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Nonsmooth contact dynamics—what is it?

M Differential problem with variational inequality constraints —

DVI Newton Equations | | Non-Penetration Constraints
wd cn 4 gD 1 BT £ (0v) +K(t,G,V)
dt j=12,..p
‘;_? = T(q)v = Generalized Velocities
c!) > 0 1L dW(q)=0, j=12,..p

[ OB - argminﬂ<nc,gan(ﬂl<n+ﬂ2mf (VD) B+ (VED |, | ]

\_

H Truly, a Differential Problem with Equilibrium Constraints
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Differential Variational Inequalities— why do
it?

W Contact Dynamics.
— Rigid-Bodies: Differential Operator is ODE.
— Deformable Bodies: Differential Operator is PDE.
— Granular Flow, Masonry Stability, Rock Dynamics...

® Finance: Option Pricing-- American Options. PDE-
based.

B Dynamics of multicristalline materials: evolution of the
boundary between phases.

M Porous Media Flow.
M See Luo, Pang et al, and Kinderlehrer and Stampacchia

Monographs..
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Or, just for fun .... Physics-based VR
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2 b - » O ‘ \ . . .
—ih - P Note: real-time simulation

f

B Implication:
Speed and
Stability more
weight than of
accuracy.

B This “fun” is serious business in the US,
B One of the main drivers of new architectures (GPU, Ageia); huge
user community
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Question 1: Should we do smoothing?

x=f(t,x(t),u(t));
B Recall, DVI (for C=R+) — T Uu>0LF (t, X(t),u(t)) >0

B Smoothing =——

U F (XU ) =g, =120

B Followed by forward Euler=—>
y X" = x" + hf (t“,x”,u“);

Easy to implement!!

B Compare with the complexity X" = X" + hf (t”*l, X" U””);
of time-stepping =————————

1 1 1 1
B But does it give good results? u™>01F (tm XU )2 0

A
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Applying ADAMS to granular flow*

B ADAMS is the workhorse of
engineering dynamics.

B ADAMS/View Procedure for
simulating.

B Spheres: diameter of 60 mm
and a weight of 0.882 kg.

B Forces:smoothing with
stiffness of 1ES5, force
exponent of 2.2, damping
coefficient of 10.0, and a
penetration depth of 0.1

'

Argonne, .

* From Madsen et al.

2l

s L]

balls_dropping



http://sbel.wisc.edu/documents/Microsoft Word - Ball Contact CPU Comparison Tech ReportFINAL.pdf

ADAMS versus ChronoEngine *

* From Madsen et al.

Table 2: Number of rigid bodies v. CPLU time in ChronoEngine

Number of Spheres Max Noumber of Mutual | CPU time (seconds)
Tahble 1: Number of riid bodbes v. CPU time in ADAMS Contacts [-]
Number of Spheres Max Number of Mutual | CPU time (seconds) 1 1 0,70
Contacts [-] o 3 0.73
1 1 (41 - =
3 3 33 4 14 0.73
[ 14 715 s a4 076
5 33 3536 16 152 0.582
I 152 102.78 32 3ol 1.32
32 560 444 64 2144 2.65
The following graph shows the nonlinear increase in the CPU time as the number of 128 8384 6.17
L‘G]]]idi]lg bodies increases, -2;;6 1]3 152 1 5 3{}
] CPU time v. Number of spheres in ChronoEngine ¥ =00563x+ 00448
CPU time v. Number of Spheres in ADAMS ¥ = 08385 - T 2607 + 16,154 B = 00782
A’ = 09985 18
TG v Eul Lbulallt
| | 16
300 1 ! "
| | " .
[ | | 12 /
Eum ! ! % 10 / [
g | | L |
a0 b —
10 i !
ol g— | | |
] 5 iix 15 o 25 up ¥ |

150 200 50
HNumber ol sphares []

Conclusion 1: Often, time stepping is more promising,
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http://sbel.wisc.edu/documents/Microsoft Word - Ball Contact CPU Comparison Tech ReportFINAL.pdf

Nonsmooth contact dynamics

® Differential problem with equilibrium constraints — DPEC.

M =S (0 O 1 O 4 £, () + k(L. G.V)
dt 1=12,...p

dq oy

dt

¢!V > 0 L oY) =0, j=12..p

[ BOp) = argminﬂ<nc,gnz\/(ﬂp>+ﬂ2m)2 (VD) B+ (VKD |, | ]

\_

A
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Where iIs the switching?

® When bodies enter contact (collision, plastic in the
previous formulation)

M Stick-Slip transition.

N
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Options and challenges for methods with no
smoothing

B Piecewise DAE (Haug, 86)
— Plus : Uses well understood DAE technology

— Minus: The density of switches, switching consistency, and
Painleve are problems.

B Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang &
Trinkle, 1995)

— Plus: No consistency problem.
— Minus: Density of switches and Painleve.

B Velocity-impulse time-stepping. (Moreau, 196*, 198*,199*, Stewart
and Trinkle, 1996, Anitescu & Potra, 1997)

— Plus: No consistency, or Painleve. Some have fixed time
stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06).

— Minus: Nonzero restitution coefficient is tough—~but its value is
disputable in any case

'
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Conic Complementarity IS NATURAL In
Coulomb Models.

B Coulomb model.
(J') (J) —
[ ) ] =argmin

jz (V) g+ (v B, |

u(j)crﬁj)z\/(ﬂf‘)+ﬁ§‘)

K:{(x,y,z)y(j)zzw/y2+x2} K*:{(x Y, Z (J)\/y + X }
. 2 12 )
(o)) uD (V) + (vt )
AV leK L vty e K’
IB(J) VTté”
\ J

B Most previous approaches discretize friction cone to use LCP...
B Question 2: Can we still get convergence but not do that?

A
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Time stepping scheme -- original

B A measure differential inclusion solution can be obtained by time-stepping
(Stewart, 1998, Anitescu 2006)

ME o)y = > (D, + DL+ 7D, +

ie A(qgV e) o
Speeds | eaction
p I Z . + hft(t(l),q(l),v(l)) impulses
1€0p
. 1 AK
- 0= —J* ( (l)) + VKDZTU(IJFU 4 — o . i€Gr
h ot
0< %Qﬂ(qm) + VO ) [
1]
i i . ' l) COMPLEMENTARITY!
(o) =avgmin, o 1€ AW
' (v.D;, +7.D))] (

A
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Pause: Constraint Stabilization

B Compared to original scheme

Ve(¢N Tt > 0 = &) (¢W) + 4h, VE(¢W)T oD > 0.

VO(¢ Ty = 0 = 0 (¢V) + yh, VO (¢! TvHD) = 0,

H Allows fixed time steps for plastic collisions.

® How do we know it is achieved? Infeasibility is one
order better than accuracy (O(h"2))

A
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Time Stepping -- Convex Relaxation

B A modification (relaxation, to get convex QP with conic constraints):

ﬂ_{( I+l 'UE) — Z (THDI —I_ l‘::!'D£ —I_ IT:D:-') +

(For small  and/or
i€A(qh.e)

small speeds, almost

1) g0 O
+ 2 (V) + ) no one-step
| eoe oy differences from the

— H1Ir=‘(q”}) F VT D T —— 1€ Coulomb theory)
0< %@*(q{”) + Ve pHD [—H‘ V(D )2 + (D} v)? J
l
0}

L 7,20, i€ Alg",¢) But In any case,

converges to same
MDI as unrelaxed
scheme.

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ]



http://www.springerlink.com/content/wm2jgp1732628247/

Pause: what does convergence mean here?

We must now assign a meaning to

v
M’% — felq,v) — k(t,q,v) € FC(q).

Definition If  is a measure and K (-) is a convex-set valued mapping, we
say that v satisfies the differential inclusions

dv

K
dt € K(t)

if, for all continuous ¢ > 0 with compact support, not identically 0, we
have that

JOOUd) o\ g

f@ t)dt

A
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Pause(2) : What does convergence mean
here?

H1 The functions n)(q), 7 (¢), Y’ (¢) are smooth and globally
Lipschitz, and they are bounded in the 2-norm.
H2 The mass matrix M is positive definite.

H3 The external force increases at most linearly with the velocity and
position.

H4 The uniform pointed friction cone assumption holds.
Then there exists a subsequence hy — 0 where

o ¢"*(-) — ¢(-) uniformly.

e v (.) — v(-) pointwise a.e.

e dv" () — duv(-) weak * as Borel measures. in [0,T], and every such
subsequence converges to a solution (¢(-), v(-)) of MDI.

A
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What is physical meaning of the relaxation?

® Origin -
(

\ ) / \\ /ﬂn‘-tg(u)
‘ L Jr R HE“’ H-:«;w“c;”ﬂg ﬁ_;ht\\ 4 )
———X \\/ \ =
e - h - \ /f
— e \--._H_ ______/

w10® LCP algorithen versus optirn zation based algorithnn
T T T T T

F method —#- LOP method
Optimnization method L —=— Qptimization method 1
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Further insight.

B The key Is the combination between relaxation and
constraint stabilization.

0< %(D(j) (q(l))+qu)(j) (q(l))v(|+1) —,u(j) (Dllj’tV)z +(D\|/’tV)

M If the time step Iis smaller than the variation in
velocity then the gap function settles at

1 : : 2 2
0~=—d(q"\= 4D (D"tv) +(D"tv
- (q) =1 (D)) +(D))
M So the solution Is the same as the original scheme

for a slightly perturbed gap function.....

A
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Cone complementarity*

* Anitescu and Tasora "An iterative approach for cone
complementarity problems for nonsmooth dynamics".
Preprint ANL/MCS-P1413-0507

B Aiming at a more compact formulation:

by = <I>’1 0,0, fIf'*"{U‘{J ..... fI)*"A 0,0
h h "
Ya = VA A A AR AR A A A
1 owl 1 ., ow? 1 Opns
by = —1Iil+——IJ"+ =
b h h ot h Ot

2
o
|

(ot
[m\m\ D], i€ Algle) D= [DiIDLDI]
|

vqﬂ,l‘vqﬁg‘ ‘vqji“B] , 1 E gB bE (- R’n&‘ = {bA-s bB}

- € R™ = {y4,75}

De = D 4|Dg]

i'l.l"l
'y
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http://www-unix.mcs.anl.gov/~anitescu/PUBLICATIONS/projtheo.pdf
http://www-unix.mcs.anl.gov/~anitescu/PUBLICATIONS/projtheo.pdf
http://www-unix.mcs.anl.gov/~anitescu/PUBLICATIONS/projtheo.pdf

Cone complementarity

B Also define:

B = Mo 4 nf,(t0, g, v ")

N=D.LM 1D
r=DLM "k + bg

B Then: M@t —o'y= Y (4iD} ++iD), ++iD%) -

icAlqll) <)

+ Z {"r‘ﬂ?"l"'} +hf:“{n1_qm‘vu}}
iEQn

1_. T i
e T L] LN (50§ [
f}_h\I:{q J4+ VI v + = ielp

0< l@f{qm}_‘_vqﬁfﬂuu} This is a CCP,
pran LTy CONE COMPLEMENTARITY
o PROBLEM

(k) =i e e A
[v" (1D, +7.D%)]

(Nye+7r)e =0T" L ~c€7
becomes..

A
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Cone complementarity—Decomposable
cones.

B Here we introduced the convex cone

fc?’ In R"3 is i-th friction cone

( @ IC*)@(@W) BC' =R

e A(qh.€) €GB

M _.and its polar cone:

(@ )o@

icA(q'.€) ielnr

CCP: (Nye+7r)e =T 1L ~,€X

A
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General: The iterative method

B Question 3: How to efficiently solve the Cone Complementarity Problem
for large-scale systems?

(Nye+r)e =T 1 ~.€7
B Our method: use a fixed-point iteration

[ ’77’—|—1 = My (,Y:r’ —wB" (j\/r,yr L+ KT (,Y’!’—Fl . ,Y?))) + (1 . )\) "‘/TJ

. . - [0 Ko K13 - K,
B with matrices: mln, 0 -4 0 e e
_ 00 Koy - Ko,
B _.and a non-extensive 0 nolp, -+ 0
orthogonal projection . ‘ oo o ‘
operator onto feasible set ‘
0 0 o g, | 00 0 0

My : R" — R

Aa
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General: The iterative method

BASSUMPTIONS

Al The matrix N of the problem (CCP) is symmetric and positive semi-
definite.

A2 There exists a positive number, o > 0 such that, at any iteration r, r
0.1.2,..., we have that B" = o/

A3 There exists a positive number, # > 0 such that, at any iteration », r
0.1.2...., we have that (2" Tt —a2")T (()wB"}_l + K" — %) (2"t —a2")

3

I\

G|t —ar

w= 1.5
m= 1.0

08 =i : =05 =----- -
1 1 =07 e

MUnder the above assumptions, we
can prove THEOREMS about convergence.

l : : : : : : :
nﬁ T.....J:......_..E.........:...._. ....?....._..4:..._.....;.........?..._.._
1 i : H . : i H
1

1aY]

BThe method produces a bounded SEQUENCE 02 [t
with an unique accumulation point. I s T s o s e v
10 20 K1l 40 50 60 70 20
iterations

N
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General: Theory

min  f(z) = 3" Nz +rTx

(0C) st. xz; €Y, i=1,2,...,n.

Theorem Assume that 2° € T and that the sequences of matrices B” and
K" are bounded. Then we have that

f@h) = fa") < =Bl — 2"

for any iteration index r, and any accumulation point of the sequence x" is a

solution of (CCP).

Corollary Assume that the friction cone of the configuration is pointed The
algorithm produces a bounded sequence, and any accumulation point results
in the same velocity solution

2

B Answer 2: Simple, but first result of this nature for conic
constraints—and HIGHLY EFFICIENT

Argonne, .



The projection operator Is easy and
separable

B For each frictional contact constraint;

n rr III
() |

11~,~:{

BFor each bilateral constraint, simply do nothing.
BThe complete operator:

vie A(gWV . €)

Yr < Hin Hz' = 7
1




The algorithm

mDevelopment of an efficient algorithm for fixed point iteration:

M . J -th variable data
4G f;

[ | 7] e=[E:.]
(- T si= [MJ[E ;. )7 i-th constraint data

av Ob Od O&

B avoid temporary data, exploit sparsity. Never compute explicitly the N matrix!

B implemented in incremental form. Compute only deltas of multipliers.
B O(n) space requirements and supports premature termination

M for real-time purposes: O(n) time

N
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The algorithm iIs specialized, for minimum
memory use!

(1) // Pre-compute some data for friction constraints (21) // Main iteration loop
(2) fori:=1tony (22) for 7 := 0 to rmax
(3) 3; =M-1D! (23) // Loop on frictional constraints
(4) g, = D"Tsl, (24) fori:=1tomny
(5) o = TracersD (25) 8, = ('y;" — wnl (JD“-'T'UT + b;));
(6) // Pre-compute some data for bilateral constraints (26) o 1 ATl (52'.:') T (1AL
(7) for i =1to ng , i1 i1 i,r
(8) “b = M-Ixggd [:27) A‘f ‘ra —Ya !
(9) gt = VT g (28) vi=v+ st Ayt
(10) T?E{ _ 1 b (29) // Loop on bﬂateml c'onstmints
1) b, (30) for i :=1 to np
31 55-'*' — ,,r_.i.-‘f' I} lI,i.T i bi :
(12) // Initialize impulses (31) b ( ‘b “hy (V vt ))
. . Gl s * 32) | 51: +(1— )%1:
(13) if warm start with initial guess vz ( 't T b
(14) e =: (33) AypTH f;’“ —
(15) else ( T AT+
34) vi=v+s, Ay,
(16) v¥¢ =0 .
35)
(17) (.
(18) // Initialize speeds _ ~ (36) return e, v
(19) =3 s+ 3 i 21

Aa

Argonne
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Simulating the PBR nuclear reactor
r O—0=n

B The PBR nuclear reactor: | — ==+t
-Fourth generation design |

/

-Inherently safe, by Doppler
broadening of fission cross
section R =

-Helium cooled > 1000 °C
-Can crack water (mass i - p
production | TEA T =
of hydrogen) # % )/

-Continuous cycling of 360’000 : , “

graphite spheres in a pebble X Porous bufer
bed 1)}~ procaroon

Y ™ U0, kemnel

A
A rggﬂhp E-ﬁ RATOEY
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Simulating the PBR nuclear reactor

® Problem of bidisperse granular
flow with dense packing.

M Previous attempts: DEM methods
on supercomputers at Sandia
Labs regularization)

M 40 seconds of simulation for
440,000 pebbles needs 1 week
on 64 processors dedicated
cluster (Rycroft et al.)

model a frictionless wall, z,=0.0. For the current simula-
tions we set lcg:%lc?1 and choose k,=2 X 10° gm/d. While
this is significantly less than would be realistic for graphite
pebbles, where we expect k,>10' gm/d, such a spring
constant would be prohibitively computationally expensive,
as the time step scales as 8ok, for collisions to be mod-
eled effectively. Previous simulations have shown that

A
Argonne
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http://upload.wikimedia.org/wikipedia/commons/f/f4/Graphitkugel_fuer_Hochtemperaturreaktor.JPG

Simulating the PBR nu

B 160’000 Uranium-Graphite
spheres, 600'000 contacts on
average

B Two millions of primal
variables, six millions of dual I
variables

B 1 day on a Windows station...

B But we are limited by the 2GB
user mode limit, 64 bit port in
progress—nbut linear scaling..

B \We estimate 3CPU days,
compare with 450 CPU days
for an incomplete solution in
2006 !

B Answer 3: Our approach is
efficient for large scale!!

Argonne |



In addition, we can approach efficiently
approach many engineering problems (see
website for papers)

'
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Examples

B Example: size-segregation in shaker, with thousands of steel
spheres

Note: solution beyond
reach of Lemke-type LCP
solvers!

Argonne ™=




Tests

M Feasibility accuracy increases with number of iterations:

0.003 I I I I I
0.3 : ' ) .
! I I | I ' - max iterations = 80
max 1terations = 80 3 : max iterations =40 —— -
025 foee BBEMONZA0 005 rions=20 ]
\ | max iferations = 10 - ; . max iterations =10 -
= & s " ! ! ! !
o~ ! ) . 5 i e e e e Ly
& 015 = 00015 = N i
0.1 0.001 : -
0.05 0.0005 s ST
0 iy i I Sk i 1 [ —
5 5
0 50 100 150 200 250 300 0 0 100 1 0 2000230 300
time steps Hme steps
Speed violation in constraints Position error in constraints (penetration)

(with example of 300 spheres in shaker)

A
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Tests: Scalability

BCPU effort per contact, since our contacts are the problem variables.
M Penetration error was uniformly no larger than 0.2% of diameter.

1400 I I 0.8

I I |
Potential contact points
1200 - oo . ,AQU,V,?,CQDt&Qt PQI,UIS, S 0.7

0.6
1000
0.5
04

0.3

Number of contacts
(@) (00]
S 8

0.2

N
S

average CPU time [s] per step

0.1 : ‘ : ‘ : ‘

0 T T T T M

0 2000 4000 6000 8000 10000 12000 14000
number of contacts

200

time steps

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres

A
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New large scale computational opportunity
Graphical Processing Unit *

Floating Point Operations per Second for the CPU and GPU

350 ~
G80 = GeForce 8800 GTX
300 - G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ultra
NV35 = GeForce FX 5950 Ultra
250 1 |NV30 = GeForce FX 5800
G70
v 200 +
o
O
-
L
O 150 -
100 ~
50 +

&
v

0 I T T T T

G70-512

Intel Core2 Duo 3.0 GHz

Ga0

G71

GPU

—— Intel CPU

-= NVIDIA GeForce

.

Jan-03  Jul-03 Feb-04 Aug-04 Mar-05 Sep-05 Apr-06

N
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*NVIDIA CUDA
Compute Unified
Device Architecture

Programming Guide



http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

IBM BlueGene/L—GPU
comparison

B Entry model: 1024 dual core nodes

W 5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU)
B Dedicated OS

B Dedicated power management solution

B Require dedicated IT support

B Price (2007): $1.4 million

B Same GPU power (2008): 7K!!!

B Of course, GPU much harder to work with at the moment, and unsuitable
for general purpose computing.

A

A rggn..[.l Eu RATORY



Brick Wall Example *

*Alessandro Tasora, Dan Negrut and
Mihai Anitescu. "Large-Scale Parallel
Multibody Dynamics with Frictional
B Times reported are in seconds for one second long simulation Contact on the Graphical Processing

B GPU: NVIDIA GeForce 8800 GTX Sl Preprnt ALHMESPLA0s

THE UNIVERSITY

Bricks Sequential Version GPU Co-processing
Version
1000 43 6
2000 87 10
8000 319 42

Arggln ne ==


http://www-unix.mcs.anl.gov/~anitescu/PUBLICATIONS/tasora-2008-jmultibody-gpu.pdf

Future work

B N non symmetric, but positive semidefinite.

M Parallelizing the algorithms: block Jacobi with Gauss
Seidel blocks.

B Asynchronous version of the algorithm, particularly for
use with GPU.

¥ Including a good collision model- here we are at a loss
with rigid body theory — may need some measure of
deformability.

B Compare with experimental data.

'

Argonne, .



Conclusions

B We have defined a new algorithm for complementarity
problems with conic constraints.

B \We have shown that it can solve very large problems
In granular flow far faster than DEM.

M |t Is the first iterative algorithm that provably converges
for nonsmooth rigid body dynamics.

M |ts scalability is decent.

B We have created a multithreaded implementation and
GPU port increases computational speed by a factor of
7-8.

'
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