KOÇ UNIVERSITY

College of Arts and Sciences

Department of Physics

Course: MATH503 Applied Mathematics
Credits: 3
Semester: Fall 2003
Instructor: Professor Tekin Dereli

1. Midterm Exam: 10 November 2003, 14.00-15.15

Question: 1 (15 points) Given the vectors $\vec{r}_{1}=\vec{i}+a \vec{j}+\vec{k}, \vec{r}_{2}=b \vec{i}+a \vec{j}+b \vec{k}$, $\vec{r}_{3}=b \vec{i}-b \vec{k}$, determine all the values of a and b for which they are linearly dependent.

Question: 2 (20 points) Calculate the circumference of the cardioid $r=$ $a(1+\cos \theta)$. Sketch the graph of this curve.

Question: 3 (20 points) State Green's theorem and use it to find the area under one arch of the cycloid

$$
\vec{r}(t)=a(t-\sin \theta) \vec{i}+a(1-\cos \theta) \vec{j}, \quad 0 \leq t \leq 2 \pi
$$

Question: $\mathbf{4}$ (20 points) Derive the equation of a circle that passes through the points $P_{1}:(1,2), P_{2}:(2,3), P_{3} ;(3,1)$. Use matrix methods.

Question: 5 (25 points) A rigid 3-body system is given by $m_{1}=1$ at the point $(1,1,-2), m_{2}=2$ at the point $(-1,-1,0), m_{3}=1$ at the point $(1,1,2)$. The components of the moment of inertia tensor are

$$
\begin{gathered}
I_{x x}=\sum_{j=1}^{3} m_{j}\left(y_{j}^{2}+z_{j}^{2}\right), \ldots \\
I_{x y}=I_{y x}=-\sum_{j=1}^{3} m_{j} x_{j} y_{j}, \ldots
\end{gathered}
$$

i. Calculate the moment of inertia matrix

$$
I=\left(\begin{array}{ccc}
12 & -4 & 0 \\
-4 & 12 & 0 \\
0 & 0 & 8
\end{array}\right)
$$

ii. Diagonalize the moment of inertia matrix, obtaining the eigenvalues and the principal axes of rotation (as normalized eigenvectors).

