KOÇ UNIVERSITY College of Arts and Sciences Department of Physics

Course: MATH503 Applied Mathematics Credits: 3 Semester: Fall 2003 Instructor: Professor Tekin Dereli

1. Midterm Exam: 10 November 2003, 14.00-15.15

Question: 1 (15 points) Given the vectors $\vec{r_1} = \vec{i} + a\vec{j} + \vec{k}$, $\vec{r_2} = b\vec{i} + a\vec{j} + b\vec{k}$, $\vec{r_3} = b\vec{i} - b\vec{k}$, determine all the values of a and b for which they are linearly dependent.

Question: 2 (20 points) Calculate the circumference of the cardioid $r = a(1 + \cos\theta)$. Sketch the graph of this curve.

Question: 3 (20 points) State Green's theorem and use it to find the area under one arch of the cycloid

$$\vec{r}(t) = a(t - \sin\theta)\vec{i} + a(1 - \cos\theta)\vec{j}$$
, $0 \le t \le 2\pi$.

Question: 4 (20 points) Derive the equation of a circle that passes through the points $P_1: (1,2)$, $P_2: (2,3)$, $P_3; (3,1)$. Use matrix methods.

Question: 5 (25 points) A rigid 3-body system is given by $m_1 = 1$ at the point (1, 1, -2), $m_2 = 2$ at the point (-1, -1, 0), $m_3 = 1$ at the point (1, 1, 2). The components of the moment of inertia tensor are

$$I_{xx} = \sum_{j=1}^{3} m_j (y_j^2 + z_j^2), \dots,$$
$$I_{xy} = I_{yx} = -\sum_{j=1}^{3} m_j x_j y_j, \dots.$$

i. Calculate the moment of inertia matrix

$$I = \left(\begin{array}{rrr} 12 & -4 & 0\\ -4 & 12 & 0\\ 0 & 0 & 8 \end{array}\right).$$

ii. Diagonalize the moment of inertia matrix, obtaining the eigenvalues and the principal axes of rotation (as normalized eigenvectors).