this section, we show the negative association of both {Lj,m, j = 0, · · · ,m} and

{Nj,m, j = 0, · · · ,m}.

Lemma 4.1.1. If FX = FY = U [0, 1], then the random vector (L0,m, · · · , Lm,m) is

NA.

Proof. Recall that Lj,m = Y(j+1)−Y(j) and suppose that Z0, · · · , Zm are i.i.d. random

variables with an exponential distribution, where {Z0, · · · , Zm} are independent of

{L0,m, · · · , Lm,m}. Since the exponential distribution is log-concave, from Proposi-

tion 4.1.5 we know that given
m∑

j=0

Zi, the random vector (Z0, · · · , Zm) is NA. Hence
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by Definition 4.1.1, we know that for any pair of disjoint subsets I, J of {0, · · · ,m}

and any increasing functions fI and fJ such that the following covariance exists,

Cov
{

fI(Zi, i ∈ I), fJ(Zj, j ∈ J)
∣
∣
∣

∑m

k=0
Zk = a

}

≤ 0, for any a > 0.

Since fI

(
Zi

a
, i ∈ I

)
and fJ

(
Zj

a
, j ∈ J

)

are still increasing functions of Zi, i ∈ I and

Zj, j ∈ J , respectively, we have

Cov

{

fI

(
Zi

a
, i ∈ I

)

, fJ

(
Zj

a
, j ∈ J

) ∣
∣
∣

∑m

k=0
Zk = a

}

≤ 0,

i.e.,

Cov

{

fI

(
Zi

∑m
k=0 Zk

, i ∈ I
)

, fJ

(
Zj

∑m
k=0 Zk

, j ∈ J
) ∣
∣
∣

∑m

k=0
Zk = a

}

≤ 0.

Note that the conditional distribution of
(

Z0∑m
i=0 Zi

, Z1∑m
i=0 Zi

, · · · , Zm∑m
i=0 Zi

)

given
∑m

k=0 Zk

= a is independent of a, so must be the unconditional distribution. Thus, the inequal-

ity above yields

Cov

{

fI

(
Zi

∑m
k=0 Zk

, i ∈ I
)

, fJ

(
Zj

∑m
k=0 Zk

, j ∈ J
)}

≤ 0.

Therefore, the random vector

(
Z0

∑m
i=0 Zi

,
Z1

∑m
i=0 Zi

, · · · , Zm
∑m

i=0 Zi

)

is NA. However,
(

Z0∑m
i=0 Zi

, Z1∑m
i=0 Zi

, · · · , Zm∑m
i=0 Zi

)

and (L0,m, · · · , Lm,m) have the same

distribution, hence (L0,m, · · · , Lm,m) is also NA.

Using Lemma 4.1.1, we show in the following theorem that (N0,m, · · · , Nm,m) is

NA.
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Theorem 4.1.4. If FX = FY = U [0, 1], then the random vector (N0,m, · · · , Nm,m) is

NA.

Proof. In Theorem 3.1.1, we have shown that given Lk,m = lk,m, k = 0, · · · ,m, the

random vector (N0,m, · · · , Nm,m) is multinomially distributed; hence, it is NA (Propo-

sition 4.1.4). From the definition of negative association, we know that for any disjoint

subsets I, J of {0, · · · ,m} and increasing functions fI , fJ , the following inequality

holds:

E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J) | Lk,m, k = 0, · · · ,m

]

≤ E
[
fI(Ni,m, i ∈ I) | Lk,m, k = 0, · · · ,m

]
· E
[
fJ(Nj,m, j ∈ J) | Lk,m, k = 0, · · · ,m

]
.

Note that given Lk,m = lk,m, k = 0, · · · ,m, the joint distribution of {Ni,m, i ∈ I} only

depends on Li,m, i ∈ I, thus E
[
fI(Ni,m, i ∈ I) | Lk,m, k = 0, · · · ,m

]
= E

[
fI(Ni,m, i ∈

I) | Li,m, i ∈ I
]
; similarly, E

[
fJ(Nj,m, j ∈ J) | Lk,m, k = 0, · · · ,m

]
= E

[
fJ(Nj,m, j ∈

J) | Lj,m, j ∈ J
]
. Therefore,

E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J) | Lk,m, k = 0, · · · ,m

]

≤ E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]
· E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]
.

Taking expectation on both sides of the inequality above yields

E
[

E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J) | Lk,m, k = 0, · · · ,m

]]

≤ E
[

E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]
· E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]]

.

Since Lemma 4.1.1 showed that (L0,m, · · · , Lm,m) is NA, and E
[
fI(Ni,m, i ∈ I) |

Li,m, i ∈ I
]

and E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]
are actually increasing functions of
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{Li,m, i ∈ I} and {Lj,m, j ∈ J}, respectively (see Remark 4.1.2 below), applying the

definition of NA random vectors yields

E
[

E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]
· E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]]

≤ E
[

E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]]

· E
[

E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]]

.

Combining the two inequalities above produces

E
[

E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J) | Lk,m, k = 0, · · · ,m

]]

≤ E
[

E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]]

· E
[

E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]]

,

thus

E
[
fI(Ni,m, i ∈ I) · fJ(Nj,m, j ∈ J)

]
≤ E

[
fI(Ni,m, i ∈ I)] · E[fJ(Nj,m, j ∈ J)

]
.

Remark 4.1.2. To finish the proof, we now show E
[
fI(Ni,m, i ∈ I) | Li,m, i ∈ I

]

and E
[
fJ(Nj,m, j ∈ J) | Lj,m, j ∈ J

]
are increasing functions of {Li,m, i ∈ I} and

{Lj,m, j ∈ J}, respectively. By induction, it suffices to show that fI (or fJ) increases

if only one variable increases while other components remain unchanged. That is to

show, for any subset I = {i1, · · · , iI} of {0, · · · ,m}, if lit < l′it , t ∈ I, then

E
[
fI(Ni,m, i ∈ I) | Li,m = li, i ∈ I

]

≤ E
[
fI(Ni,m, i ∈ I}) | Li,m = li for i ∈ I − {it}, Lit,m = l′it

]
. (4.1.1)

As illustrated in Figure 4.1, suppose n X-points are independently uniformly dis-

tributed in [0, 1], and denote Ni,m, i ∈ I as the number of X-points falling in the inter-

val with length Li,m = li. Without loss of generality, the intervals have been ordered so
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x x xx x x x x x x x x x x xx
...... ......

x x x xx

0 1
l
′

it

lit−1 lit+1 liI litli1

Figure 4.1: A coupling argument with respect to Inequality (4.1.1)

that li1 corresponds to the leftmost one and lit corresponding to the rightmost one, as

shown in Figure 4.1. If the length lit increases to l′it , then Nit,m will not decrease (pos-

sibly increase). This means that when
{
Li,m = li for i ∈ I−{it}, Lit,m = l′it

}
, the ran-

dom variable Nj,m is stochastically larger than the original one when Li,m = li, i ∈ I.

Since fI is an increasing function of Ni,m, i ∈ I, it follows that Inequality (4.1.1)

indeed holds.

4.2 CLT for the Domination Number

The following is our main theorem in this chapter.

Theorem 4.2.1. If FX = FY = U [0, 1], and m/n→ r, then

1

m1/2

(
Γn,m − E[Γn,m]

) L→ N(0, σ2),

where σ2 = lim
m→∞

V ar[Γn,m]
m

. (The exact limiting value was given in Theorem 3.4.2.)

Proof. We define Fm = σ(N0,m, · · · , Nm,m) as the σ-field generated by Nj,m, j =

0, · · · ,m, and let

Zj,m =
1

m1/2

(
αj,m − E[αj,m]

)
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and

fm(t) = E

[

e
it

m∑

j=0
Zj,m

∣
∣
∣ Fm

]

.

Recall that in Lemma 3.1.2 we have proved that, given Fm, Zj,m, j = 0, · · · ,m, are

conditionally independent, and each Zj,m is independent of Nj′,m for any j ′ 6= j.

Therefore, the equation above becomes

fm(t) =
m∏

j=0

E
[
eitZj,m | Fm

]

=
m∏

j=0

E
[
eitZj,m | Nj,m

]
.

Since the Taylor expansion tells us that

eiz = 1 + iz − 1

2
z2 + A(z), where |A(z)| ≤ |z|3

6
,

the conditional characteristic function of Zj,m can be written as

E
[
eitZj,m | Fm

]
= E

[
eitZj,m | Nj,m

]

= 1 + itE [Zj,m | Nj,m]− t2

2
E
[
Z2

j,m | Nj,m

]
+ r

(1)
j,m,

where

r
(1)
j,m = E [A(tZj,m) | Nj,m] ≤ E

[ |tZj,m|3
6

| Nj,m

]

.

by substituting the formula for E
[
eitZj,m | Fm

]
into the expression of fm(t), we get

logfm(t) =
m∑

j=0

logE
[
eitZj,m | Fm

]

=
m∑

j=0

log
(

1 + itE [Zj,m | Nj,m]− t2

2
E
[
Z2

j,m | Nj,m

]
+ r

(1)
j,m

)

.
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Again, the Taylor expansion gives

log(1 + δ) = δ − δ2

2
+ r(δ), where |r(δ)| ≤ |δ|3

24
for |δ| < 1, (4.2.1)

so logfm(t) can be further written as

logfm(t) =
m∑

j=0

(

itE[Zj,m | Nj,m]− t2

2
E
[
Z2

j,m | Nj,m

]
+ r

(1)
j,m

−1

2

(

itE[Zj,m | Nj,m]− t2

2
E
[
Z2

j,m | Nj,m

]
+ r

(1)
j,m

)2

+r
(2)
j,m

)

,

where
∣
∣
∣r

(2)
j,m

∣
∣
∣ ≤ 1

24

∣
∣
∣
∣
itE[Zj,m | Nj,m]− t2

2
E
[
Z2

j,m | Nj,m

]
+ r

(1)
j,m

∣
∣
∣
∣

3

. (4.2.2)

Recall that
∣
∣
∣r

(1)
j,m

∣
∣
∣ is bounded by E

[
|tZj,m|3

6
| Nj,m

]

. Also note that since |αj,m| is

bounded by 2, |Zj,m| =
∣
∣ 1
m1/2

(
αj,m − E[αj,m]

)∣
∣ is bounded by 4√

m
. Hence,

∣
∣
∣r

(1)
j,m

∣
∣
∣ ≤ |t|343

6m3/2
.

Let C1 ≡ 32|t|3
3

. Then the above is equivalent to

∣
∣
∣r

(1)
j,m

∣
∣
∣ ≤ C1

1

m3/2
. (4.2.3)

We now proceed to the quadratic term in Equation (4.2.2). Based on the same

rationale used to derive the bound of
∣
∣
∣r

(1)
j,m

∣
∣
∣, we conclude that

∣
∣
∣E[Zj,m | Nj,m]

∣
∣
∣ ≤ 4

m1/2
, (4.2.4)

∣
∣
∣E
[
Z2

j,m | Nj,m

]
∣
∣
∣ ≤ 16

m
. (4.2.5)
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These two bounds, together with
∣
∣
∣r

(1)
j,m

∣
∣
∣ ≤ C1

1
m3/2 , yield the following expansion of

the quadratic term in Equation (4.2.2):

t2

2
E[Zj,m | Nj,m]2 + r

(3)
j,m, (4.2.6)

where

∣
∣
∣r

(3)
j,m

∣
∣
∣ ≤ C3

1

m3/2
for some constant C3. (4.2.7)

All that now remains is to check
∣
∣
∣r

(2)
j,m

∣
∣
∣ in Equation (4.2.2). From the error bound

given in Formula (4.2.1) and the three bounds in Inequalities (4.2.3), (4.2.4) and

(4.2.5), we know that when m is large enough,

∣
∣
∣r

(2)
j,m

∣
∣
∣ ≤ 1

24

∣
∣
∣
∣
itE[Zj,m | Nj,m]− t2

2
E
[
Z2

j,m | Nj,m

]
+ r

(1)
j,m

∣
∣
∣
∣

3

≤ C2
1

m3/2
for some constant C2. (4.2.8)

By plugging Formula (4.2.6) back into Equation (4.2.2), we get

logfm(t) =
m∑

j=0

(

itE[Zj,m | Nj,m]− t2

2
E
[
Z2

j,m | Nj,m

]
+
t2

2
E[Zj,m | Nj,m]2

+r
(1)
j,m + r

(2)
j,m + r

(3)
j,m

)

= it
m∑

j=0

E[Zj,m | Nj,m]− t2

2

m∑

j=0

V ar[Zj,m | Nj,m]

+
m∑

j=0

(

r
(1)
j,m + r

(2)
j,m + r

(3)
j,m

)

,

i.e.,

fm(t) = e
it

m∑

j=0
E[Zj,m|Nj,m]

· e
− t2

2

m∑

j=0
V ar[Zj,m|Nj,m]

· e
m∑

j=0

(

r
(1)
j,m+r

(2)
j,m+r

(3)
j,m

)

.
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Taking the expectation from each side of the equation above gives

E[fm(t)] = E



e
it

m∑

j=0
E[Zj,m|Nj,m]

· e
− t2

2

m∑

j=0
V ar[Zj,m|Nj,m]

· e
m∑

j=0

(

r
(1)
j,m+r

(2)
j,m+r

(3)
j,m

)

 . (4.2.9)

It should be noted that random vector {Nj,m} is NA (Lemma 4.1.4), and E[αj,m |

Nj,m] − E[αj,m] is an increasing function of Nj,m. Therefore, by Proposition 4.1.3,

the random vector
{
E[αj,m | Nj,m] − E[αj,m]

}
is also NA. Hence, applying the CLT

theorem for row-wise NA random variables (Theorem 4.1.3) yields

m∑

j=0

E[Zj,m | Nj,m] =
1

m1/2

m∑

j=0

(

E[αj,m | Nj,m]− E[αj,m]
)

L−→ N(0, σ1
2),

where

σ1
2 = lim

m→∞
V ar

(
E[αj,m | Nj,m]

)
+ (m− 1)Cov(αj1,m, αj2,m).

Therefore, by the convergence theorem of characteristic function, we get

E

[

e
it

m∑

j=0
E[Zj,m|Nj,m]

]

uniformly−→ e−t2σ1
2/2. (4.2.10)

Similarly, we know that the sequence
{
V ar[αj,m | Nj,m]

}
is also NA; hence, by the

SLLN theorem for row-wise NA random variables (Theorem 4.1.1), we have

m∑

j=0

V ar[Zj,m | Nj,m] =

m∑

j=0

V ar[αj,m | Nj,m]

m

a.s−→ σ2
2,

where σ2
2 ≡ lim

m→∞
E
[

V ar[α1,m | Nj,m]
]

. Thus,

e
− t2

2

m∑

j=0
V ar[Zj,m|Nj,m] a.s−→ e−t2σ2

2/2.
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From the bounds given in (4.2.3), (4.2.7) and (4.2.8), we get

e

m∑

j=0

(

r
(1)
j,m+r

(2)
j,m+r

(3)
j,m

)

→ e0 = 1.

The two formulas above immediately generate

e
− t2

2

m∑

j=0
V ar[Zj,m|Nj,m]

· e
m∑

j=0

(

r
(1)
j,m+r

(2)
j,m+r

(3)
j,m

)

a.s−→ e−t2σ2
2/2. (4.2.11)

According to the definition of almost sure convergence, the result above means that

for any ε > 0, with probability 1, there exists an M > 1 such that, when m ≥M ,

∣
∣
∣
∣
e
− t2

2

m∑

j=0
V ar[Zj,m|Nj,m]

· e
m∑

j=0

(

r
(1)
j,m+r

(2)
j,m+r

(3)
j,m

)

− e−t2σ2
2/2

∣
∣
∣
∣
≤ ε.

Since the random variable inside the absolute value sign is bounded, it follows that

when m ≥M ,

E





∣
∣
∣
∣
e
− t2

2

m∑

j=0
V ar[Zj,m|Nj,m]

· e
m∑

j=0

(

r
(1)
j,m+r

(2)
j,m+r

(3)
j,m

)

− e−t2σ2
2/2

∣
∣
∣
∣



 ≤ ε.

Therefore, by Equation (4.2.9), when m ≥M ,

∣
∣
∣
∣
E[fm(t)]− E

[

e
it

m∑

j=0
E[Zj,m|Nj,m]

· e− t2

2
σ2

2
]
∣
∣
∣
∣

≤ E





∣
∣
∣
∣
e

it
m∑

j=0
E[Zj,m|Nj,m]

∣
∣
∣
∣
·
∣
∣
∣
∣
e
− t2

2

m∑

j=0
V ar[Zj,m|Nj,m]

· e
m∑

j=0

(

r
(1)
j,m+r

(2)
j,m+r

(3)
j,m

)

− e−
t2

2
σ2

2

∣
∣
∣
∣





= E





∣
∣
∣
∣
e
− t2

2

m∑

j=0
V ar[Zj,m|Nj,m]

· e
m∑

j=0

(

r
(1)
j,m+r

(2)
j,m+r

(3)
j,m

)

− e−
t2

2
σ2

2

∣
∣
∣
∣



 ≤ ε.

Hence, considering Formula (4.2.10), we get

E[fm(t)] → e−t2σ2
1/2 · e−t2σ2

2/2 = e−t2σ2/2,
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where

σ2 ≡ σ1
2 + σ2

2

= lim
m→∞

V ar
[

E[αj,m | Nj,m]
]

+ (m− 1)Cov(αj1,m, αj2,m)

+ lim
m→∞

E
[

V ar[α1,m | Nj,m]
]

= lim
m→∞

V ar[Γn,m]

m
.

From the definition of fm(t) and Zj,m, the result above is equivalent to

E

[

e
it 1

m1/2

(
Γn,m−E[Γn,m]

)]

→ e−
t2

2
σ2

.

Thus, the result follows from the convergence theorem of characteristic functions.
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Chapter 5

Law of Large Numbers for the

Domination Number in Higher

Dimensions

Extending the previous results for one dimension to higher dimensions requires

a different approach, since the exact distribution of the domination number in the

latter case is unknown, and the domination number is not additive on regions sepa-

rated by Y -points as in the one-dimensional case. In this chapter, we develop some

limit theorems for the domination number in higher dimensions by using the SLLN

for subadditive processes. Section 5.1 introduces subadditive processes and the re-

lated limit theory. However, the ordinary domination number of CCCDs generated

by Poisson points is not subadditive. Therefore, to enable use of the SLLN for subad-
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ditive processes, we define the constrained domination number, which is then proven

to be subadditive. In Section 5.2, by directly applying the ergodic theorem for sub-

additive processes, we establish the SLLN for the constrained domination number in

the Poisson case. Then, in Section 5.3, we prove that the same result still holds for

the ordinary domination number, and in Section 5.4 the limiting random variable is

proved to be a constant. In Section 5.5, by transferring the Poisson points back to

the unit square, we show the weak law of large numbers (WLLN) for the domination

number in [0, 1]2. Finally, based on the same approach applied in the one-dimensional

problem, in Section 5.6 we generalize the WLLN to the case in which the densities

fX and fY are positive, bounded and continuous on [0, 1]2.

5.1 Introduction to Subadditive Processes

Subadditive ergodic theory was one of probability theory’s major achievements in

the 1960s and 1970s. Its development was initiated by Hammersley and Welsh [16]

and most fully realized by Kingman [17], who also provided an extensive discussion

of the theory [18]. Whereas some examples do occur in Smythe and Wierman [19],

it was Smythe [20], in his introduction and study of higher dimensional subadditive

processes, who defined a two-dimensional subadditive process as follows.

Definition 5.1.1. A process {Xst, s < t}, where s, t ∈ N2, is subadditive if

P1 Whenever s < t < u and s2 < u2 < t2, Xst ≤ Xs(t1,u2) + X(s1,t2)u; whenever
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s < t < u and s1 < u1 < t1, Xst ≤ Xs(u1,t2) +X(u1,s2)u.

P2 The joint distribution of the process {X(s1+1,s2)(t1+1,t2)} and {X(s1,s2+1)(t1,t2+1)}

are the same as those of {Xst}.

P3 inf
t
E
[

X0t

|t|

]

> −∞.

{Xst, s < t} is called a strongly subadditive process if P1 is replaced by the following

stronger condition:

P1 ′ Whenever s < u < t,

Xst −X(s1,u2)t −X(u1,s2)t +Xut ≤ Xsu.

Smythe proved a WLLN for two-dimensional subadditive processes [20] and by

adding a complicated condition also gave a SLLN for two-dimensional strongly sub-

additive processes. In 1981, Akcoglu and Krengel obtained a profound SLLN result

for multi-parameter subadditive processes under several natural assumptions [21], and

it is to their theorem that our proof of the SLLN for the domination number in higher

dimensions mainly resorts. Note that in their paper, Akcoglu and Krengel actually

proved the SLLN for superaddtive processes. Since {−XI : I ∈ T } is superadditive if

and only if {XI : I ∈ T } is subadditive, any definition or theorem in their paper [21]

about superadditive processes translates at once into a corresponding result about

subadditive processes. Since we will need to use the SLLN for subadditive processes,

we now introduce the subadditive version of their notation and results as follows.

92



Let d ≥ 1 be a fixed integer and S = Rd
+ be the additive semi-group of d-

dimensional vectors with nonnegative real coordinates. If a = (ai) and b = (bi) are

two vectors in S, then [a, b) denotes the set {u | u = (ui) ∈ S, ai ≤ ui < bi} and

T denotes the class of sets of this form. Denote ~0 and ~e as the vectors with all

coordinates equal to 0 and 1, respectively. Let Jr = [~0, r~e), r > 0.

Definition 5.1.2. A continuous subadditive process {XI : I ∈ T } satisfies the fol-

lowing:

A1 If I1, · · · , In are disjoint sets in T , and I = ∪n
i=1Ii is also in T , then XI ≤

∑n
i=1XIi

.

A2 For any I1, · · · , In ∈ T , and any u ∈ S, the joint distributions of (XI1 , · · · , XIn)

and (Xu+I1 , · · · , Xu+In) are the same.

A3 inf
{

E[XI ]
|I| : I ∈ T , |I| > 0

}

= γ = γ(X) > −∞.

Here, γ(X) is usually referred to as the time constant of the stochastic process {XI}.

We let S1 denote the set of vectors in S with integer coordinates and, for a real

number t > 0, we let St = {tu | u ∈ S1} and Tt = {[~a,~b) | a, b ∈ St}. If {XI} is

defined only on Tt for some fixed t > 0 and satisfies A1 -A3, then it is called a discrete

subadditive process. Akcoglu and Krengel [21] proved the following theorem.

Theorem 5.1.1. If {XI} is a discrete subadditive process on T1, then lim
n→∞

XJn

|Jn| exists

a.e., where Jn = [~0, n~e).
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Because, as Kingman observed, the continuous analogue of Theorem 5.1.1 is false if

no further condition is added, Kingman proposed a natural supplementary condition.

The following theorem, taken from Akcoglu and Krengel [21], gives a multiparameter

generalization of Kingman’s result.

Theorem 5.1.2. Suppose {XI} to be a subadditive process on intervals with rational

end points, and let Φ = sup |XI | where the supremum is taken over all intervals

with rational end points in [~0, ~e). If E[Φ] < ∞, then lim
r→∞

XJr

|Jr| exists a.e., where

Jr = [~0, r~e), r is rational.

Remark 5.1.1. Note that the set of rational numbers in Theorem 5.1.2 can be replaced

by any other countable dense subset of R+ [21]. Recall that a stochastic process X is

defined to be separable if there is some countable set of coordinates {Xi} whose values

determine X. Therefore, under any separability condition on the process {XJr}, the

a.e.-convergence along each fixed dense countable set implies the a.e.-convergence as

r ranges through positive real numbers.

5.2 SLLN for the Constrained Domination Num-

ber

We consider two independent homogeneous Poisson processes on the whole 2-

dimensional space, {Xi} and {Yj}, with respective rates λX and λY . We now consider

a slightly different version of the domination number: the constrained domination
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number, which is defined as follows.

Definition 5.2.1. For a rectangle I with boundary D, the constrained covering ball

of Xi ∈ I is defined by

B̄I(Xi) = {ω ∈ Ω : d(ω,Xi) < min
{
minYj∈Id(Yj, Xi),minz∈Dd(z,Xi)}

}
.

The constrained domination number Γ̄I is the minimum number of constrained cov-

ering balls needed to cover all X-points in I. Similarly, the (ordinary) covering ball

of Xi ∈ I is defined by

BI(Xi) = {ω ∈ Ω : d(ω,Xi) < {minYj∈Id(Yj, Xi)}.

The (ordinary) domination number ΓI is the minimum number of ordinary covering

balls needed to cover all X-points in I.

By considering the stochastic process {Γ̄I : I = [~a,~b),~a,~b are nonnegative rational

points}, we prove the following lemma.

Lemma 5.2.1. {Γ̄I} is a subadditive process.

Proof. We check the three conditions A1 -A3 in Definition 5.1.2 as follows:

• Suppose B̄Ii
is a constrained class cover of the X-points in Ii. When the bound-

ary of Ii is ignored, the constrained covering balls in B̄Ii
will not decrease (and

may increase). Hence, no constrained covering ball B̄Ii
(Xj) ∈ B̄Ii

is any big-

ger than its corresponding new constrained covering ball, which we denote by
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B̄∪Ii
(Xj). Therefore, after ignoring the boundary of Ii, the union of the new

constrained covering balls {B̄∪Ii
(Xj) : B̄Ii

(Xj) ∈ B̄Ii
} still contains all X-points

in Ii. As a result, ∪n
i=1{B̄∪Ii

(Xj) : B̄Ii
(Xj) ∈ B̄Ii

} contains all X-points in

∪n
i=1Ii; thus,

∑n
i=1 Γ̄Ii

≥ Γ̄∪n
i=1Ii

.

• A2 is due to the homogeneity property of Poisson processes.

• A3 is true since E[Γ̄I ] > 0 for any I, thus inf
{

E[Γ̄I ]
|I| : I ∈ T , |I| > 0

}

≥ 0 >

−∞.

Applying Theorem 5.1.2 to the process {Γ̄Jr} gives the following lemma.

Lemma 5.2.2. lim
r→∞

Γ̄Jr

|Jr | exists a.e, where Jr = [~0, r~e), and r > 0 is rational.

Proof. To apply Theorem 5.1.2, we need only check E[Φ] < ∞, where Φ = sup |XI |

when the supremum is taken over all intervals with rational end points in J1. Since

∀r ≤ 1, it is readily apparent that

Γ̄Jr ≤ NX(Jr) ≤ NX(J1).

Hence, Φ ≤ NX(J1). Taking the expectation yields E[Φ] ≤ E[NX(J1)] = λX <

∞.

5.3 SLLN for the Ordinary Domination Number

In Lemma 5.2.2, we established the convergence result for the constrained domi-

nation number generated by Poisson points. In this section, we prove a similar result
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for the ordinary domination number.

Recall that when the boundary of a rectangle I is ignored, the constrained covering

balls of X-points in I will not decrease (and possibly increase), so the constrained

domination number Γ̄I might be bigger (but not smaller) than the domination number

ΓI . Consider a rectangle I that is sufficiently large. Intuitively, the covering balls of

most X-points, which are located away from the boundary of I, will not be affected

by the existence of the boundary because there are Y -points closer. Therefore, the

difference between Γ̄I and ΓI is only caused by the X and Y -points that are near

the boundary of I. In the following formal proof, we show that the effect of these

points is negligible in the limit, thus lim
n→∞

ΓJn

|Jn| exists and equals lim
n→∞

Γ̄Jn

|Jn| , where n is

an integer.

With sn � n (to be chosen later), we consider Jn =
[
~0, n~e

)
, J ′n =

[
sn~e, (n−sn)~e

)
,

J ′′n =
[
2sn~e, (n − 2sn)~e

)
, and J ′′′n =

[

(2 +
√

2)sn~e,
(
n − (2 +

√
2)sn

)
~e
)

as shown in

Figure 5.1. We let Fn denote the event in which all constrained covering balls of

X-points in J ′′n are contained in Jn, and let En denote the event in which there exists

at least one Y -point in each of the sn by sn squares in J ′n − J ′′n .

The probability of having at least one Y -point in a particular one of those small

squares is 1 − e−s2
nλY , and the number of small squares is less than 4n

sn
. Therefore,

from the independent increments property of Poisson processes, we know that

P (En) ≥
(

1− e−s2
nλY

) 4n
sn
.

If En ⊆ Fn, then we could conclude that P (Fn) ≥ (1 − es2
nλY )

4n
sn . Next, we show
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√
2sn

Jn

0

n

J ′′n

J ′n

J ′′′n

snsn

Figure 5.1: The rectangles Jn, J
′
n, J

′′
n and J ′′′n

that En ⊆ Fn is indeed true. In fact, if there is at least one Y -point in each sn by

sn square, then the constrained covering ball of any X-point in J ′′n cannot go out of

Jn. The reason is that for any Xi ∈ J ′′n , there is at least one point Yj in the sn by sn

square closest to Xi, so the constrained covering ball B̄(Xi) cannot extend very far

out of J ′n, hence B̄(Xi) is bounded by Jn. Specifically (but without loss of generality),

suppose Yj is the Y -point closest to Xi, located at the position shown in Figure 5.2.

Then the radius of the constrained covering ball B̄(Xi) is
√
a2 + b2, where the two

segments with respective lengths a and b are also shown in Figure 5.2. Considering

a ≤ sn, we have
√
a2 + b2 ≤

√

s2
n + b2 ≤ b + sn. Note that the distance from Xi to

the the boundary of Jn is greater or equal than b+ sn, thus B̄(Xi) is contained in Jn.

Now we carefully analyze the relation between the constrained domination number

Γ̄Jn and the ordinary domination number ΓJn . Let ∆Jn = Γ̄Jn −ΓJn . If the boundary
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n

Jn

0

J ′′n

J ′n

J ′′′n

sn snXi

Yj

bsn √
2sn

a

√ a
2 +

b2

Figure 5.2: An illustration of En ⊆ Fn

constraint is ignored, the constrained covering balls will not decrease (and might

increase) for those X-points whose constrained covering balls touch the boundary;

thus, the domination number will not increase, i.e., ∆Jn ≥ 0. On the other hand,

given the event Fn, the constrained covering ball resizing can only happen for those

X-points in Jn − J ′′n . Although the resized covering balls may cover other X-points

in Jn − J ′′n , the resized balls do not intersect J ′′′n . The reason why the resized balls

do not intersect J ′′′n is that these balls can’t reach through the Y -points in the sn

by sn squares. Specifically (but without loss of generality), suppose Yj is the Y -

point closest to Xi, located at the position shown in Figure 5.3. Then the radius of

the resized covering ball B(Xi) is
√
c2 + d2, where the two segments with respective

lengths c and d are also shown in Figure 5.3. Considering c ≤ sn and d ≤ sn, we
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have
√
c2 + d2 ≤

√
2sn. Note that the distance from Xi to the the boundary of Jn

is greater or equal to
√

2sn, thus B(Xi) does not intersect Jn. Thus, constrained

covering ball resizing will decrease Γ̄n by at most the number of X-points in Jn−J ′′′n ,

i.e., ∆Jn ≤ NX(Jn − J ′′′n ).

n

Jn

0

J ′′n

J ′n

J ′′′n

sn sn

Yj

d √
2sn

c

Xi √
2sn

√ c
2 +

d
2

Figure 5.3: An illustration of ∆Jn ≤ NX(Jn − J ′′′n )

Finally, we estimate P
(

∆Jn

|Jn| > ε
)

as follows:

P

(
∆Jn

|Jn|
> ε

)

= P

(
∆Jn

|Jn|
> ε | Fn

)

P (Fn) + P

(
∆Jn

|Jn|
> ε | F c

n

)

P (F c
n)

≤ P

(
∆Jn

|Jn|
> ε | Fn

)

+ P (F c
n)

≤ E

[(
∆Jn

|Jn|

)2

| Fn

]

/ε2 + P (F c
n) (by the Markov Inequality).

(5.3.1)

In the first term in the expression above, we have the difficulty that ∆Jn and Fn are

dependent. However, we can replace ∆Jn by an upper bound NX(Jn − J ′′′n ), which

100



is independent of Fn. The reason why NX(Jn − J ′′′n ) and Fn are independent is that

NX(Jn − J ′′′n ) depends on X-points and Fn depends on Y -points, whereas X-points

and Y -points are independent. Therefore, we have

E

[(
∆Jn

|Jn|

)2

| Fn

]

/ε2 ≤
E
[(
NX(Jn − J ′′′n )

)2 | Fn

]

|Jn|2ε2

=
E
[(
NX(Jn − J ′′′n )

)2
]

|Jn|2ε2
,

Since the Poisson process X has density λX , and the second moment equals the

variance plus the square of the mean, the above reduces to

λX |Jn − J ′′′n |+ λ2
X |Jn − J ′′′n |2

|Jn|2ε2

≤ λX · 4n · 4sn + λ2
X · (4n · 4sn)2

ε2n4

≤ C · s
2
n

n2
for some constant C.

For the second term of the expression (5.3.1), we get

P (F c
n) = 1− P (Fn)

≤ 1−
(

1− es2
nλY

) 4n
sn

= 1−
(

1− e−s2
nλY

)es2nλY · 4n

snes2nλY .

Since
(
1− 1

x

)x ↑ e−1 as x→∞, when sn is sufficiently large, we have

(

1− e−s2
nλY

)es2nλY

> e−1−ε.

Therefore, for sn sufficiently large,

P (F c
n) ≤ 1− e

− 4(1+ε)n

snes2nλY .
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Thus Inequality (5.3.1) becomes

P

(
∆Jn

|Jn|
> ε

)

≤ C · s
2
n

n2
+

(

1− e
− 4(1+ε)n

snes2nλY

)

.

To show that this probability tends to zero, the size of sn must be chosen carefully. If

sn is chosen to be sufficiently small compared with n, then the first term above goes

to zero. If sn is chosen to be sufficiently large compared with n, then n

snes2nλY
goes

to zero so that the second term in the inequality above also goes to zero. To have

both terms converge to zero, we let sn =
√

(2 + δ)log(n)/λY for some δ ∈ (0, 1). By

Taylor expansion of the main exponential function in the inequality above, we then

have

P

(
∆Jn

|Jn|
> ε

)

= O

(
s2

n

n2
+

n

snes2
nλY

)

= O

(

(2 + δ)log(n)/λY

n2
+

n
√

(2 + δ)log(n)/λY · n2+δ

)

= O

(
1

n1+δ

)

.

By the Borel-Contelli lemma, the calculation above immediately implies that
∆Jn

|Jn|
a.s.−→

0. Since
ΓJn

|Jn| =
Γ̄Jn

|Jn| +
∆Jn

|Jn| , and both limits on the right hand side exist a.s., lim
n→∞

ΓJn

|Jn|

exists a.s. and

lim
n→∞

ΓJn

|Jn|
= lim

n→∞

Γ̄Jn

|Jn|
a.s.

However, our proof of the SLLN for the ordinary domination number is not yet

finished, because we need to show that the equation above still holds for ΓJt , for real

t. We first define ∆Jt = Γ̄Jn−ΓJt , for any t = [n, n+1). Note that ∆Jn defined before
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is the difference between the two processes for a single region Jn, whereas ∆Jt defined

above is the difference over two different regions, Jt and Jn. While it is possible that

ΓJt > Γ̄Jn , i.e., ∆Jt < 0, ΓJt can only be larger than Γ̄Jn by at most NX(Jt− Jn), i.e.,

the number of X-points in Jt − Jn. Therefore, we get the following lower bound for

∆Jt :

4Jt ≥ −NX(Jt − Jn) ≥ −NX(Jn+1 − Jn),

so

∆Jt

|Jt|
≥ −NX(Jn+1 − Jn)

|Jt|
a.s.−→ 0 (details shown in the proof of Theorem 5.3.1).

On the other hand, given Fn, the covering balls of X-points in J ′′n are completely

contained in Jn, so by the same argument for ΓJn , we know that Γ̄Jn can only be larger

than ΓJt by no more than the number of X-points in Jt − J ′′′n , thus
∆Jt

|Jt| ≤
NX(Jt−J ′′′n )

|Jt| .

The convergence to zero for the lower and upper bounds of
∆Jt

|Jt| given above yields

the next theorem.

Theorem 5.3.1. lim
t→∞

ΓJt

|Jt| exists and is equal to lim
r→∞

Γ̄Jr

|Jr| a.s., where t is real and r is

rational.

Proof. For any t > 0, there is an integer n(t) s.t. n(t) ≤ t < n(t) + 1. By the

definitions above, ΓJt = Γ̄Jn(t)
− 4Jt . In addition, we have shown that ∆Jt ≥
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−NX(Jn(t)+1 − Jn(t)), so

ΓJt

|Jt|
≤

Γ̄Jn(t)
−∆Jt

|Jn(t)|

≤
Γ̄Jn(t)

|Jn(t)|
+
NX(Jn(t)+1 − Jn(t))

|Jn(t)|
.

It should also be noted that

NX(Jn(t)+1 − Jn(t))

|Jn(t)|
=

NX(Jn(t)+1)−NX(Jn(t))

|Jn(t)|

=
NX(Jn(t)+1)

|Jn(t)+1|
· |Jn(t)+1|
|Jn(t)|

− NX(Jn(t))

|Jn(t)|
a.s.−→ λX · 1− λX (the Poisson process X has density λX)

= 0.

Therefore,

lim sup
t→∞

ΓJt

|Jt|
≤ lim

n→∞

Γ̄Jn

|Jn|
a.s. (5.3.2)

For the other direction, we first write

ΓJt

|Jt|
=

ΓJt

|Jt|
· IFn(t)

+
ΓJt

|Jt|
· IF c

n(t)
. (5.3.3)

Applying the same technique as when we show ∆Jn ≤ NX(Jn − J ′′′n ), we know that

given Fn(t), when the boundary constrain is ignored, the constrained covering ball

centered at X-points ∈ J ′′n(t) don’t change, whereas the covering balls centered at

X-points ∈ Jt − J ′′n(t) do not intersect with J ′′′n(t). Therefore, we conclude that ∆Jt ≤
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NX

(

Jt − J ′′′n(t)

)

. Hence, for the first term on the RHS of the equation above, we have

ΓJt

|Jt|
· IFn(t)

≥
Γ̄Jn(t)

−∆Jt

|Jn(t)+1|
· IFn(t)

≥




Γ̄Jn(t)

|Jn(t)+1|
−
NX

(

Jt − J ′′′n(t)

)

|Jn(t)+1|



 · IFn(t). (5.3.4)

Recall that we have chosen sn(t) =
√

(2 + δ)log
(
n(t)

)
/λY . Because we have shown

that P
(

F c
n(t)

)

= O

(

n(t)

sn(t)e
s2
n(t)

λY

)

= O
(

1
n(t)1+δ

)

, the Borel-Contelli lemma gives

IF c
n(t)

a.s.−→ 0. Moreover, we have

lim
t→∞

Γ̄Jn(t)

|Jn(t)+1|
= lim

t→∞

Γ̄Jn(t)

|Jn(t)|
|Jn(t)|

|Jn(t) + 1| = lim
n→∞

Γ̄Jn

|Jn|
a.s.

and

NX(Jt − J ′′′n(t))

|Jn(t)+1|
=

NX(Jt)

|Jn(t)+1|
−
NX(J ′′′n(t))

|Jn(t)+1|

=
NX(Jt)

|Jt|
· |Jt|
|Jn(t)+1|

−
NX(J ′′′n(t))

|J ′′′n(t)|
·
|J ′′′n(t)|
|Jn(t)+1|

a.s.−→ λX · 1− λX · 1 = 0.

Thus, substituting the formulas above into Inequality (5.3.4), we immediately get

lim inf
t→∞

ΓJt

|Jt|
· IFn(t)

≥ lim
n→∞

Γ̄Jn

|Jn|
a.s.

In addition, note that
ΓJt

|Jt| ≤
NX(Jt)
|Jt|

a.s.−→ λX . Also, recall that because IF c
n(t)

a.s.−→ 0,

ΓJt

|Jt|
· IF c

n(t)

a.s.−→ 0.

Therefore, we can incorporate the two results above into Equation (5.3.3) to get

lim inf
t→∞

ΓJt

|Jt|
≥ lim

n→∞

Γ̄Jn

|Jn|
a.s. (5.3.5)
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Furthermore, based on Inequalities (5.3.2) and (5.3.5), we conclude that

lim
t→∞

ΓJt

|Jt|
= lim

n→∞

Γ̄Jn

|Jn|
a.s.

Thus, since
{

Γ̄Jn

|Jn|

}

is a subsequence of
{

Γ̄Jr

|Jr|

}

, it follows that lim
n→∞

Γ̄Jn

|Jn| = lim
r→∞

Γ̄Jr

|Jr | a.s.,

where the existence of the latter is guaranteed by Lemma 5.2.2.

5.4 Convergence to a Constant

Theorem 5.1.1 alone does not identify the limiting random variable ξ = lim
I→∞

XI

|I|

for a subadditive process {XI}; however, in his paper [20], Smythe showed that when

the subadditive process is independent, the limit is simply the time constant γ(X).

Next, we first formally give the definition of independent subadditive processes and

state the result by Smythe, then describe the idea of his proof.

Definition 5.4.1. A subadditive process is independent if the random variables {Xsi,ti}

are independent for disjoint rectangles {Rsi,ti}i=1,··· ,n.

Theorem 5.4.1. If a discrete subadditive process {XI} is independent, then ξ =

lim
n→∞

XJn

|Jn| is equal to the constant γ(X) a.s.

Let F be the σ-field of events generated by the process {XI} and invariant un-

der both the shifts θ1 : X(s1,s2),(t1,t2) → X(s1+1,s2),(t1+1,t2) and θ2 : X(s1,s2),(t1,t2) →

X(s1,s2+1),(t1,t2+1). Then, as shown by Kingman ( [17], page 504), the limit ξ = lim
n→∞

XJn

|Jn|
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can be written in the following form:

ξ = lim
n→∞

E[XJn | F ]

|Jn|
, a.s.

It is important to note that even though Kingman’s original result only addresses the

one-dimensional case, this principle has been adapted to prove the same result for

higher dimensions [20, page 777].

Since if the invariant σ-field F is generated by an independent process, then F is

trivial [20, page 782], we immediately get

ξ = lim
n→∞

E[XJn ]

|Jn|
= γ(X), a.s.

In our problem, the subadditive process {Γ̄Jn} is independent, so lim
n→∞

Γ̄Jn

|Jn|=lim
n→∞

E[Γ̄Jn ]

|Jn|

= γ(Γ̄) a.s. Therefore, by Theorem 5.3.1, we immediately achieve the following result.

Theorem 5.4.2. lim
t→∞

ΓJt

|Jt| = lim
n→∞

E[Γ̄Jn ]

|Jn| = γ(Γ̄) a.s.

Remark 5.4.1. In the theorem above, the limiting value is given as γ(Γ̄) instead of

γ(Γ). The reason is that the process {ΓJn} is not subadditive, hence γ(Γ) is not even

well-defined.

5.5 WLLN for the Domination Number in [0, 1]2

with Uniform Densities

In the previous sections, we have established the SLLN for the domination number

generated by Poisson points in R2. In this section, we transfer the result of the Poisson
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case to the unit square [0, 1]2. Denote Γ′n,m as the domination number generated by

n X-points and m Y -points, and assume that both the X-points and Y -points are

uniformly distributed in [0, 1]2. We prove the weak law of large numbers (WLLN) for

Γ′n,m.

Theorem 5.5.1. If m
n
→ r, r ∈ (0,∞), then lim

n→∞
Γ′n,m

n
= g(r) in probability, where

g(r) = γ(Γ̄) = γ(Γ̄, r).

Proof. In the Poisson case, we let the rates be λX = 1 and λY = r. For any integer

n > 0, we let t(n) be the smallest real number t such that there are n + 1 X-points

in Jt. Note that the (n + 1)-st X-point is on the boundary of Jt(n), and the other n

X-points are in the interior of Jt(n). Define Γn,mn = ΓJt(n)
, where mn is the random

number of Y -points in Jt(n). We know by Theorem 5.4.2 that lim
n→∞

ΓJt(n)

|Jt(n)| = γ(Γ̄) a.s,

since t(n) →∞ a.s. as n→∞. Equivalently,

lim
n→∞

Γn,mn

|Jt(n)|
= γ(Γ̄) a.s.

Combining the equation above with the fact that lim
n→∞

n
|Jt(n)| = λX = 1 a.s., we get

lim
n→∞

Γn,mn

n
= lim

n→∞

Γn,mn

n
· n

|Jt(n)|
= γ(Γ̄) a.s.

Since almost sure convergence implies convergence in distribution, it follows that

lim
n→∞

Γn,mn

n
= γ(Γ̄) in distribution. (5.5.1)

From the conditional uniformity property of Poisson processes, the n X-points and

mn Y -points are both uniformly distributed in Jt(n). Recall that the desired number
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of Y -points is m = m(n), which is a non-random function of n. For simplicity, we will

use m rather than m(n) in the following proof. On the other hand, mn is the random

number of Y -points in the Poisson case. If mn < m, we add m−mn Y -points in the

region Jt(n) in a uniform way. Similarly, if mn > m, then we delete mn −m Y -points

uniformly from the mn Y -points in Jt(n). And if mn = m, no change is needed. After

such modification, the original mn Y -points become m Y -points. Let Γn,m denote

the domination number generated by the n X-points and the m Y -points, which are

uniformly distributed in Jt(n). Note that Γn,m has the same distribution as Γ′n,m.

Hence, if we can prove

lim
n→∞

Γn,m

n
= γ(Γ̄) in distribution, (5.5.2)

then we have lim
n→∞

Γ′n,m

n
= lim

n→∞
Γn,m

n
= γ(Γ̄) in distribution, hence lim

n→∞
Γ′n,m

n
= γ(Γ̄)

in probability, since the limit is a constant. So, the problem reduces to showing

Equation (5.5.2). In fact, if we let ∆n,mn = Γn,m − Γn,mn , and if we can prove

∆n,mn

n
→ 0 in probability,

then considering the result (5.5.1), by Slutsky’s theorem we get

lim
n→∞

Γn,m

n
= lim

n→∞

Γn,mn

n
+ lim

n→∞

∆n,mn

n

= γ(Γ̄) in distribution.

All that remains from the discussion above is to show the following lemma is true.

Lemma 5.5.1.
∆n,mn

n
→ 0 in probability.
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Proof. Case 1: Adding Points.

We first consider the case of adding one new Y -point: Ya, when mn −m = −1.

As illustrated in Figure 5.4, if Ya falls into the covering ball B(Xi) of some point

Xi

0

t(n)

Jt(n)

2b

B′(Xi)

B(Xi)

B(Y0, 2b)

b

Ya

Yj

Figure 5.4: The result of adding one new point Y0

Xi, the covering ball B(Xi) will decrease to B ′(Xi) so that the domination number

may increase (but never decrease). Such an increase can be at most the number of

X-points in B(Xi).

Note that it is possible for Ya to fall into more than one covering ball. To take

this into account, define the random variable Ba ≡ maximum radius of all balls that

contain Ya but contain no Y -points. We know that given Ba = b > 0, the covering
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balls into which Ya could fall must be contained in the ball B(Ya, 2b), which is centered

at Ya with radius 2b. Otherwise, if there exists a covering ball that contains Ya but

isn’t contained in B(Ya, 2b), then that covering ball must have a radius greater than

b but contain no Y -points, which contradicts Ba = b. Therefore, ∆n,mn is bounded

above by the number of X-points in B(Ya, 2b), thus

0 ≤ ∆n,mn ≤
n∑

i=1

I{Xi∈B(Ya,2b)}. (5.5.3)

Next, we calculate an upper bound for P (Ba > b). Define the event

F (Ya, b) ≡{∃ a ball in B(Ya, 2b) with radius b s.t. there exists no Y -point in it}.

Note that in the definition above, the ball is a subset of B(Ya, 2b), but it is not

necessarily centered at a X-point or Y -point. From the definition of Ba, it is easy to

see that {Ba > b} ⊂ F (Ya, b). Next we will find an upper bound for P
(
F (Ya, b)

)
. As

shown in Figure 5.5, suppose we equally divide the square centered at Ya with side

length 4b into 82(= 64) smaller squares, and refer to the 64 small balls in the squares

with radius b/4 as grid balls. If F (Ya, b) is true, i.e., there exists a ball in B(Ya, 2b)

with radius b such there are no Y -points in it, then that ball must contain a grid ball

that covers no Y -point (as illustrated in Figure 5.5). Therefore, if F (Ya, b) is true,

then there must exist a grid ball containing no Y -point. Since the Poisson process Y

has density λY , we know the probability that a particular grid ball covers no Y -point
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b

Ya

4b

Figure 5.5: The affected region of an added point Ya

is e−π(b/4)2λY . Therefore,

P (Ba > b) ≤ P
(
F (Ya, b)

)

≤ 64e−πr(b/4)2 .

Applying Formula (5.5.3), we have

P

( |∆n,mn |
n

> ε | {mn −m = −1} ∩ {Ba = b}
)

≤ P

(
n∑

i=1

I{Xi∈B(Ya,2b)} > nε | {mn −m = −1} ∩ {Ba = b}
)

.

Since X-points are independent of Y -points, and all Xi are identically distributed, the

RHS of the inequality above reduces to P
(∑n

i=1 I{Xi∈B(Ya,2b)} > nε
)
, which, by the

Markov Inequality, is further bounded by
E[
∑n

i=1 I{Xi∈B(Ya,2b)}]
nε

= P (Xi∈B(Ya,2b))
ε

. Note

that if B(Ya, 2b) is contained in Jt(n), then P (Xi ∈ B(Ya, 2b)) = π(2b)2

|Jt(n)| . However, if

Ya is near the boundary of Jt(n), then it is possible that only part of B(Ya, 2b) is

contained in Jt(n), hence P (Xi ∈ B(Ya, 2b)) ≤ π(2b)2

|Jt(n)| . Summarizing the discussion
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above, we get

P

( |∆n,mn |
n

> ε | {mn −m = −1} ∩ {Ba = b}
)

≤ π(2b)2

|Jt(n)| · ε
.

Hence, given t(n),

P

( |∆n,mn |
n

> ε | mn −m = −1

)

=

∫ √
2t(n)

b=0

P

( |∆n,mn |
n

> ε | {mn −m = −1} ∩ {Ba = b}
)

dFBa(b)

≤
∫ √

2t(n)

b=0

π(2b)2

|Jt(n)| · ε
d
(
1− P (Ba > b)

)

=

∫ √
2t(n)

b=0

P (Ba > b)d

(
π(2b)2

|Jt(n)| · ε

)

.

Recalling that P (Ba > b) ≤ 64e−πr(b/4)2 , we further bound the above as follows:

P

( |∆n,mn |
n

> ε | mn −m = −1

)

≤
∫ √

2t(n)

b=0

64e−πr(b/4)2d

(
π(2b)2

|Jt(n)| · ε

)

≤ C

|Jt(n)|
,

where C > 0 is a constant. Therefore, without conditioning on t(n), we have

P

( |∆n,mn |
n

> ε | mn −m = −1

)

≤ C · E
[

1

|Jt(n)|

]

.

Next, we consider the case of adding one or more new Y -points: Y 1
a , · · · , Y

|mn−n|
a ,

when mn − m ≤ −1. Similarly, define Bl
a ≡ maximum radius of the covering balls

containing Y l
a , l = 1, · · · , |mn − m|. Given mn − m = ρn ∈ {−δn, · · · ,−1} and

Bl
a = bl > 0, by applying the same arguments as above, we have

P

( |∆n,mn |
n

> ε | {mn −m = ρn} ∩
{
Bl

a = bl
}
)

≤
P
(

Xi ∈ ∪|ρn|
l=1B(Y l

a , 2b
l)
)

ε

≤
|ρn|∑

l=1

π(2bl)2

|Jt(n)| · ε
.
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Using P (Bl
a > bl) ≤ 64e−πr(bl/4)2 as before, and recalling we have chosen |ρn| ≤ δn,

we can finally get the following bound:

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

≤ |ρn| · C · E
[

1

|Jt(n)|

]

≤ δn · C · E
[

1

|Jt(n)|

]

. (5.5.4)

Note that for any δ > 0, by the law of total probability, we have

P

( |∆n,mn |
n

> ε

)

=
∑

ρn<−δn

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn)

+
∑

−δn≤ρn≤−1

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn)

+ P

( |∆n,mn |
n

> ε | mn −m = 0

)

P(mn −m = 0)

+
∑

1≤ρn≤δn

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn)

+
∑

ρn>δn

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn) .

Applying P
(
|∆n,mn |

n
> ε | mn −m = ρn

)

≤ 1 to the first and last summation above,

and applying Inequality (5.5.4) to the second summation above, the equation above
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can be bounded as follows:

P

( |∆n,mn |
n

> ε

)

≤
∑

ρn<−δn

P(mn −m = ρn)

+
∑

−δn≤ρn≤−1

δn · C · E
[

1

|Jt(n)|

]

P(mn −m = ρn)

+ P

( |∆n,mn |
n

> ε | mn −m = 0

)

P(mn −m = 0)

+
∑

1≤ρn≤δn

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn)

+
∑

ρn>δn

P(mn −m = ρn) .

Combining the first and last summations above, and factoring out the term δn · C

·E
[

1
|Jt(n)|

]

in the second summation above, we have

P

( |∆n,mn |
n

> ε

)

≤ P(|mn −m| > δn)

+ δn · C · E
[

1

|Jt(n)|

]
∑

−δn≤ρn≤−1

P(mn −m = ρn)

+ P

( |∆n,mn |
n

> ε | mn −m = 0

)

P(mn −m = 0)

+
∑

1≤ρn≤δn

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn) .

Note that the summation in the second term above equals P (−δn ≤ mn −m ≤ −1),

which is further bounded by 1. In addition, if mn − m = 0, then ∆n,mn = 0, thus

P
(
|∆n,mn |

n
> ε | mn −m = 0

)

= 0, hence the third term above equals 0. Therefore,
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the inequality above reduces to

P

( |∆n,mn |
n

> ε

)

≤ P(|mn −m| > δn)

+ δn · C · E
[

1

|Jt(n)|

]

+
∑

1≤ρn≤δn

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn) .

Since E
[

n
|Jt(n)|

]

is bounded, the inequality above yields

P

( |∆n,mn |
n

> ε

)

≤ P(|mn −m| > δn)

+ δC1

+
∑

1≤ρn≤δn

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn)

for some constant C1 > 0, (5.5.5)

Case 2: Deleting Points.

In contrast to adding a point, deleting an existing point Yd can only decrease the

domination number or leave it unchanged. As illustrated in Figure 5.6, if Yd is on

the boundary of B(Xi) of some Xi, then deleting Yd will cause B(Xi) to increase

to B′(Xi), which we refer to as the enlarged covering ball. The enlarged covering

ball B′(Xi) has a radius equal to the distance between Xi and the second nearest

Y -point: Yj. It is worth noting that the domination number can decrease by at most

the number of X-points in B ′(Xi).

It is also possible for Yd to fall into more than one enlarged covering ball. Refer

to the original Y -points except Yd as Y ′-points. Define the random variable Bd ≡
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Yd

0

t(n)

Jt(n)

2b

B(Xi)

B′(Xi)

B(Y0, 2b)

b

Yj

Xi

Figure 5.6: The result of deleting one existing point Yd

maximum radius of all balls that contain Yd but contain no Y ′-points. Given Bd =

b > 0, the enlarged covering balls into which Yd could fall must be contained in the

ball B(Yd, 2b). Otherwise, if there exists an enlarged covering ball that contains Yd

but is not contained in B(Yd, 2b), then that enlarged covering ball must have a radius

greater than b but contain no Y ′-point, which contradicts Bd = b. Therefore, |∆n,mn |

is bounded above by the number of X-points in B(Yd, 2b), thus

0 ≥ ∆n,mn ≥ −
n∑

i=1

I{Xi∈B(Yd,2b)}.

Define the event

F ′(Yd, b)≡{∃ a ball in B(Yd, 2b) with radius b s.t. there exists no Y ′-point in it}.
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As in the the case of adding a point, it is easy to see that {Bd > b} ⊂ F ′(Yd, b).

Hence, conditioning on t(n), we can get the following upper bound of P (Bd > b):

P (Bd > b) ≤ P (F ′(Yd, b))

≤ 64 · P (a grid ball contains no Y ′-point)

= 64

(

1− π(b/4)2

t(n)2

)m

.

Therefore, using the same argument as in the case of adding points, for any ρn ∈

{1, · · · , δn}, we get

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

≤ δn · E
[
∫ √

2t(n)

b=0

64

(

1− π(b/4)2

t(n)2

)m

d

(
π(2b)2

|Jt(n)| · ε

)]

. (5.5.6)

By applying |Jt(n)| = t(n)2 and adjusting the factors in d
(

π(2b)2

|Jt(n)|·ε

)

, the integral above

can be further calculated as follows:

∫ √
2t(n)

b=0

64

(

1− π(b/4)2

t(n)2

)m

d

(
π(2b)2

|Jt(n)| · ε

)

=

∫ √
2t(n)

b=0

642

ε

(

1− π(b/4)2

t(n)2

)m

d

(
π(b/4)2

t(n)2

)

=
642

ε

[

1

m+ 1

(

1− π(b/4)2

t(n)2

)m+1
]b=0

b=
√

2t(n)

=
642

ε

1

m+ 1

(

1−
(

1− π

32

)m+1
)

≤ C ′

m
for some constant C ′ > 0.

Hence, for any ρn ∈ {1, · · · , δn}, when n is sufficiently large, Inequality (5.5.6) reduces
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to

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

≤ δn
C ′

m

≤ δC2 for some constant C2 > 0.

Therefore,

∑

1≤ρn≤δn

P

( |∆n,mn |
n

> ε | mn −m = ρn

)

P(mn −m = ρn)

≤ δC2

∑

1≤ρn≤δn

P(mn −m = ρn)

= δC2P (1 ≤ mn −m ≤ δn)

≤ δC2.

Substituting the above into Inequality (5.5.5), we get

P

( |∆n,mn |
n

> ε

)

≤ P (|mn −m| > δn) + (C1 + C2)δ. (5.5.7)

Since m
n
→ r, when n is sufficiently large, we have

|m− rn|
n

≤ δ/2,

thus

P (|mn −m| > δn) = P

( |mn −m|
n

> δ

)

≤ P

( |mn − rn|
n

+
|m− rn|

n
> δ

)

≤ P

( |mn − rn|
n

>
δ

2

)

= P (|mn − rn| ≥ δn/2) .
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Applying a similar argument by DeVinney and Wierman [12, page 432], which uses

Chernoff’s theorem, the above is further bounded as follows:

P (|mn −m| > δn) ≤ P

(

|mn − rn| ≥ δn

2

)

≤ Ke−kδn for some constants K, k > 0.

Once the above is substituted into Inequality (5.5.7), it follows that

P

( |∆n,mn |
n

> ε

)

≤ Ke−kδn + (C1 + C2)δ.

For any fixed δ > 0, the first term Ke−kδn goes to 0 as n → ∞. Also, considering

δ > 0 can be arbitrarily small, we conclude that P
(
|∆n,mn |

n
> ε
)

→ 0, thus ∆n,mn

n
→

0 in probability.

In Theorem 5.5.1, the exact form of g(r) is not given; however, it does have the

following properties.

Corollary 5.5.1. g(r) is a bounded, increasing and continuous function on (0,∞).

Proof.

• First, we show g(r) ∈ [0, 1]. For integer n, we have showed that

lim
n→∞

Γ̄Jn

|Jn|
= g(r) a.s.,

where λX = 1 and λY = r are assumed.

Since 0 ≤ Γ̄Jn

|Jn| ≤
NX(Jn)
|Jn| and NX(Jn)

|Jn|
a.s−→ λX = 1, it follows that

0 ≤ g(r) = lim
n→∞

Γ̄Jn

|Jn|
≤ 1.
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• Next, we show that g(r) increases as r increases. We first suppose that, for

any 0 < r1 < r2, there is a Poisson process X with rate 1, a Poisson process

Y1 with rate r1, and another Poisson process Y2−1 with rate r2 − r1. Then for

any integer n > 0, we let t(n) be the smallest real number t such that there

are n + 1 X-points in Jt. Suppose next that m1(n) is the random number of

Y1-points in Jt(n), and m2−1(n) is the random number of Y2−1-points in Jt(n). We

refer to both the Y1-points and Y2−1-points as Y2-points. We define Γn,m1(n) as

the domination number generated by the X-points and Y1-points in Jt(n), and

Γn,m2(n) as the domination number generated by the X-points and Y2-points

in Jt(n). Basically, we have just added m2−1(n) Y2−1-points to those m1 Y1-

points to allow us to study the change from Γn,m1(n) to Γn,m2(n). Considering

that adding Y -points can never decrease the domination number, we know that

Γn,m2(n) is larger than Γn,m1(n). Note that Y1-points are generated from a Poisson

process with rate r1, and Y2−1-points are generated from a Poisson process with

rate r2− r1, hence Y2-points are generated from a Poisson process with rate r2.

Therefore, by previous results, we have

lim
n→∞

Γn,m1(n)

|Jt(n)|
= g(r1) a.s.,

and

lim
n→∞

Γn,m2(n)

|Jt(n)|
= g(r2) a.s.

Recalling Γn,m2(n) is larger than Γn,m1(n), we conclude that g(r2) ≥ g(r1).
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• Finally, all that remains is to prove that g(r) is continuous. In other words, for

any r1 > 0 and ε > 0, we must show that there exists a δ ≡ δ(ε) > 0 such that

when |r2 − r1| < δ,

|g(r2)− g(r1)| ≤ ε.

Suppose there is a Poisson process X with rate 1, a Poisson process Y1 with rate

r1, and another Poisson process Y2 with rate r2. Then for any integer n > 0,

we let t(n) be the smallest real number t such that there are n+ 1 X-points in

Jt(n). Suppose next that m1(n) is the random number of Y1-points in Jt(n), and

m2(n) is the random number of Y2-points in Jt(n). Taking into consideration

that almost sure convergence implies convergence in probability, we have

lim
n→∞

Γn,m1(n)

|Jt(n)|
= g(r1) in probability,

and

lim
n→∞

Γn,m2(n)

|Jt(n)|
= g(r2) in probability.

Next, we will prove |g(r2)−g(r1)| ≤ ε by contradiction. Suppose |g(r2)−g(r1)| =

ε + α for α > 0. By the definition of convergence in probability, we know that

when n is sufficiently large,

P

(∣
∣
∣
∣

Γn,m1(n)

|Jt(n)|
− g(r1)

∣
∣
∣
∣
< α/2

)

> 1− δ,

and

P

(∣
∣
∣
∣

Γn,m2(n)

|Jt(n)|
− g(r2)

∣
∣
∣
∣
< α/2

)

> 1− δ.
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On intersection of the 2 events above, we have

ε+ α = |g(r2)− g(r1)|

≤
∣
∣
∣
∣

Γn,m1(n)

|Jt(n)|
− g(r1)

∣
∣
∣
∣
+

∣
∣
∣
∣

Γn,m2(n)

|Jt(n)|
− g(r2)

∣
∣
∣
∣
+

∣
∣
∣
∣

Γn,m1(n)

|Jt(n)|
− Γn,m2(n)

|Jt(n)|

∣
∣
∣
∣

< α/2 + α/2 +

∣
∣
∣
∣

Γn,m1(n)

|Jt(n)|
− Γn,m2(n)

|Jt(n)|

∣
∣
∣
∣
,

which can be reduced to

∣
∣
∣
∣

Γn,m1(n)

|Jt(n)| − Γn,m2(n)

|Jt(n)|

∣
∣
∣
∣
> ε. Since this intersection event

has probability greater than 1− 2δ, we conclude that

P

(∣
∣
∣
∣

Γn,m1(n)

|Jt(n)|
− Γn,m2(n)

|Jt(n)|

∣
∣
∣
∣
> ε

)

> 1− 2δ. (5.5.8)

On the other hand, applying the same techniques used in the proof of Lemma 5.5.1,

we can prove the following result similar to Inequality (5.5.7). If |r2 − r1| < δ,

then when n is sufficiently large,

P

(∣
∣
∣
∣

Γn,m1(n)

|Jt(n)|
− Γn,m2(n)

|Jt(n)|

∣
∣
∣
∣
> ε

)

≤ P (|m2(n)−m1(n)| ≥ δn) + (C ′
1 + C ′

2)δ,

where C ′
1, C

′
2 > 0 are two constants determined by ε. Applying Chernoff’s

theorem as before, we know that for any fixed δ > 0, P (|m2(n)−m1(n)| ≥ δn)

converges to 0 as n goes to +∞. Therefore, when δ is sufficiently small, the

inequality above can be further bounded as follows:

P

(∣
∣
∣
∣

Γn,m1(n)

|Jt(n)|
− Γn,m2(n)

|Jt(n)|

∣
∣
∣
∣
> ε

)

≤ Cδ (for some constant C > 0)

≤ 1− 2δ,

which contradicts Inequality (5.5.8).
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5.6 WLLN for the Domination Number in [0, 1]2

with General Densities

Based on the same approach used to prove the SLLN for the domination num-

ber with continuous densities in one dimension (Theorem 2.3.1 in Chapter 2), the

following is also true.

Theorem 5.6.1. If the densities fX and fY are positive, bounded and continuous on

[0, 1]2, and m
n
→ r, r ∈ (0,∞), then

lim
n→∞

Γ′n,m

n
=

∫∫

[0,1]2
g

(

r · fY (u, v)

fX(u, v)

)

· fX(u, v)dudv in probability,

where g(r) is the same as in Theorem 5.5.1.

In the following two subsections, we first generalize Theorem 5.5.1 to the the case

for piecewise constant densities, then extend it to the continuous case. The proofs

are analogous to Sections 2.2 and 2.3. The only significant difference is that adding

or deleting a point in two dimensions, rather than changing the domination number

by at most 2, could change the domination number quite substantially (as much as

n − 1). Nonetheless, such large changes are highly unlikely and are proved to be

negligible in the limit.
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5.6.1 Piecewise Constant Densities

We consider the simple situation in which fX and fY are piecewise constant den-

sities defined as

fX(u, v) =
k∑

p,q=1

apqIApq(u, v)

and

fY (u, v) =
k∑

p,q=1

bpqIApq(u, v),

where Apq, p, q = 1, · · · , k equally divide [0, 1]2 into k2 pieces (see Figure 5.7). Let

1

Ak3

A33

A23

A13

Akk

A3k

A2k

A1k

Ak2Ak1

A31 A32

A22

A12

A21

A11

1
k

1
k

1
k

0

1
k

1

Figure 5.7: The squares Apq where densities fX and fY are constant

Γ(n,m) be the domination number generated by the n X-points and m Y -points in
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[0, 1]2, and Γ(npq,mpq) be the domination number generated by the npq X-points and

mpq Y -points in Apq. We can think of
∑

p,q Γ(npq,mpq) as a “filtered” domination

number generated by adding a “filter” Apq for each Γ(npq,mpq). The effect of adding

“a filter” is that no points outside Apq contribute to Γ(npq,mpq). The outcome of

ignoring the filters is the restoration of the sum of the “filtered” domination numbers

∑

p,q Γ(npq,mpq) to the ordinary domination number Γ(n,m). We define

∆n,m = Γn,m −
∑

p,q

Γ(npq,mpq).

We now apply the same technique used in Section 5.3. Specifically, with d = d(n) to

be chosen later, we shrink each Apq by δ = 1/kd to get A′
pq, then shrink A′

pq by δ to

get A′′
pq, and then shrink A′′

pq by
√

2δ to get A′′′
pq (see Figure 5.8). Finally, we divide

A′
pq − A′′

pq equally into 4d− 12 small squares with side length δ. Now that there are

(4d−12) small squares in each Apq, p, q = 1, · · · , k, there are totally (4d−12)k2 small

squares in ∪Ap,q. Define Fm={there exists at least one Y -point in each small square}.

Then we have

P (Fm) =

(

1−
(

1− δ2
)m
)(4d−12)k2

≥
(

1−
(

1− (1/kd)2
)m
)4dk2

. (5.6.1)

Next, we will apply the results obtained in the proof of the SLLN of the ordinary

domination number in the Poisson case (refer to Figures 5.2 and 5.3). Conditional

upon Fm, the covering ball of any X-point in A′′
pq is contained in Apq. Therefore,

ignoring the filter Apq has no effect on these X-points. However, there may be some
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A′
pq

A′′
pq

√
2δ δ δ

1
k

A′′′
pq

Apq

Figure 5.8: The rectangles Apq, A
′
pq, A

′′
pq and A′′′

pq

Y -points just outside the boundary of Apq, while someX-point in Apq−A′′
pq could have

a covering ball that is not contained in Apq. Thus, ignoring the filter Apq could reduce

the covering ball of some X-points in Apq − A′′
pq, thereby increasing the domination

number. Such an increase is bounded by the number of X-points in Apq −A′′′
pq, since

no covering ball of any X-point in Apq − A′′
pq can intersect with A′′′

pq. Summarizing

the argument above, we get

Γn,m

n
=

∑

p,q

Γ(npq,mpq)

n
+

∆n,m

n

=
∑

p,q

Γ(npq,mpq)

n
+

∆n,m

n
IF C

m
+

∆n,m

n
IFm, (5.6.2)
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where

∣
∣
∣
∣

∆n,m

n
IF C

m

∣
∣
∣
∣
≤ IF C

m
(5.6.3)

and

0 ≤ ∆n,m

n
IFm ≤

∑

p,q NX(Apq − A′′′
pq)

n
. (5.6.4)

In the rest of this section, we will calculate the limit of the three terms in the RHS

of Equation (5.6.2). First, applying a similar argument to that used in the proof of

Lemma 2.2.1, we show that as n→∞,

mpq

m
→ bpq|Apq| a.s.,

npq

n
→ apq|Apq| a.s.,

hence mpq

npq
→ rpq a.s., where rpq ≡ r · bpq

apq
. Therefore, applying Theorem 5.5.1 on each

Apq yields

Γ(npq,mpq)

n
→ g(rpq) · apq|Apq| in probability,

and thus

∑

p,q

Γ(npq,mpq)

n
→
∑

p,q

g(rpq) · apq|Apq| in probability.

Writing the above in the form of an integral gives

∑

p,q

Γ(npq,mpq)

n
→

∑

p,q

g

(

r · bpq

apq

)

· apq|Apq|

=

∫∫

[0,1]2
g

(

r · fY (u, v)

fX(u, v)

)

· fX(u, v)dudv in probability.

(5.6.5)
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Next, from Inequality (5.6.1), we know that when d is sufficiently large,

0 ≥ logP (Fm) ≥ 4dk2 · log
(

1−
(
1− (

1

kd
)2
)m
)

= −4k2d ·
(
(
1− 1

k2d2

)m
+ o
((

1− 1

k2d2

)m
))

.

Since (1− 1
x
)x ↗ e−1 as x→∞, it follows that

−4k2d ·
(

1− 1

k2d2

)m

= −4k2d ·
(

1− 1

k2d2

)k2d2· m
k2d2

≥ −4k2d · e− m
k2d2 .

Let d =

⌊
√

m
k2·log

√
m

⌋

. Then

−4k2d
(
1− 1

k2d2

)m ≥ −4k2

√
m

k2 · log√m · 1√
m

= − 4k
√

log
√
m
,

and thus

0 ≥ logP (Fm) ≥ − 4k
√

log
√
m

+ o

(

− 4k
√

log
√
m

)

m→∞−→ 0.

It also follows that P (Fm) → 1, so P (FC
m) → 0. Hence,

IF C
m
→ 0 in probability.

The formula above combined with Inequality (5.6.3) gives

∆(n,m)

n
IF C

n,m
→ 0 in probability. (5.6.6)

129



Finally, we write the RHS in Inequality (5.6.4) as

∑

p,q NX(Apq − A′′′
pq)

n
=

∑n
i=1 I

(
Xi ∈ ∪p,q(Apq − A′′′

pq)
)

n
.

It should be noted that

E
[

I
(
Xi ∈ ∪p,q(Apq − A′′′

pq)
)]

= P
(
Xi ∈ ∪p,q(Apq − A′′′

pq)
)

= 1− (1− 2(2 +
√

2)δ)2k2

(refer to Figure 5.7 and Figure 5.8).

Recall that δ = 1/kd and d =

⌊
√

m
k2·log

√
m

⌋

. It follows that when m is sufficiently

large,

E
[

I
(
Xi ∈ ∪p,q(Apq − A′′′

pq)
)]

≤ 1−



1− 2(2 +
√

2) · 1
√

m
log

√
m
− 1





2k2

m→∞−→ 0.

Therefore, for any δ > 0, the Markov inequality provides

P

(∑n
p=1 I

(
Xi ∈ ∪p,q(Apq − A′′′

pq)
)

n
≥ δ

)

≤
E
[

I
(
Xi ∈ ∪p,q(Apq − A′′′

pq)
)]

δ

→ 0,

and thus

∑

p,q NX(Apq − A′′′
pq)

n
→ 0 in probability.

Combining the above with Inequality (5.6.4) yields

∆(n,m)

n
IFm → 0 in probability. (5.6.7)
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Finally, substituting Formulas (5.6.5), (5.6.6) and (5.6.7) into (5.6.2) generates the

desired result.

Remark 5.6.1. The proof above can be easily generalized to the case when the re-

gions of constancy for the densities are rectangles instead of squares. However, the

limiting function g then depends on the ratio between the length and the width of

the rectangles, hence the final limiting value can’t be written in the simple integral

form.

5.6.2 Continuous Densities

If fX and fY are bounded and continuous, then they are both uniformly continuous

on [0, 1]2. Thus, given any δ > 0, there exists an integer k0 such that for any k ≥ k0

and the equal partition {Apq, p, q = 1, · · · , k} of [0, 1]2 (refer to Figure 5.7), the

following must hold:

|fX(u1, v1)− fX(u2, v2)| ≤ δ,

|fY (u1, v1)− fY (u2, v2)| ≤ δ,

for any (u1, v1), (u2, v2) ∈ Apq. We define piecewise constant functions approximating

fX and fY as follows:

f̄X(u, v) = min{fX(x, y), (x, y) ∈ Apq} for (u, v) ∈ Apq,

f̄Y (u, v) = min{fY (x, y), (x, y) ∈ Apq} for (u, v) ∈ Apq,
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and then rescale f̄X and f̄Y by dividing them by their respective integrals to give

piecewise constant densities f̂X and f̂Y , which approximate fX and fY , respectively.

Applying the same argument as in Section 2.3 to i.i.d. random vectors (Xi1, Xi2,

Xi3), i = 1, · · · , n, distributed uniformly between {(u, v, 0) : u, v ∈ [0, 1]2} and the

surface
{(
u, v, fX(u, v)

)
: u, v ∈ [0, 1]2

}
, the marginal distribution of (Xi1, Xi2) is

proved to be fX . The same procedure generates i.i.d. random vectors (Yj1, Yj2, Yj3),

j = 1, · · · ,m, with the marginal distribution of (Yj1, Yj2) being fY .

Next, we let (X̄i1, X̄i2, X̄i3), i = 1, · · · , n, and (Ȳj1, Ȳj2, Ȳj3), j = 1, · · · ,m, be i.i.d.

random vectors uniformly distributed under surface {(u, v, f̄X(u, v)) : u, v ∈ [0, 1]2}

and
{(
u, v, f̄Y (u, v)

)
: u, v ∈ [0, 1]2

}
, respectively.

Finally, we define R̄X as the region between the surfaces
{(
u, v, fX(u, v)

)
: u, v ∈

[0, 1]2
}

and
{(
u, v, f̄X(u, v)

)
: u, v ∈ [0, 1]2

}
, and R̄Y as the region between the

surfaces
{(
u, v, fY (u, v)

)
: u, v ∈ [0, 1]2

}
and

{(
u, v, f̄Y (u, v)

)
: u, v ∈ [0, 1]2

}
. We

then define

(X̂i1, X̂i2, X̂i3) = (Xi1, Xi2, Xi3) I{(Xi1,Xi2,Xi3)/∈R̄X}

+ (X̄i1, X̄i2, X̄i3) I{(Xi1,Xi2,Xi3)∈R̄X},

(Ŷj1, Ŷj2, Ŷj3) = (Yj1, Yj2, Yj3) I{(Yj1,Yj2,Yj3)/∈R̄Y }

+ (Ȳj1, Ȳj2, Ȳj3) I{(Yj1,Yj2,Yj3)∈R̄Y }.

The sequences above can be reiterated as follows. For each i ∈ {1, · · · , n}, if the point

(Xi1, Xi2, Xi3) falls into R̄X , then this point is defined as (X̂i1, X̂i2, X̂i3); otherwise,
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(X̄i1, X̄i2, X̄i3) is defined as (X̂i1, X̂i2, X̂i3). A similar procedure applies to Y -points.

Again, using a similar technique to that in Section 2.3 shows that (X̂i1, X̂i2) and

(Ŷi1, Ŷi2) have piecewise constant densities f̂X and f̂Y , respectively.

Define X ≡ {Xi = (Xi1, Xi2), i = 1, · · · , n}, and Y ≡ {Yj = (Yj1, Yj2), j =

1, · · · ,m}. Let Γn,m(X ,Y) denote the domination number generated by X and Y .

Similarly, let Γn,m(X̂ , Ŷ) denote the domination number generated by X̂ ≡ {X̂i =

(X̂i1, X̂i2), i = 1, · · · , n}, and Ŷ ≡ {Ŷj = (Ŷj1, Ŷj2), j = 1, · · · ,m}. Note that only

the points (Xi1, Xi2, Xi3) ∈ R̄X and (Yj1, Yj2, Yj3) ∈ R̄Y could cause the difference

between Γn,m(X ,Y) and Γn,m(X̂ , Ŷ). Such difference could be as much as n − 1.

However, by applying the results obtained in Section 5.5.1, we will next show that if

the largest covering ball is small, then the difference is negligible in the limit.

When any Xi = (Xi1, Xi2, Xi3) ∈ R̄X is replaced by X̄i = (X̄i1, X̄i2, X̄i3), it is

equivalent to deleting Xi = (Xi1, Xi2) and then adding X̄i = (Xi1,Xi2). Deleting Xi

could decrease (but never increase) the domination number Γn,m(X ,Y) by at most

1. On the other hand, note that deleting the covering ball of Xi could also increase

(but never decrease) the domination number by at most the number of X -points in

B(Xi) − {Xi}. Hence, deleting Xi could change the domination number by at most

the number of X -points in B(Xi). Similarly, adding X̄i could further increase the

domination number by at most 1. However, note that adding the covering ball of

X̄i can also decrease the domination number by at most the number of X̂ -points in

B(X̄i)− {X̄i}. Hence, adding X̄i can change the domination number by at most the
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number of X̂ -points in B(X̄i). Therefore, replacing any Xi ∈ R̄X by X̄i could only

change the domination number by at most

n∑

l=1

I{Xl∈B(Xi)} +
n∑

l=1

I{X̄l∈B(X̄i)}.

Hence, the change caused by Xi in RX is bounded by

n∑

i=1

I{Xi∈R̄X}

n∑

l=1

(

I{Xl∈B(Xi)} +
n∑

l=1

I{X̂l∈B(X̄i)}

)

. (5.6.8)

Given any Xi ∈ R̄X , we denote the radius of the covering ball B(Xi) by Bi. For any

fixed Xi ∈ R̄X , we can bound P (Bi > b) as follows:

P (Bi > b | Xi, Xi ∈ R̄X)

≤ P (there are no Y-points in the ball centered at Xi with radius b).

Recall that fX , f̂X , fY and f̂Y are all positive and bounded, so we can assume

k1 ≤ fX ≤ k2, k1 ≤ f̂X ≤ k2, k1 ≤ fY ≤ k2 and k1 ≤ f̂Y ≤ k2 for some positive

constants k1, k2. Hence, the inequality above can be further bounded as

P (Bi > b | Xi, Xi ∈ R̄X) ≤
(
1− k1πb

2
)m

.

Since the bound above is uniform for any Xi ∈ R̄X , it follows that

P (Bi > b | Xi ∈ R̄X) ≤
(
1− k1πb

2
)m

.

Note that for any l ∈ {1, · · · , i− 1, i+ 1, · · · , n}, the random point Xl is independent
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of Xi and Yj, j = 1, · · · ,m. Therefore,

E
[
I{Xl∈B(Xi)} | Xi ∈ R̄X

]
= E

[

E
[
I{Xl∈B(Xi)} | Xi ∈ R̄X , Bi

]
| Xi ∈ R̄X

]

= E
[

P
(
Xl ∈ B(Xi) | Xi ∈ R̄X , Bi

)
| Xi ∈ R̄X

]

≤ E
[
k2πB

2
i | Xi ∈ R̄X

]
.

By applying the same technique as on page 88, we can further bound the above as

follows:

E
[
I{Xl∈B(Xi)} | Xi ∈ R̄X

]
≤

∫
(
1− k1πb

2
)m

d
(
k2πb

2
)

≤ 1

m+ 1
.

Since m/n→ r, when n is sufficiently large, it follows that

E

[
n∑

l=1

I{Xl∈B(Xi)} | Xi ∈ R̄X

]

= 1 + E




∑

l∈{1,··· ,i−1,i+1,··· ,n}
I{Xl∈B(Xi)} | Xi ∈ R̄X





≤ 1 +
n− 1

m+ 1

≤ K1 for some constant K1.

Similarly, we can prove that when n is sufficiently large,

E

[
n∑

l=1

I{X̂l∈B(X̄i)} | Xi ∈ R̄X

]

≤ K1.

From the two inequalities above, we can bound the expectation of Formula (5.6.8) as
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follows:

E

[
n∑

i=1

I{Xi∈R̄X}

n∑

l=1

(

I{Xl∈B(Xi)} + I{X̂l∈B(X̄i)}

)
]

=
n∑

i=1

E

[

I{Xi∈R̄X}

n∑

l=1

(

I{Xl∈B(Xi)} + I{X̂l∈B(X̄i)}

)
]

=
n∑

i=1

E

[
n∑

l=1

(

I{Xl∈B(Xi)} + I{X̂l∈B(X̄i)}

)

| Xi ∈ R̄X

]

P (Xi ∈ R̄X)

≤
n∑

i=1

2K1P (Xi ∈ R̄X)

= 2K1

n∑

i=1

P (Xi ∈ R̄X)

≤ 2K1δn. (5.6.9)

After replacing all Xi ∈ R̄X by X̄i, the original domination number Γn,m(X ,Y) be-

comes Γn,m(X̂ ,Y). Next, we consider the effect of replacing Yj = (Yj1, Yj2, Yj3) ∈ R̄Y

by Ȳj = (Ȳj1, Ȳj2, Ȳj3), which is equivalent to deleting Yj = (Yj1, Yj2) and then adding

Ȳj = (Ȳj1, Ȳj2). We have discussed the effect of deleting and adding Y-points in

Section 5.5.1. For all Yj /∈ R̄Y , refer to the corresponding points Yj as Y ′-points.

For any Yj ∈ R̄Y , define Bj ≡ maximum radius of all balls that contain Yj but con-

tain no Y ′-points. Applying the arguments in Section 5.5.1 shows that deleting Yj

could increase (but never decrease) Γn,m(X̂ ,Y) by at most the number of X̂-points

in the ball B(Yj) ≡ B(Yj, 2Bj), centered at Yj with radius 2Bj. Furthermore, for

any Yj ∈ R̄Y , define B̄j ≡ maximum radius of all balls that contain Ȳj but contain

no Y ′-points. Similarly, applying the arguments in Section 5.5.1 shows that adding

Ȳj could further decrease (but never increase) Γn,m(X̂ ,Y) by at most the number of
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X̂-points in B(Ȳj) ≡ B(Ȳj, 2B̄j), centered at Ȳj with radius 2B̄j. Thus, replacing

any Yj ∈ R̄Y by Ȳj could further change the original domination number Γn,m(X ,Y)

by no more than

m∑

j=1

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)} + I{X̂l∈B(Ȳj)}

)

. (5.6.10)

Let mR denote the number of Yj ∈ R̄Y . For any fixed Yj ∈ R̄Y , using the same

argument as on page 90, we can bound P (Bj > b | Yj, Yj ∈ R̄Y ,mR) as follows:

P (Bj > b | Yj, Yj ∈ R̄Y ,mR)

≤ 64 · P (there are no Y ′-points in a particular grid ball)

≤ 64
(
1− k2π(b/4)2

)m−mR .

Since the bound above is uniform for any Yj ∈ R̄Y , it follows that

P (Bj > b | Yj ∈ R̄Y ,mR) ≤ 64
(
1− k2π(b/4)2

)m−mR .

Note that for any l ∈ {1, · · · , n}, the random point X̂j is independent of Yj, j =

1, · · · ,m. Therefore,

E
[

I{X̂l∈B(Yj)} | Yj ∈ R̄Y ,mR

]

= E

[

E
[

I{X̂l∈B(Yj)} | Yj ∈ R̄Y ,mR, Bj

]

| Yj ∈ R̄Y ,mR

]

= E

[

P
(

X̂l ∈ B(Yj) | Yj ∈ R̄Y ,mR, Bj

)

| Yj ∈ R̄Y ,mR

]

≤ E
[
k2π(2Bj)

2 | Yj ∈ R̄Y ,mR

]
.

By applying the same technique as on page 88, we can further bound the above as
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follows

E
[

I{X̂l∈B(Yj)} | Yj ∈ R̄Y ,mR

]

≤
∫

64
(
1− k1π(b/4)2

)m−mR d
(
k2π(2b)2

)
.

Hence,

E

[
n∑

l=1

I{X̂l∈B(Yj)} | Yj ∈ R̄Y ,mR

]

≤ n ·
∫

64
(
1− k1π(b/4)2

)m−mR d
(
k2π(2b)2

)

≤ n · C

m−mR

for some constant C > 0.

Since m/n→ r, when n is sufficiently large, conditional on mR ≤ 2δm the inequality

above yields

E

[
n∑

l=1

I{X̂l∈B(Yj)} | Yj ∈ R̄Y ,mR ≤ 2δm

]

≤ n · C

m− 2δm

≤ K2 for some constant K2 > 0. (5.6.11)

Furthermore, by applying the argument above to the case of adding Ȳj, we conclude

that, when n is sufficiently large,

E

[
n∑

l=1

I{X̂l∈B(Ȳj)} | Yj ∈ R̄Y ,mR ≤ 2δm

]

≤ K2. (5.6.12)

Note that

E

[
m∑

j=1

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)} + I{X̂l∈B(Ȳj)}

)

| mR ≤ 2δm

]

=
m∑

j=1

E

[

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)} + I{X̂l∈B(Ȳj)}

)

| mR ≤ 2δm

]

=
m∑

j=1

E

[
n∑

l=1

(

I{X̂l∈B(Yj)} + I{X̂l∈B(Ȳj)}

)

| Yj ∈ R̄Y ,mR ≤ 2δm

]

·P
(
Yj ∈ R̄Y | mR ≤ 2δm

)
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Applying Inequalities (5.6.11) and (5.6.12) to the above equation, we obtain

E

[
m∑

j=1

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)} + I{X̂l∈B(Ȳj)}

)

| mR ≤ 2δm

]

≤ 2K2

m∑

j=1

P
(
Yj ∈ R̄Y | mR ≤ 2δm

)

= 2K2

m∑

j=1

E
[
I{Yj∈R̄Y } | mR ≤ 2δm

]

= 2K2E

[
m∑

j=1

I{Yj∈R̄Y } | mR ≤ 2δm

]

= 2K2E [mR | mR ≤ 2δm] ≤ 4K2δm. (5.6.13)

Recall from Formulas (5.6.8) and (5.6.10) that
∣
∣
∣Γn,m(X ,Y)− Γn,m(X̂ , Ŷ)

∣
∣
∣ is bounded

by

n∑

i=1

I{Xi∈R̄X}

n∑

l=1

(

I{Xl∈B(Xi)} + I{X̂l∈B(X̄i)}

)

+
m∑

j=1

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)} + I{X̂l∈B(Ȳj)}

)

.
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Therefore,

P

(∣
∣
∣
∣
∣

Γn,m(X ,Y)− Γn,m(X̂ , Ŷ)

n

∣
∣
∣
∣
∣
> ε

)

= P
(∣
∣
∣Γn,m(X ,Y)− Γn,m(X̂ , Ŷ)

∣
∣
∣ > εn

)

≤ P

(
n∑

i=1

I{Xi∈R̄X}

n∑

l=1

(

I{Xl∈B(Xi)} + I{X̂l∈B(X̄i)}

)

> nε/2

)

+ P

(
m∑

j=1

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)} + I{X̂l∈B(Ȳj)}

)

> nε/2

)

= P

(
n∑

i=1

I{Xi∈R̄X}

n∑

l=1

(

I{Xl∈B(Xi)} + I{(X̂l)∈B(X̄i)}

)

> nε/2

)

+P

(
m∑

j=1

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)}+I{X̂l∈B(Ȳj)}

)

>nε/2 | mR≤2δm

)

P (mR ≤ 2δm)

+P

(
m∑

j=1

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)}+I{X̂l∈B(Ȳj)}

)

>nε/2 | mR>2δm

)

P (mR > 2δm)

= P

(
n∑

i=1

I{Xi∈R̄X}

n∑

l=1

(

I{Xl∈B(Xi)} + I{(X̂l)∈B(X̄i)}

)

> nε/2

)

+P

(
m∑

j=1

I{Yj∈R̄Y }

n∑

l=1

(

I{X̂l∈B(Yj)}+I{X̂l∈B(Ȳj)}

)

>nε/2 | mR≤2δm

)

+P (mR>2δm).

With Formulas (5.6.9) and (5.6.13), applying the Markov Inequality yields that, for
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any ε > 0, when n is sufficiently large,

P

(∣
∣
∣
∣
∣

Γn,m(X ,Y)− Γn,m(X̂ , Ŷ)

n

∣
∣
∣
∣
∣
> ε

)

≤
E

[
n∑

i=1

I{Xi∈R̄X}

(
n∑

l=1

I{Xl∈B(Xi)} + I{X̂l)∈B(X̄i)}

)]

nε/2

+

E

[
m∑

j=1

I{Yj∈R̄Y }

(
n∑

l=1

I{X̂l∈B(Yj)} + I{X̂l∈B(Ȳj)}

)

| mR ≤ 2δm

]

nε/2
+ P (mR > 2δm)

≤ 2K1δn

nε/2
+

4K2δm

nε/2
+ P (mR > 2δm)

≤ Kδ + P (mR > 2δm) for some constant K determined by ε. (5.6.14)

Note that mR is a binomial random variable with mean δm and variance δ(1− δ)m,

so by applying the Markov Inequality we get

P (mR > 2δm) = P (mR − δm > δm)

≤ δ(1− δ)m

(δm)2
=

(1− δ)

δm
.

Thus, for any fixed δ ∈ (0, 1), when m is sufficiently large, the following inequality

holds:

P (mR > 2δm) ≤ δ.

Hence, Inequality (5.6.14) reduces to

P

(∣
∣
∣
∣
∣

Γn,m(X ,Y)− Γn,m(X̂ , Ŷ)

n

∣
∣
∣
∣
∣
> ε

)

≤ Kδ + δ. (5.6.15)

In the previous section, we have proved that

Γn,m(X̂ , Ŷ)

n
→
∫∫

[0,1]2

g

(

r · f̂Y (u, v)

f̂X(u, v)

)

· f̂X(u, v)dudv in probability.
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Thus, when n is sufficiently large,

P






∣
∣
∣
∣
∣
∣
∣

Γn,m(X̂ , Ŷ)

n
−
∫∫

[0,1]2

g

(

r · f̂Y (u, v)

f̂X(u, v)

)

· f̂X(u, v)dudv

∣
∣
∣
∣
∣
∣
∣

> ε




 ≤ δ.

Combining the inequality above with Inequality (5.6.15) gives

P






∣
∣
∣
∣
∣
∣
∣

Γn,m(X ,Y)

n
−
∫∫

[0,1]2

g

(

r · f̂Y (u, v)

f̂X(u, v)

)

· f̂X(u, v)dudv

∣
∣
∣
∣
∣
∣
∣

> ε




 ≤ Kδ + 2δ.

Corollary 5.5.1 says that g(r) is bounded and continuous. Since f̂X → fX and f̂Y →

fY as δ → 0, then by the dominated convergence theorem it follows that

∫∫

[0,1]2

g

(

r · f̂Y (u, v)

f̂X(u, v)

)

· f̂X(u, v)dudv →
∫∫

[0,1]2

g

(

r · fY (u, v)

fX(u, v)

)

· fX(u, v)dudv.

Considering δ > 0 can be arbitrarily small, we immediately obtain

P






∣
∣
∣
∣
∣
∣
∣

Γn,m(X ,Y)

n
−
∫∫

[0,1]2

g

(

r · fY (u, v)

fX(u, v)

)

· fX(u, v)dudv
]

∣
∣
∣
∣
∣
∣
∣

> ε




→ 0.

This finishes the proof of Theorem 5.6.1.

Remark 5.6.2. The limiting function
∫∫

[0,1]2
g
(

r · fY (u,v)
fX(u,v)

)

· fX(u, v)dudv gives the same

value as for uniform densities whenever fX = fY . But since we haven’t proved whether

g is concave, we don’t know yet if this limiting function achieves the maximum value

when fX = fY .
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Chapter 6

Monte Carlo Simulation

In previous chapters, we have proved the general SLLN and the uniform CLT for

the domination number in the one-dimensional case, and established the WLLN in

two dimensions. In this chapter, we will use Monte Carlo simulations to illustrate

these theoretical results, and also empirically verify some limit theorems that are

not obtained in this dissertation but are likely to be true, such as the CLT in two

dimensions.

6.1 One Dimension

In the one-dimensional case, we use Monte Carlo simulations to generate n X-

points and m Y -points according to distribution functions FX and FY , respectively;

then we calculate the domination number induced by these X-points and Y -points.

For each of four combinations of FX and FY , the simulations are repeated 1000 times.
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(All of the above is programmed in Matlab.) The results for these four combinations

are described in the following four subsections, respectively.

6.1.1 The Case of FX = FY = U [0, 1]

By using R, the generated box-plots of Γn,m

n
are shown in Figure 6.1. The graph

indicates that the sample mean of Γn,m

n
converges to a constant as m = n → ∞,

which is consistent with Theorem 2.3.1. Specifically, from Table 6.1, we can see that

when m = n = 10000, the sample mean is very close to the theoretical limiting

value of Γn,m

n
, which is about 0.59524 according to Theorem 2.3.1. Furthermore,

we notice that the sample mean decreases as n increases. Such phenomenon also

exists for other combinations of FX and FY , as illustrated by the simulation results

in next three subsections. We don’t have an explanation as to why the sample mean

monotonically decreases to the theoretical limit.
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Figure 6.1: The box-plots of Γn,m

n
with m = n = 10, 100, 1000, 10000 from top to

bottom, when FX = FY = U [0, 1].
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n(= m) 10 100 1000 10000
sample mean of Γn,m/n 0.63280 0.59716 0.59583 0.59527

Table 6.1: The sample mean of Γn,m

n
when FX = FY = U [0, 1].

Also, in Figure 6.2, we compare the sample variance of the domination num-

ber with the theoretical limiting variance of the domination number given in The-

orem 3.4.2. For every r ∈ {0.01, 0.02, · · · , 0.3, 0.4, · · · , 2}, we calculate the sample

variance s(r) for a sample of 10000 domination numbers, each generated by n X-

points and m Y -points uniformly distributed in [0, 1]
(
with min {n,m} = 1000 and

m = brnc
)
. In Figure 6.2, each dot has coordinates (r, s(r)/m), and the continuous

curve is the graph of v(r) given in Theorem 3.4.2. We see that the dots fit well with

the graph of v(r), which confirms our result obtained in Chapter 3.
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r

 ← v(r)
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Figure 6.2: The sample variance of the domination number compared with the theo-
retical limiting variance of the domination number, when FX = FY = U [0, 1].

Next, we plot the histograms and normal qq-plots of Γn,m using R, as shown in

Figure 6.3. Both histograms and normal qq-plots support the CLT for the domina-
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tion number generated by one-dimensional uniform data, which has been proven in

Chapter 4.
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Figure 6.3: The histograms and normal qq-plots of Γn,m with m = n = 10, 100, 1000,
10000 from left to right, when FX = FY = U [0, 1].

Finally, to quantify the rate of convergence to normality, we run the Shapiro-

Wilk test [22] on Γn,m for several typical values of m,n. Because the Shapiro-Wilk

test runs on an empirical sample and tests the normality of the sample’s underlying

distribution, the p-values only estimate the convergence rate. Table 6.2 summarizes

our experimental outputs. The rate of convergence to normality is fast in that the

p-value increases from < 0.01 to > 0.10 when m = n increases from 100 to 300.

n(= m) 10 100 200 300 1000 10000
p-value < 2.2e− 16 0.001446 0.01304 0.1396 0.3131 0.6807

Table 6.2: The p-values of the Shapiro-Wilk test for the null hypothesis that the
domination number Γn,m is normally distributed when FX = FY = U [0, 1].
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6.1.2 The Case of FX = x2, FY = y2 on [0, 1]

When FX = x2 and FY = y2 on [0, 1], from Figure 6.4 we see that the sample

mean of Γn,m

n
still appears to converge to a constant. Furthermore, Table 6.3 suggests

that the sample mean converges to the theoretical limiting value 0.59524, which is

the same as in the case of FX = FY = U [0, 1] because of Corollary 2.4.1. As in

the previous case, the histograms and normal qq-plots (Figure 6.5) suggest that Γn,m

is still approximately normal. The p-values listed in Table 6.4 imply the rate of

convergence to normality might be as fast as the case of FX = FY = U [0, 1].

10
00

0
10

0
10

0.3 0.5 0.7 0.9

n

PSfrag replacements

Γn,m

n

Figure 6.4: The box-plots of Γn,m

n
with m = n = 10, 100, 1000, 10000 from top to

bottom, when FX = x2 and FY = y2 on [0, 1].

n(= m) 10 100 1000 10000
sample mean of Γn,m/n 0.63180 0.59854 0.59566 0.59536

Table 6.3: The sample mean of Γn,m

n
when FX = x2 and FY = y2 on [0, 1] .
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Figure 6.5: The histograms and normal qq-plots of Γn,m with m = n = 10, 100, 1000,
10000 from left to right, when FX = x2 and FY = y2 on [0, 1].

n(= m) 10 100 200 300 1000 10000
p-value < 2.2e− 16 0.0002023 0.02491 0.04427 0.2732 0.905

Table 6.4: The p-values of the Shapiro-Wilk test for the null hypothesis that the
domination number Γn,m is normally distributed when FX = x2 and FY = y2 on
[0, 1].

6.1.3 The Case of FX = U [0, 1], FY = y2 on [0, 1]

In this case, we consider two nonequal densities. The SLLN (Theorem 2.3.1)

should still apply, and this is supported by the box-plots shown in Figure 6.6. The

sample mean listed in Table 6.5 appears to converge quickly to the theoretical limiting

value 0.53346, which is less than the theoretical limiting value 0.59524 for equal den-

sities according to Corollary 2.4.1. The histograms and normal qq-plots (Figure 6.7)

imply that the domination number is still asymptotically normal.
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Figure 6.6: The box-plots of Γn,m

n
with m = n = 10, 100, 1000, 10000 from top to

bottom, when FX = U [0, 1] and FY = y2 on [0, 1].

n(= m) 10 100 1000 10000
sample mean of Γn,m/n 0.5825 0.53941 0.53427 0.5334844

Table 6.5: The sample mean of Γn,m

n
when FX = U [0, 1] and FY = y2 on [0, 1].
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Figure 6.7: The histograms and normal qq-plots of Γn,m with m = n = 10, 100, 1000,
10000 from left to right, when FX = U [0, 1], FY = y2 on [0, 1].

n(= m) 10 100 200 300 1000 10000
p-value < 2.2e− 16 0.001162 0.01502 0.1020 0.2017 0.6633

Table 6.6: The p-values of the Shapiro-Wilk test for the null hypothesis that the
domination number Γn,m is normally distributed when FX = U [0, 1] and FY = y2 on
[0, 1].

6.1.4 The Case of FX = .25 ∗ x ∗ I{x∈[0,.5)} + (1.5 ∗ x− .5) ∗ I{x∈[.5,1]}

and FY = y2 on [0, 1]

Finally we check the case of piecewise constant densities (the linear piecewise

distribution function above corresponds to a piecewise constant density function).

Again, the box-plots (Figure 6.8) validate the SLLN, and Table 6.7 suggests the

theoretical limiting value is 0.57567, less than the theoretical limiting value 0.59524
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for equal densities according to Corollary 2.4.1. The CLT is empirically checked in

Figure 6.9 and Table 6.8.
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Figure 6.8: The box-plots of Γn,m

n
with m = n = 10, 100, 1000, 10000 from top to

bottom, when FX = .25 ∗ x ∗ I{x∈[0,.5)} + (1.5 ∗ x− .5) ∗ I{x∈[.5,1]}, FY = y2 on [0, 1].

n(= m) 10 100 1000 10000
sample mean of Γn,m/n 0.62180 0.58353 0.576326 0.575754

Table 6.7: The sample mean of Γn,m

n
when FX = .25∗x∗I{x∈[0,.5)}+(1.5∗x−.5)∗I{x∈[.5,1]}

and FY = y2 on [0, 1].
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Figure 6.9: The histograms and normal qq-plots of Γn,m with m = n = 10, 100, 1000,
10000 from left to right, when FX = .25 ∗ x ∗ I{x∈[0,.5)} + (1.5 ∗ x− .5) ∗ I{x∈[.5,1]} and
FY = y2 on [0, 1].

n(= m) 10 100 200 300 1000 10000
p-value < 2.2e− 16 9.28e− 05 0.058 0.05571 0.3417 0.3572

Table 6.8: The p-values of the Shapiro-Wilk test for the null hypothesis that the
domination number Γn,m is normally distributed when FX = .25∗x∗I{x∈[0,.5)}+(1.5∗
x− .5) ∗ I{x∈[.5,1]} and FY = y2 on [0, 1] .

6.2 Higher Dimensions

Because finding the dominating set in higher dimensional CCCDs is NP-hard,

calculating the domination number is much more time consuming for higher dimen-

sions than for one dimension. Thus, we have only simulated up to the case when

m = n = 1000. In addition, we convert the problem of finding the domination num-
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ber into an integer linear programming problem, as shown by Priebe et al. [3, page

245]. To solve these integer linear programming problems, we use the Matlab inter-

face provided by lp solve, a free linear programming solver. (For more information

on the program, visit the lp solve Web site [23].)

As in the one-dimensional case, we plot the box-plots, sample mean, histograms,

normal qq-plots and p-values for each of the four combinations of densities, shown in

the following four subsections, respectively.

As in the one-dimensional case, we plot the box-plots for different combinations

of m,n, FX and FY , shown in Figure 6.10, Figure 6.12, Figure 6.14 and Figure 6.16.

The box-plots indicate that the sample mean of Γn,m

n
converges to a constant as

m = n→∞, which supports Theorem 5.6.1. In particular, the sample means of Γm,n

n

are 0.57927 and 0.58000 for FX = FY = U [0, 1]2 and FX(u, v) = FY (u, v) = u2v2,

respectively. This result again supports the formula in Theorem 5.6.1, which gives

the same limiting value for any equal fX and fY . Again, as in the one-dimensional

case, we notice that the sample mean decreases as n increases. But we can’t provide

an explanation as to why the sample mean monotonically decreases to the theoretical

limit.

The CLT in higher dimensions is not established in this dissertation. However,

we use Monte Carlo simulations to check whether the CLT holds empirically. The

generated histograms and normal qq-plots are plotted using R, shown in Figure 6.11,

Figure 6.13, Figure 6.15 and Figure 6.17. The histograms and normal qq-plots show
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that Γn,m is likely to be asymptotically normal.

Furthermore, we use p-values of the Shapiro-Wilk test to estimate the rate of

convergence to normality. The outputs, summarized in Table 6.10, Table 6.12, Ta-

ble 6.14 and Table 6.16, illustrate that when m,n ≥ 300, the p-values are ≥ 0.1 for

both uniform and nonuniform densities. This finding implies that Γn,m is already

approximately normal when m,n ≥ 300. A comparison between the p-values reveals

that for the same value of m and n, the convergence rate is slower in two dimensions

than in one dimension. One possible reason is that because X-points and Y -points

are more flexibly distributed in two dimensions, the domination number has a larger

variance, which may cause a slower rate of convergence to normality.
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6.2.1 The Case of FX = FY = U [0, 1]2
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Figure 6.10: The box-plots of Γn,m

n
with m = n = 10, 100, 1000 from top to bottom,

when FX = FY = U [0, 1]2.

n(= m) 10 100 1000
sample mean of Γn,m/n 0.61530 0.58578 0.57927

Table 6.9: The sample mean of Γn,m

n
when FX = FY = U [0, 1]2.
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Figure 6.11: The histograms and normal qq-plots of Γn,m with m = n = 10, 100, 1000
from left to right, when FX = FY = U [0, 1]2.

n(= m) 10 100 200 300 1000
p-value < 2.2e− 16 0.002011 0.02087 0.08009 0.1561

Table 6.10: The p-values of the Shapiro-Wilk test for the null hypothesis that the
domination number Γn,m is normally distributed when FX = FY = U [0, 1]2.
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6.2.2 The Case of FX(u, v) = FY (u, v) = u2v2 on [0, 1]2
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Figure 6.12: The box-plots of Γn,m

n
with m = n = 10, 100, 1000 from top to bottom,

when FX(u, v) = FY (u, v) = u2v2 on [0, 1]2.

n(= m) 10 100 1000
sample mean of Γn,m/n 0.61720 0.58560 0.58000

Table 6.11: The sample mean of Γn,m

n
when FX(u, v) = FY (u, v) = u2v2 on [0, 1]2.
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Figure 6.13: The histograms and normal qq-plots of Γn,m with m = n = 10, 100, 1000
from left to right, when FX(u, v) = FY (u, v) = u2v2 on [0, 1]2.

n(= m) 10 100 200 300 1000
p-value < 2.2e− 16 0.00227 0.02758 0.04500 0.11700

Table 6.12: The p-values of the Shapiro-Wilk test for the null hypothesis that the
domination number Γn,m is normally distributed when FX(u, v) = FY (u, v) = u2v2

on [0, 1]2.
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6.2.3 The Case of FX = U [0, 1]2, FY (u, v) = u2v2 on [0, 1]2
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Figure 6.14: The box-plots of Γn,m

n
with m = n = 10, 100, 1000 from top to bottom,

when FX = U [0, 1]2, FY (u, v) = u2v2 on [0, 1]2.

n(= m) 10 100 1000
sample mean of Γn,m/n 0.55370 0.47900 0.46762

Table 6.13: The sample mean of Γn,m

n
when FX = U [0, 1]2 and FY (u, v) = u2v2 on

[0, 1]2.
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Figure 6.15: The histograms and normal qq-plots of Γn,m with m = n = 10, 100, 1000
from left to right, when FX = U [0, 1]2 and FY (u, v) = u2v2 on [0, 1]2.

n(= m) 10 100 200 300 1000
p-value < 2.2e− 16 0.001248 0.01666 0.06904 0.08149

Table 6.14: The p-values of the Shapiro-Wilk test for the null hypothesis that the
domination number Γn,m is normally distributed when FX = U [0, 1]2 and FY (u, v) =
u2v2 on [0, 1]2.
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6.2.4 The Case of FX(u, v) =
(
.25 ∗ u ∗ I{u∈[0,.5)} + (1.5 ∗ u − .5) ∗

I{u∈[.5,1]}
)
∗
(
.25 ∗ v ∗ I{v∈[0,.5)} + (1.5 ∗ v − .5) ∗ I{v∈[.5,1]}

)
and

FY (u, v) = u2v2 on [0, 1]2
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Figure 6.16: The box-plots of Γn,m

n
with m = n = 10, 100, 1000 from top to bottom,

when FX(u, v) =
(
.25 ∗ u ∗ I{u∈[0,.5)} + (1.5 ∗ u− .5) ∗ I{u∈[.5,1]}

)
∗
(
.25 ∗ v ∗ I{v∈[0,.5)} +

(1.5 ∗ v − .5) ∗ I{v∈[.5,1]}
)

and FY (u, v) = u2v2 on [0, 1]2.

n(= m) 10 100 1000
sample mean of Γn,m/n 0.62260 0.55796 0.54456

Table 6.15: The sample mean of Γn,m

n
when FX(u, v) =

(
.25 ∗u ∗ I{u∈[0,.5)} + (1.5 ∗u−

.5) ∗ I{u∈[.5,1]}
)
∗
(
.25 ∗ v ∗ I{v∈[0,.5)} + (1.5 ∗ v− .5) ∗ I{v∈[.5,1]}

)
and FY (u, v) = u2v2 on

[0, 1]2.
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Figure 6.17: The histograms and normal qq-plots of Γn,m with m = n = 10, 100, 1000
from left to right, when FX(u, v) =

(
.25 ∗ u ∗ I{u∈[0,.5)} + (1.5 ∗ u − .5) ∗ I{u∈[.5,1]}

)
∗

(
.25 ∗ v ∗ I{v∈[0,.5)} + (1.5 ∗ v − .5) ∗ I{v∈[.5,1]}

)
and FY (u, v) = u2v2 on [0, 1]2.

n(= m) 10 100 200 300 1000
p-value < 2.2e− 16 0.002367 0.06357 0.2062 0.3634

Table 6.16: The p-values of the Shapiro-Wilk test for the null hypothesis that the
domination number Γn,m is normally distributed when FX(u, v) =

(
.25∗u∗I{u∈[0,.5)}+

(1.5∗u−.5)∗I{u∈[.5,1]}
)
∗
(
.25∗v∗I{v∈[0,.5)}+(1.5∗v−.5)∗I{v∈[.5,1]}

)
and FY (u, v) = u2v2

on [0, 1]2.
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Chapter 7

Discussion

In this dissertation, we have proved the SLLN for the domination number in one

dimension with continuous and bounded densities. In addition, we have established

the CLT for the domination number in one dimension with uniform densities. Finally,

we have shown the SLLN for the domination number in the two-dimensional Poisson

case, and the WLLN for the domination number in two dimensions with positive,

bounded and continuous densities.

Our work in the one-dimensional case has set the stage for future research in higher

dimensions. One direction would be to extend the CLT for the uniform density

to continuous densities in one dimension, where we have encountered problems in

calculating the variance of the domination number, and finally prove the CLT in

higher dimensions. One possible approach to such an extension would be to apply

the CLTs for certain graphs proven by Penrose and Yukich [24].
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Another research direction would be to apply our methods to other properties

of CCCDs, such as the edge density. For example, in the context of Chapter 5 of

this dissertation, the edge number is likely to satisfy the subadditivity condition.

Therefore, the proof of laws of large numbers for the domination number might be

carried over to the edge number.

In summary, in this research, we have used previous results of other researchers

and various tools such as negative association and subadditive processes to establish

limit theory for the domination number of CCCDs in both one dimension and two

dimensions. The techniques used in the development of the theorems also serve as

a foundation for future improvements that could be directly applied to build and

analyze CCCD classifiers.
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