

... for a brighter future

An iterative solver for cone complementarity problems of nonsmooth multibody dynamics—and other DVI

Mihai ANITESCU,

Argonne National Laboratories

A U.S. Department of Energy laboratory managed by The University of Chicago Hybrid System Workshop, Koç University, May 2008

Team

Mihai Anitescu

- Alessandro Tasora
 - University of Parma,
 - Author of ChronoEngine
- Dan Negrut,
 - University of Wisconsin
 - Former ADAMS developer

Nonsmooth contact dynamics—what is it?

Differential Variational Inequalities— why do it?

Contact Dynamics.

- Rigid-Bodies: Differential Operator is ODE.
- Deformable Bodies: Differential Operator is PDE.
- Granular Flow, Masonry Stability, Rock Dynamics...
- Finance: Option Pricing-- American Options. PDEbased.
- Dynamics of multicristalline materials: evolution of the boundary between phases.
- Porous Media Flow.
- See Luo, Pang et al, and Kinderlehrer and Stampacchia Monographs..

Or, just for fun Physics-based VR

Note: real-time simulation

Implication: Speed and Stability more weight than of accuracy.

This "fun" is serious business in the US,

One of the main drivers of new architectures (GPU, Ageia); huge user community

Question 1: Should we do smoothing? $\dot{x} = f(t, x(t), u(t));$ $u \ge 0 \perp F(t, x(t), u(t)) \ge 0$ Recall, DVI (for C=R+) $\dot{x} = f(t, x(t), u(t));$ Smoothing $u_i F_i(t, x(t), u(t)) = \varepsilon, \quad i = 1, 2, \dots n_u$ $u_i^n F_i(t^{n-1}, x^{n-1}, u^{n-1}) = \varepsilon, \quad i = 1, 2, \dots n_u$ Followed by forward Euler. $x^{n+1} = x^n + hf(t^n, x^n, u^n);$ Easy to implement!! $x^{n+1} = x^n + hf(t^{n+1}, x^{n+1}, u^{n+1});$ Compare with the complexity of time-stepping $u^{n+1} \ge 0 \perp F(t^{n+1}, x^{n+1}, u^{n+1}) \ge 0$ But does it give good results?

Applying ADAMS to granular flow*

- ADAMS is the workhorse of engineering dynamics.
- ADAMS/View Procedure for simulating.
- Spheres: diameter of 60 mm and a weight of 0.882 kg.
- Forces:smoothing with stiffness of 1E5, force exponent of 2.2, damping coefficient of 10.0, and a penetration depth of 0.1

ADAMS versus ChronoEngine *

* From Madsen et al.

Table 1: Number of rigid bodies v. CPU time in ADAMS					
Number of Spheres	Max Number of Mutual Contacts [-]	CPU time (seconds)			
1	1	0.41			
2	3	3.3			
4	14	7.75			
8	44	25.36			
16	152	102.78			
32	560	644.4			

The following graph shows the nonlinear increase in the CPU time as the number of colliding bodies increases.

Number of Spheres	Max Number of Mutual	CPU time (seconds)
	Contacts [-]	
1	1	0.70
2	3	0.73
4	14	0.73
8	44	0.76
16	152	0.82
32	560	1.32
64	2144	2.65
128	8384	6.17
256	33152	15.30

Table 2: Number of rigid bodies v. CPU time in ChronoEngine

Conclusion 1: Often, time stepping is more promising,

Nonsmooth contact dynamics

Differential problem with equilibrium constraints – DPEC.

$$M \frac{dv}{dt} = \sum_{j=1,2,..,p} \left(c_n^{(j)} n^{(j)} + \beta_1^{(j)} t_1^{(j)} + \beta_2^{(j)} t_2^{(j)} \right) + f_c(q,v) + k(t,q,v)$$

$$\frac{dq}{dt} = v$$

$$c_n^{(j)} \ge 0 \perp \Phi^{(j)}(q) \ge 0, \quad j = 1,2,...,p$$

$$\left(\beta_1^{(j)}, \beta_2^{(j)} \right) = \operatorname{argmin}_{\mu^{(j)} c_n^{(j)} \ge \sqrt{\left(\beta_1^{(j)} + \beta_2^{(j)}\right)^2}} \left[\left(v^T t_1^{(j)} \right) \beta_1 + \left(v^T t_2^{(j)} \right) \beta_2 \right]$$
Friction Model

Where is the switching?

- When bodies enter contact (collision, plastic in the previous formulation)
- Stick-Slip transition.

Options and challenges for methods with no smoothing

- Piecewise DAE (Haug, 86)
 - Plus : Uses well understood DAE technology
 - Minus: The density of switches, switching consistency, and Painleve are problems.
- Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang & Trinkle, 1995)
 - Plus: No consistency problem.
 - Minus: Density of switches and Painleve.
- Velocity-impulse time-stepping. (Moreau, 196*, 198*, 199*, Stewart and Trinkle, 1996, Anitescu & Potra, 1997)
 - Plus: No consistency, or Painleve. Some have fixed time stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06).
 - Minus: Nonzero restitution coefficient is tough—but its value is disputable in any case

Conic Complementarity IS NATURAL in Coulomb Models.

Coulomb model.

$$\begin{pmatrix} \beta_{1}^{(j)}, \beta_{2}^{(j)} \end{pmatrix} = \operatorname{argmin}_{\mu^{(j)}c_{n}^{(j)} \ge \sqrt{\left(\beta_{1}^{(j)} + \beta_{2}^{(j)}\right)^{2}}} \left[\left(v^{T}t_{1}^{(j)}\right)\beta_{1} + \left(v^{T}t_{2}^{(j)}\right)\beta_{2} \right]$$

$$K = \left\{ (x, y, z) \middle| \mu^{(j)}z \ge \sqrt{y^{2} + x^{2}} \right\} \quad K^{*} = \left\{ (x, y, z) \middle| z \ge \mu^{(j)}\sqrt{y^{2} + x^{2}} \right\}$$

$$\begin{pmatrix} c_{n}^{(j)} \\ \beta_{1}^{(j)} \\ \beta_{2}^{(j)} \end{pmatrix} \in K \quad \bot \quad \begin{pmatrix} \mu^{(j)}\sqrt{\left(v^{T}t_{1}^{(j)}\right)^{2} + \left(v^{T}t_{2}^{(j)}\right)^{2}} \\ v^{T}t_{1}^{(j)} \\ v^{T}t_{2}^{(j)} \end{pmatrix} \in K^{*}$$

Most previous approaches discretize friction cone to use LCP...
 Question 2: Can we still get convergence but not do that?

Time stepping scheme -- original

 A measure differential inclusion solution can be obtained by time-stepping (Stewart, 1998, Anitescu 2006)

$$\begin{split} M(\overline{\boldsymbol{v}}^{(l+1)} - \boldsymbol{v}^{l}) &= \sum_{i \in \mathcal{A}(q^{(l)}, \epsilon)} \left(\overline{\gamma_{u}^{i}} \boldsymbol{D}_{n}^{i} + \overline{\gamma_{u}^{i}} \boldsymbol{D}_{u}^{i} + \overline{\gamma_{v}^{i}} \boldsymbol{D}_{v}^{i} \right) + \\ &+ \sum_{i \in \mathcal{G}_{\mathcal{B}}} \left(\overline{\gamma_{v}^{i}} \nabla \Psi^{i} \right) + h \boldsymbol{f}_{t}(t^{(l)}, \boldsymbol{q}^{(l)}, \boldsymbol{v}^{(l)}) & \quad \text{Forces} \end{split}$$

Stabil

te

Pause: Constraint Stabilization

Compared to original scheme

 $\nabla \Phi(q^{(l)})^T v^{(l+1)} \ge 0 \Longrightarrow \Phi^{(j)}(q^{(l)}) + \gamma h_l \nabla \Phi(q^{(l)})^T v^{(l+1)} \ge 0.$ $\nabla \Theta(q^{(l)})^T v^{(l+1)} = 0 \Longrightarrow \Theta^{(j)}(q^{(l)}) + \gamma h_l \nabla \Theta(q^{(l)})^T v^{(l+1)} = 0.$

- Allows fixed time steps for plastic collisions.
- How do we know it is achieved? Infeasibility is one order better than accuracy (O(h^2))

Time Stepping -- Convex Relaxation

A modification (relaxation, to get convex QP with conic constraints):

$$\begin{split} M(\boldsymbol{v}^{(l+1)} - \boldsymbol{v}^{l}) &= \sum_{i \in \mathcal{A}(q^{(l)}, \epsilon)} \left(\gamma_{n}^{i} \boldsymbol{D}_{n}^{i} + \gamma_{u}^{i} \boldsymbol{D}_{u}^{i} + \gamma_{v}^{i} \boldsymbol{D}_{v}^{i} \right) + \\ &+ \sum_{i \in \mathcal{G}_{\mathcal{B}}} \left(\gamma_{b}^{i} \nabla \Psi^{i} \right) + h \boldsymbol{f}_{t}(t^{(l)}, \boldsymbol{q}^{(l)}, \boldsymbol{v}^{(l)}) \\ &+ \sum_{i \in \mathcal{G}_{\mathcal{B}}} \left(\gamma_{b}^{i} \nabla \Psi^{i} \right) + h \boldsymbol{f}_{t}(t^{(l)}, \boldsymbol{q}^{(l)}, \boldsymbol{v}^{(l)}) \\ &= \frac{1}{h} \Psi^{i}(\boldsymbol{q}^{(l)}) + \nabla \Psi^{i^{T}} \boldsymbol{v}^{(l+1)} + \frac{\partial \Psi^{i}}{\partial t}, \quad i \in \mathcal{G}_{\mathcal{B}} \\ &= \frac{1}{h} \Phi^{i}(\boldsymbol{q}^{(l)}) + \nabla \Phi^{i^{T}} \boldsymbol{v}^{(l+1)} + \frac{\partial \Psi^{i}}{\partial t}, \quad i \in \mathcal{G}_{\mathcal{B}} \\ &= \int_{n}^{1} \Phi^{i}(\boldsymbol{q}^{(l)}) + \nabla \Phi^{i^{T}} \boldsymbol{v}^{(l+1)} \left[-\mu^{i} \sqrt{(\boldsymbol{D}_{u}^{i,T} \boldsymbol{v})^{2} + (\boldsymbol{D}_{v}^{i,T} \boldsymbol{v})^{2}} \right] \\ &= \int_{n}^{1} \Phi^{i}(\boldsymbol{q}^{(l)}) + \nabla \Phi^{i^{T}} \boldsymbol{v}^{(l+1)} \left[-\mu^{i} \sqrt{(\boldsymbol{D}_{u}^{i,T} \boldsymbol{v})^{2} + (\boldsymbol{D}_{v}^{i,T} \boldsymbol{v})^{2}} \right] \\ &= \int_{n}^{1} \gamma_{n}^{i} \geq 0, \; i \in \mathcal{A}(\boldsymbol{q}^{(l)}, \epsilon) \\ &= \left[v^{T} (\gamma_{u} \boldsymbol{D}_{u}^{i} + \gamma_{v} \boldsymbol{D}_{v}^{i}) \right] \\ \boldsymbol{q}^{(l+1)} = \boldsymbol{q}^{(l)} + h \boldsymbol{v}^{(l+1)}, \end{split}$$

[see M.Anitescu, "Optimization Based Simulation of Nonsmooth Rigid Body Dynamics"]

Pause: what does convergence mean here?

We must now assign a meaning to

$$M\frac{dv}{dt} - f_c(q, v) - k(t, q, v) \in FC(q).$$

Definition If ν is a measure and $K(\cdot)$ is a convex-set valued mapping, we say that v satisfies the differential inclusions

$$\frac{dv}{dt} \in K(t)$$

if, for all continuous $\phi \ge 0$ with compact support, not identically 0, we have that

$$\frac{\int \phi(t)\nu(dt)}{\int \phi(t)dt} \in \bigcup_{\tau:\phi(\tau)\neq 0} K(\tau).$$

Pause(2) : What does convergence mean here?

- H1 The functions $n^{(j)}(q), t_1^{(j)}(q), t_2^{(j)}(q)$ are smooth and globally Lipschitz, and they are bounded in the 2-norm.
- H2 The mass matrix M is positive definite.
- H3 The external force increases at most linearly with the velocity and position.
- H4 The uniform pointed friction cone assumption holds.

Then there exists a subsequence $h_k \to 0$ where

- $q^{h_k}(\cdot) \to q(\cdot)$ uniformly.
- $v^{h_k}(\cdot) \rightarrow v(\cdot)$ pointwise a.e.
- dv^{h_k}(·) → dv(·) weak * as Borel measures. in [0,T], and every such subsequence converges to a solution (q(·), v(·)) of MDI.

What is physical meaning of the relaxation?

Behavior

Further insight.

The key is the combination between relaxation and constraint stabilization.

$$0 \le \frac{1}{h} \Phi^{(j)} \left(q^{(l)} \right) + \nabla_q \Phi^{(j)} \left(q^{(l)} \right) v^{(l+1)} - \mu^{(j)} \sqrt{\left(D_u^{l,t} v \right)^2 + \left(D_v^{l,t} v \right)^2}$$

If the time step is smaller than the variation in velocity then the gap function settles at

$$0 \approx \frac{1}{h} \Phi^{(j)} \left(q^{(l)} \right) - \mu^{(j)} \sqrt{\left(D_u^{l,t} v \right)^2 + \left(D_v^{l,t} v \right)^2}$$

So the solution is the same as the original scheme for a slightly perturbed gap function.....

Cone complementarity*

* <u>Anitescu and Tasora "An iterative approach for cone</u> <u>complementarity problems for nonsmooth dynamics".</u> <u>Preprint ANL/MCS-P1413-0507</u>

Aiming at a more compact formulation:

$$\begin{aligned} \boldsymbol{b}_{\mathcal{A}} &= \left\{ \frac{1}{h} \Phi^{i_{1}}, 0, 0, \frac{1}{h} \Phi^{i_{2}}, 0, 0, \dots, \frac{1}{h} \Phi^{i_{n_{\mathcal{A}}}}, 0, 0 \right\} \\ \boldsymbol{\gamma}_{\mathcal{A}} &= \left\{ \gamma_{n}^{i_{1}}, \gamma_{u}^{i_{1}}, \gamma_{v}^{i_{1}}, \gamma_{n}^{i_{2}}, \gamma_{u}^{i_{2}}, \gamma_{v}^{i_{2}}, \dots, \gamma_{n}^{i_{n_{\mathcal{A}}}}, \gamma_{u}^{i_{n_{\mathcal{A}}}}, \gamma_{v}^{i_{n_{\mathcal{A}}}} \right\} \\ \boldsymbol{b}_{\mathcal{B}} &= \left\{ \frac{1}{h} \Psi^{1} + \frac{\partial \Psi^{1}}{\partial t}, \frac{1}{h} \Psi^{2} + \frac{\partial \Psi^{2}}{\partial t}, \dots, \frac{1}{h} \Psi^{n_{\mathcal{B}}} + \frac{\partial \Psi^{n_{\mathcal{B}}}}{\partial t} \right\} \\ \boldsymbol{\gamma}_{\mathcal{B}} &= \left\{ \gamma_{b}^{1}, \gamma_{b}^{2}, \dots, \gamma_{b}^{n_{\mathcal{B}}} \right\} \\ D_{\mathcal{A}} &= \left[D^{i_{1}} |D^{i_{2}}| \dots |D^{i_{n_{\mathcal{A}}}} \right], \quad i \in \mathcal{A}(\boldsymbol{q}^{l}, \epsilon) \quad D^{i} = \left[\boldsymbol{D}_{n}^{i} |\boldsymbol{D}_{u}^{i} | \boldsymbol{D}_{v}^{i} \right] \\ D_{\mathcal{B}} &= \left[\nabla \Psi^{i_{1}} | \nabla \Psi^{i_{2}} | \dots | \nabla \Psi^{i_{n_{\mathcal{B}}}} \right], \quad i \in \mathcal{G}_{\mathcal{B}} \\ \boldsymbol{b}_{\mathcal{E}} \in \boldsymbol{\gamma}_{\mathcal{E}} \in \boldsymbol{\gamma}_{\mathcal{E}} \end{aligned}$$

$$egin{aligned} m{b}_{\mathcal{E}} \in \mathbb{R}^{n_{\mathcal{E}}} &= \{m{b}_{\mathcal{A}},m{b}_{\mathcal{B}}\}\ m{\gamma}_{\mathcal{E}} \in \mathbb{R}^{n_{\mathcal{E}}} &= \{m{\gamma}_{\mathcal{A}},m{\gamma}_{\mathcal{B}}\}\ D_{\mathcal{E}} &= [D_{\mathcal{A}}|D_{\mathcal{B}}] \end{aligned}$$

Cone complementarity

Also define:

$$\begin{split} \tilde{\boldsymbol{k}}^{(l)} &= M \boldsymbol{v}^{(l)} + h \boldsymbol{f}_t(t^{(l)}, \boldsymbol{q}^{(l)}, \boldsymbol{v}^{(l)}) \\ N &= D_{\mathcal{E}}^T M^{-1} D_{\mathcal{E}} \\ \boldsymbol{r} &= D_{\mathcal{E}}^T M^{-1} \tilde{\boldsymbol{k}} + \boldsymbol{b}_{\mathcal{E}} \end{split}$$

Then:

$$M(v^{(l+1)} - v^{l}) = \sum_{i \in \mathcal{A}(q^{(l)}, v)} (\gamma_{n}^{i} D_{n}^{i} + \gamma_{u}^{i} D_{u}^{i} + \gamma_{v}^{i} D_{v}^{i}) + \sum_{i \in \mathcal{G}_{\theta}} (\gamma_{n}^{i} \nabla v^{i}) + hf_{t}(t^{(l)}, q^{(l)}, v^{(l)}) + \sum_{i \in \mathcal{G}_{\theta}} (\gamma_{i}^{i} \nabla v^{i}) + hf_{t}(t^{(l)}, q^{(l)}, v^{(l)}) + \sum_{i \in \mathcal{G}_{\theta}} (\gamma_{i}^{i} + \nabla v^{i^{T}} v^{(l+1)}) + \frac{\partial \Psi^{i}}{\partial t}, i \in \mathcal{G}_{\theta} = 0 \leq \frac{1}{h} \Phi^{i}(q^{(l)}) + \nabla \Phi^{i^{T}} v^{(l+1)} + \frac{\partial \Psi^{i}}{\partial t}, i \in \mathcal{G}_{\theta} = 0 \leq \frac{1}{h} \Phi^{i}(q^{(l)}, v^{(l)}) + \nabla \Phi^{i^{T}} v^{(l+1)} + \frac{\partial \Psi^{i}}{\partial t}, i \in \mathcal{G}_{\theta} = 0 \leq \frac{1}{h} \Phi^{i}(q^{(l)}, v^{(l)}) + \nabla \Phi^{i^{T}} v^{(l+1)} + \frac{\partial \Psi^{i}}{\partial t}, i \in \mathcal{A}(q^{(l)}, e) = \lim_{i \neq j \in \mathbb{Z}} (\gamma_{i}^{i} \nabla v^{i} + \gamma_{v} D_{v}^{i})]$$

$$(\gamma_{u}^{i}, \gamma_{v}^{i}) = \operatorname{argmin}_{\mu_{j} \gamma_{h}^{i} \geq \sqrt{(\gamma_{v}^{i})^{2} + (\gamma_{v}^{i})^{2}}} i \in \mathcal{A}(q^{(l)}, e) = [v^{T}(\gamma_{u} D_{u}^{i} + \gamma_{v} D_{v}^{i})]$$

$$(N \gamma_{\mathcal{E}} + r) \in -\Upsilon^{\circ} \quad \bot \quad \gamma_{\mathcal{E}} \in \Upsilon$$
becomes.

Cone complementarity—Decomposable cones.

Here we introduced the convex cone

$$\begin{split} \mathcal{F}\mathcal{C}^{i} & \text{ In R^{A3} is } i\text{-th friction cone} \\ \mathcal{F}\mathcal{C}^{i} & \text{ is R} \\ \mathcal{B}\mathcal{C}^{i} & \text{ is R} \\ \end{split}$$

$$\text{..and its polar cone:} \\ \mathcal{\Upsilon}^{\circ} = \left(\bigoplus_{i \in \mathcal{A}(q^{l}, \epsilon)} \mathcal{F}\mathcal{C}^{i\circ}\right) \bigoplus \left(\bigoplus_{i \in \mathcal{G}_{\mathcal{B}}} \mathcal{B}\mathcal{C}^{i\circ}\right) \\ \bigoplus \left(\sum_{i \in \mathcal{G}_{\mathcal{B}}} \mathcal{B}\mathcal{C}^{i\circ}\right) \\ \end{split}$$

General: The iterative method

Question 3: How to efficiently solve the Cone Complementarity Problem for large-scale systems?

$$(N\boldsymbol{\gamma}_{\mathcal{E}} + \boldsymbol{r}) \in -\Upsilon^{\circ} \quad \perp \quad \boldsymbol{\gamma}_{\mathcal{E}} \in \Upsilon$$

Our method: use a fixed-point iteration

$$\boldsymbol{\gamma}^{r+1} = \lambda \Pi_{\Upsilon} \left(\boldsymbol{\gamma}^{r} - \omega B^{r} \left(N \boldsymbol{\gamma}^{r} + \boldsymbol{r} + K^{r} \left(\boldsymbol{\gamma}^{r+1} - \boldsymbol{\gamma}^{r} \right) \right) \right) + (1 - \lambda) \boldsymbol{\gamma}^{r}$$

with matrices:

 ..and a non-extensive orthogonal projection operator onto feasible set

$$B^{r} = \begin{bmatrix} \eta_{1}I_{n_{1}} & 0 & \cdots & 0 \\ 0 & \eta_{2}I_{n_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \eta_{n_{k}}I_{n_{n_{k}}} \end{bmatrix} \qquad N^{T} = \begin{bmatrix} 0 & K_{12} & K_{13} & \cdots & K_{1n_{k}} \\ 0 & 0 & K_{23} & \cdots & K_{2n_{k}} \\ 0 & 0 & 0 & \cdots & K_{3n_{k}} \\ \vdots & \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Pi_{\Upsilon}: \mathbb{R}^{n_{\mathcal{E}}} \to \mathbb{R}^{n_{\mathcal{E}}}$$

General: The iterative method

ASSUMPTIONS

- A1 The matrix N of the problem (CCP) is symmetric and positive semi-definite.
- A2 There exists a positive number, $\alpha > 0$ such that, at any iteration r, $r = 0, 1, 2, \ldots$, we have that $B^r \succ \alpha I$
- A3 There exists a positive number, $\beta > 0$ such that, at any iteration r, $r = 0, 1, 2, \ldots$, we have that $(x^{r+1} x^r)^T \left((\lambda \omega B^r)^{-1} + K^r \frac{N}{2} \right) (x^{r+1} x^r) \ge \beta \|x^{r+1} x^r\|^2$.

Under the above assumptions, we can prove THEOREMS about convergence.

The method produces a bounded sequence with an unique accumulation point.

Always satisfied in

multibody systems

Essentially free

choice, we use identity blocks

Use ω overrelaxation

General: Theory

$$(OC) \quad \min_{s.t.} \quad f(x) = \frac{1}{2} x^T N x + r^T x$$
$$i = 1, 2, \dots, n_k.$$

Theorem Assume that $x^0 \in \Upsilon$ and that the sequences of matrices B^r and K^r are bounded. Then we have that

$$f(x^{r+1}) - f(x^r) \le -\beta \|x^{r+1} - x^r\|^2$$

for any iteration index r, and any accumulation point of the sequence x^r is a solution of (CCP).

Corollary Assume that the friction cone of the configuration is pointed The algorithm produces a bounded sequence, and any **accumulation point results in the same velocity solution**

Answer 2: Simple, but first result of this nature for conic constraints—and HIGHLY EFFICIENT

The projection operator is easy and separable

 γ_P

 γ_u

 γ_n

 D_u

The algorithm

Development of an efficient algorithm for fixed point iteration:

- avoid temporary data, exploit sparsity. Never compute explicitly the N matrix!
- *implemented in incremental form. Compute only deltas of multipliers.*
- O(n) space requirements and supports premature termination
- for real-time purposes: O(n) time

The algorithm is specialized, for minimum memory use!

(1)	// Pre-compute some data for friction constraints
(2)	for $i := 1$ to $n_{\mathcal{A}}$
(3)	$\boldsymbol{s}_{a}^{i}=M^{-1}D^{i}$
(4)	$g_a^{\tilde{i}} = D^{i,T} \boldsymbol{s}_a^i$
(5)	$\eta_a^i = \frac{3}{\text{Trace}(g_a^i)}$
(6)	// Pre-compute some data for bilateral constraints
(7)	for $i := 1$ to $n_{\mathcal{B}}$
(8)	$s_h^i = M^{-1} \nabla \Psi^i$
(9)	$g_b^i = \boldsymbol{\nabla} \boldsymbol{\Psi}^{i,T} s_b^i$
(10)	$\eta_b^i = rac{1}{g_b^i}$
(11)	0
(12)	// Initialize impulses
(13)	if warm start with initial guess $\gamma_{\mathcal{E}}^*$
(14)	$oldsymbol{\gamma}^0_{\mathcal{E}}=oldsymbol{\gamma}^*_{\mathcal{E}}$
(15)	else
(16)	$oldsymbol{\gamma}^0_{\mathcal{E}}=0$
(17)	
(18)	// Initialize speeds
(19)	$\mathbf{v} = \sum_{i=1}^{n_{\mathcal{A}}} \mathbf{s}_{a}^{i} \mathbf{\gamma}_{a}^{i,0} + \sum_{i=1}^{n_{\mathcal{B}}} s_{b}^{i} \gamma_{b}^{i,0} + M^{-1} \mathbf{\tilde{k}}$

(21)	// Main iteration loop
(22)	for $r := 0$ to r_{max}
(23)	// Loop on frictional constraints
(24)	for $i := 1$ to $n_{\mathcal{A}}$
(25)	$\boldsymbol{\delta}_{a}^{i,r} = \left(\boldsymbol{\gamma}_{a}^{i,r} - \omega \eta_{a}^{i} \left(D^{i,T} \boldsymbol{v}^{r} + \boldsymbol{b}_{a}^{i} \right) \right);$
(26)	$\boldsymbol{\gamma}_{a}^{i,r+1} = \lambda \Pi_{\Upsilon} \left(\boldsymbol{\delta}_{a}^{i,r} \right) + (1-\lambda) \boldsymbol{\gamma}_{a}^{i,r} ;$
(27)	$\Delta oldsymbol{\gamma}_a^{i,r+1} = oldsymbol{\gamma}_a^{i,r+1} - oldsymbol{\gamma}_a^{i,r}$;
(28)	$oldsymbol{v}:=oldsymbol{v}+oldsymbol{s}_a^{i^T}\Deltaoldsymbol{\gamma}_a^{i,r+1}.$
(29)	// Loop on bilateral constraints
(30)	for $i := 1$ to $n_{\mathcal{B}}$
(31)	$\delta_b^{i,r} = \left(\gamma_b^{i,r} - \omega \eta_b^i \left(\nabla \boldsymbol{\Psi}^{i,T} \boldsymbol{v}^r + b_b^i\right)\right);$
(32)	$\gamma_b^{i,r+1} = \lambda \Pi_{\Upsilon} \left(\delta_b^{i,r} \right) + (1-\lambda) \gamma_b^{i,r} ;$
(33)	$\Delta \gamma_b^{i,r+1} = \gamma_b^{i,r+1} - \gamma_b^{i,r} ;$
(34)	$oldsymbol{v} := oldsymbol{v} + s_b^{i^T} \Delta \gamma_b^{i,r+1}.$
(35)	-
(36)	$\operatorname{return} \boldsymbol{\gamma}_{\mathcal{E}}, \boldsymbol{v}$

Simulating the PBR nuclear reactor

- The PBR nuclear reactor:
- -Fourth generation design
- -Inherently safe, by Doppler broadening of fission cross section
- -Helium cooled > 1000 °C
- -Can crack water (mass production of hydrogen)
- -Continuous cycling of 360'000 graphite spheres in a pebble bed

Simulating the PBR nuclear reactor

- Problem of bidisperse granular flow with dense packing.
- Previous attempts: DEM methods on supercomputers at Sandia Labs regularization)
- 40 seconds of simulation for 440,000 pebbles needs 1 week on 64 processors dedicated cluster (Rycroft et al.)

model a frictionless wall, $\mu_w = 0.0$. For the current simulations we set $k_t = \frac{2}{7}k_n$ and choose $k_n = 2 \times 10^5 \text{ gm/d}$. While this is significantly less than would be realistic for graphite pebbles, where we expect $k_n > 10^{10} \text{ gm/d}$, such a spring constant would be prohibitively computationally expensive, as the time step scales as $\delta t \propto k_n^{-1/2}$ for collisions to be modeled effectively. Previous simulations have shown that

Simulating the PBR nuc

- 160'000 Uranium-Graphite spheres, 600'000 contacts on average
- Two millions of primal variables, six millions of dual variables
- 1 day on a Windows station...
- But we are limited by the 2GB user mode limit, 64 bit port in progress—but linear scaling..
- We estimate 3CPU days, compare with 450 CPU days for an incomplete solution in 2006 !!!
- Answer 3: Our approach is efficient for large scale!!

In addition, we can approach efficiently approach many engineering problems (see website for papers)

Example: size-segregation in shaker, with thousands of steel spheres

Note: solution beyond reach of Lemke-type LCP solvers!

Tests

Feasibility accuracy increases with number of iterations:

Speed violation in constraints

Position error in constraints (penetration)

(with example of 300 spheres in shaker)

Tests: Scalability

CPU effort per contact, since our contacts are the problem variables.Penetration error was uniformly no larger than 0.2% of diameter.

Number of contacts in time, 300 spheres

CPU time per step for 300-1500 spheres

New large scale computational opportunity Graphical Processing Unit *

IBM BlueGene/L—GPU comparison

- Entry model: 1024 dual core nodes
- 5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU)
- Dedicated OS
- Dedicated power management solution
- Require dedicated IT support
- Price (2007): \$1.4 million
- Same GPU power (2008): 7K!!!
- Of course, GPU much harder to work with at the moment, and unsuitable for general purpose computing.

Brick Wall Example *

Times reported are in seconds for one second long simulation

GPU: NVIDIA GeForce 8800 GTX

*Alessandro Tasora, Dan Negrut and Mihai Anitescu. "Large-Scale Parallel Multibody Dynamics with Frictional Contact on the Graphical Processing Unit ". Preprint ANL/MCS-P1494-0508

Bricks	Sequential Version	GPU Co-processing
		Version
1000	43	6
2000	87	10
8000	319	42

Future work

- N non symmetric, but positive semidefinite.
- Parallelizing the algorithms: block Jacobi with Gauss Seidel blocks.
- Asynchronous version of the algorithm, particularly for use with GPU.
- Including a good collision model— here we are at a loss with rigid body theory – may need some measure of deformability.
- Compare with experimental data.

Conclusions

- We have defined a new algorithm for complementarity problems with conic constraints.
- We have shown that it can solve very large problems in granular flow far faster than DEM.
- It is the first iterative algorithm that provably converges for nonsmooth rigid body dynamics.
- Its scalability is decent.
- We have created a multithreaded implementation and GPU port increases computational speed by a factor of 7-8.

References (preprints are at authors' web site)

- M Anitescu, A. Tasora. "An iterative approach for cone complementarity problems for nonsmooth dynamics". Preprint ANL/MCS-P1413-0507, May 2007.
- M. Anitescu. Optimization-based simulation of nonsmooth dynamics. Mathematical Programming, series A, 105, pp 113–143, 2006.

Madsen, J., Pechdimaljian, N., and Negrut, D., 2007. Penalty versus complementarity-based frictional contact of rigid bodies: A CPU time comparison. Preprint. TR-2007-05, Simulation-Based Engineering Lab, University of Wisconsin, Madison.

